Divide and Conquer Algorithms

- A general paradigm for algorithm design; inspired by emperors and colonizers.

1. Divide the problem into smaller problems.
2. Conquer by solving these problems.
3. Combine these results together.

Binary Search

- Search for x in sorted array A.
- If x is equal to the middle element of A, search is complete
- If x is less than the middle element of A, search on the left half of A
- Else, search on the right half of A

Time Complexity

- Let $T(n)$ denote the worst-case time to binary search in an array of length n.
- Recurrence is $T(n) = T(n/2) + O(1)$.
- $T(n) = O(\log n)$

```python
def binarySearch(target: int, arr: list, left: int, right: int) -> int:
    if left > right:
        return -1

    middle = (left + right) // 2
    if target == arr[middle]:
        return middle
    elif target < arr[middle]:
        return binarySearch(target, arr, left, middle - 1)
    else:  # target > arr[middle]
        return binarySearch(target, arr, middle + 1, right)

print(binarySearch(-1, list(range(10)), 0, 9))
print(binarySearch(10, list(range(10)), 0, 9))
print(binarySearch(5, list(range(10)), 0, 9))
```

Merge Sort

- Sort an unsorted array of numbers A
- If array is one element, return A
- Otherwise, recursively call mergesort on the left and right halves of A
- Then, merge the sorted result of the left and right halves of A

Time Complexity

- Let $T(n)$ denote the worst-case time to merge sort an array of length n.

In [2]:
```python
def binarySearch(target: int, arr: list, left: int, right: int) -> int:
    if left > right:
        return -1

    middle = (left + right) // 2
    if target == arr[middle]:
        return middle
    elif target < arr[middle]:
        return binarySearch(target, arr, left, middle - 1)
    else:  # target > arr[middle]
        return binarySearch(target, arr, middle + 1, right)
```
Let $T(n)$ denote the worst-case time to merge sort an array of length n.

Recurrence is:

$$T(n) = \begin{cases}
T(n) & n = 1 \\
2T(n/2) + O(n) & n \geq 1
\end{cases}$$

\[T(n) = O(n \log n) \]

Multiplying Numbers

We want to multiply two n-bit numbers. Cost is number of elementary bit steps.

Grade school method has cost: multiplies, additions, plus some carries.

Karatsuba's Algorithm

- Let X and Y be two n-bit numbers. Write $X = ab$, $Y = cd$ where ab and cd are concatenated to form an n-bit number.
- a, b, c, d are $n/2$ bit numbers. (Assume $n = 2^k$.)
 \[XY = (a2^{n/2} + b)(c2^{n/2} + d) = ac2^n + (ad + bc)2^{n/2} + bd \]
- Note that $(a - b)(c - d) = (ac + bd) - (ad + bc)$.
- Solve 3 subproblems: ac, bd, $(a - b)(c - d)$.
- We can get all the terms needed for XY by addition and subtraction!

Time Complexity

- The recurrence for this algorithm is $T(n) = 3T(n/2) + O(n) = O(n^{\log_2(3)})$.
- The complexity is $O(n^{\log_2(3)}) = O(n^{1.59})$.

Recurrence Solving

- Expand terms until a general formula is reached.
- Substitute for base case and solve.
- Can also use tree view with number of levels and work per level.
- Can solve by induction.

Master Method

- Recurrence in the form
 \[T(n) = O(n^{\log_b(a)}) + \sum_{i=0}^{\log_b(n-1)} d \left(\frac{n}{b^i} \right) \]
- Let $f(n) = O(n^p \log^k(n))$ where $p, k \geq 0$
- Condition: $a \geq 1$, $b > 1$ must be constant
- Case 1: $p < \log_b a \Rightarrow n^{\log_b(n)}$ grows faster than $f(n)$. Thus, $T(n) = O(n^{\log_b(n)})$.
- Case 2: $p = \log_b a \Rightarrow$ both terms have same growth rates, thus $O(n^{\log_b(n) \log^{k+1}(n)})$
- Case 3: $p > \log_b a \Rightarrow n^{\log_b(n)}$ grows slower than $f(n)$. Thus, $T(n) = O(f(n))$
Matrix Multiplication

- Multiply two \(n \times n \) matrices: \(C = A \times B \).

Traditional Algorithm

- Standard Method:
 \[C[i][j] = \sum_{k=1}^{n} A[i][k] \times B[k][j] \]
 For every element in \(C \), it takes \(O(n) \) computations.
 There are \(n^2 \) elements in \(C \) so it takes \(O(n^3) \).

Strassen's Algorithm

- Let \(A, B \) be two \(n \times n \) matrices.
 Divide matrices \(A, B, C \) into four \(n/2 \times n/2 \) submatrices.
 \[
 A = \begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
 \end{pmatrix};
 B = \begin{pmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22}
 \end{pmatrix};
 C = \begin{pmatrix}
 c_{11} & c_{12} \\
 c_{21} & c_{22}
 \end{pmatrix}
 \]

- We can rewrite the product matrices as the following:
 \[
 c_{11} = a_{11} * b_{11} + a_{12} * b_{21} \\
 c_{12} = a_{11} * b_{12} + a_{12} * b_{22} \\
 c_{21} = a_{21} * b_{11} + a_{22} * b_{21} \\
 c_{22} = a_{21} * b_{12} + a_{22} * b_{22}
 \]

- However, the recurrence for this relation listed below solves to \(O(n^3) \):
 \[
 T(n) = 8T(n/2) + O(n^2)
 \]

- Can reduce to seven multiplications using the following matrices:
 \[
 P_1 = (a_{11} + a_{22})(b_{11} + b_{22}) \\
 P_2 = (a_{21} + a_{22})(b_{11}) \\
 P_3 = (a_{11})(b_{12} - b_{22}) \\
 P_4 = (a_{22})(b_{21} - b_{11}) \\
 P_5 = (a_{11} + a_{12})(b_{22}) \\
 P_6 = (a_{21} - a_{11})(b_{11} + b_{12}) \\
 P_7 = (a_{12} - a_{22})(b_{21} + b_{22})
 \]

- We can rewrite the product matrices as the following:
 \[
 c_{11} = P_1 + P_4 - P_5 + P_7 \\
 c_{12} = P_3 + P_5 \\
 c_{21} = P_2 + P_4 \\
 c_{22} = P_1 + P_3 - P_2 + P_6
 \]

- The recurrence for this relation listed below solves to \(O(n^{\log_2(7)}) = O(n^{2.81}) \):
 \[
 T(n) = 7T(n/2) + O(n^2)
 \]

Quicksort

- Simple, fast, and does not require extra space
Algorithm

- Partition among a pivot, splitting into elements smaller than the pivot, denoted L, and elements greater than the pivot, denoted R
- Sort L and R recursively
- Combine by appending R to L

Time Complexity

- $T(n)$ denotes the randomized runtime of Quicksort
- Each element randomly likely to be chosen as a pivot so there is $1/n$ probability that i is the pivot.
- Recurrence denoted by the following relation:

$$T(n) = \frac{1}{n} \sum_{i=1}^{n} (T(i-1) + T(n-1)) + n + 1$$

$$T(n) = 2/n \sum_{i=1}^{n} T(i-1) + n + 1$$

$$T(n) = 2/n \sum_{i=0}^{n-1} T(i) + n + 1$$

(1) : $n \cdot T(n) = 2 \sum_{i=0}^{n-1} T(i) + n^2 + n$

(2) : $(n-1) \cdot T(n-1) = 2 \sum_{i=0}^{n-2} T(i) + (n-1)^2 + (n-1)$

- Subtract (2) from (1) to arrive at the following:

$$n \cdot T(n) = (n+1) \cdot T(n-1) + 2n$$

$$\frac{T(n)}{n+1} = \frac{T(n-1)}{n} + \frac{2}{n+1}$$

$$\frac{T(n)}{n+1} = \frac{T(n-2)}{n-1} + \frac{2}{n} + \frac{2}{n+1}$$

$$\frac{T(n)}{n+1} = \frac{T(2)}{3} + \sum_{i=3}^{n} \frac{2}{i}$$

$$\frac{T(n)}{n+1} = \Theta(1) + 2 \ln(n)$$

- Thus, $T(n) \leq 2(n+1) \ln(n)$, which is linearithmic.
Extrema Finding

- We can find the maximum and minimum in linear time with n comparisons.
- We can divide and conquer to find both the min and max in $3n/2$ comparisons.

Min Algorithm

- Initialize current minimum to be the first element.
- Iterate through the rest of the elements; if any element is less than the current minimum, set it as the new current minimum.

Min Max Algorithm

- If the list A contains a single element, $min = max = A[0]$.
- Divide into two equal sublists A_1, A_2 and recursively find both the min and the max of both sublists. Then, return the more extreme of the two results for each min and max.

Time Complexity

- 2 calls on half the list + 2 comparisons has a recurrence of the following:
 \[T(n) = 2T(n/2) + 2 \]

Using the recurrence expansion method, we get...

\[T(n) = 2 \times 2 + 2 \]
\[T(n) = 2^2 \times 2 + 2 \]
\[T(n) = 2^3 \times 2 + 2 \]
\[\vdots \]
\[T(n) = 2^i \times 2 + 2 \]
\[T(n) = 2^i \times n/2 + 2 \]
\[T(n) = 2^i \times n/2 - 2 \]

Use $T(2) = 1$. Then $n/2^i = 2$ when $i = \log_2 n/2$

Substitute i to get the recursion $T(n) = n/2 + 2 \times n/2 - 2 = 3n/2 - 2$

```
In [3]:
def findMin(l: list) -> float:
    minimum = l[0]
    for element in l[1:]:
        minimum = element if element < minimum else minimum
    return minimum
print(findMin(list(range(10, 0, -1)))))
```

1
Linear Time Selection

- Find the item of rank k in the list (indexed 1 as smallest and n as largest).

Algorithm

- Divide items into \(n/5 \) groups of 5 each.
- Find the median of each group using sorting.
- Recursively find median of group medians.
- Partition using median-of-median, \(x \), as a pivot.
- Let low side have \(s \) items and high side have \(n - s \) items. If \(k \leq s \), call this algorithm on the low side. Else, call this algorithm on the high side for rank \(k - s \).

Correctness Proof

- The base case is trivial.
- If we call the low side, when \(k \leq x \), we consider all items not in the quadrant greater than \(x \). We use the inductive hypothesis to assume this recursion returns the correct result.
- Without loss of generality, we can apply this to the high side as well.

Time Complexity

- Recursively finding the group median is a recursive call of \(T(n/5) \).
- Recursively calling the low or high side is a recursive call of \(T(7n/10) \) as there are \(1/2 \times n/5 \) groups contributing at least 3 items to the opposite side.
- All other work can be done in linear time.
- The recurrence relation is the following:
 \[
 T(n) \leq T(n/5) + T(7n/10) + O(n)
 \]
- We can inductively verify \(T(n) \leq cn \) for some constant \(c \):
 \[
 T(n) \leq c(n/5) + c(7n/10) + O(n) \\
 T(n) \leq (9/10)cn + O(n) \leq cn \\
 T(n) \leq O(n) \leq cn/10
 \]
- Choose \(c \) so that \(cn/10 \) beats \(O(n) \) for all \(n \). Thus, \(T(n) \leq cn \), meaning it runs in linear time.
Convex Hulls

- Smallest convex shape that contains a set of points

Algorithm

- Sort points by x-coordinates.
- Partition points into equal halves A (left) and B (right).
- Recursively compute the convex hull of A and B.
- Merge the convex hulls of A and B to arrive at the overall convex hull: start at the rightmost point a of A and leftmost point b of B; while a, b is not the lower tangent of the convex hulls of A and B: move A clockwise around points of A until it is a tangent of A, move b counter clockwise until it is a tangent of B. Then, repeat the process for the upper tangent in the reverse direction. Remove edges that were travelled in the rotation.

Correctness Proof

- Tangent of both objects does not cutoff any point
- Tangent of both objects also does not add any additional unnecessary space
- We explicitly check for tangent of both sides and remove unnecessary edges

Time Complexity

- Initial sorting takes $O(n \log(n))$.
- Recurrence $T(n) = 2T(n/2) + O(n)$ with $O(n)$ for tangent merging.
- Recurrence solves to $O(n \log(n))$.

In []: # CODE