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Introduction and motivation — processors
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Dotted line extrapolations by C. Moore

* Processor evolution has changed radically after about 2004

— (potential) performance continued to scale essentially only through parallelism
— End-user performance has become harder to extract



Introduction and motivation — processors 2

 Nowadays processors are parallel ... more and more parallel

— Biggest reason was the emerging of wire-delay issues ... i.e. on-chip latency

— Also mobile/embedded ones (loT ... soon?)
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Introduction and motivation - interconnects
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* Nowadays we need far more energy to bring operands to the cores (across
the chip) than to perform the operation = time to move data around

* For efficiency and preformance scalabiliy:

Elaboration need to be local and parallel !

From Bill Dally’s “GPU Computing to ExaScale and Beyond” keynote, SC'10 5



Introduction and motivation - parallelism

In every field where ‘computational thinking’ is pushed, is nowadays of the
utmost importance to promote:

e Parallel programming concepts

In security applications where performance and/or efficiency is needed, this
is particularly appropriate

—_

* Cryptographic algorithms and protocols

e Embedded systems — cyber-physical systems

e Connected systems




Introduction and motivation - parallelism

From the educational standpoint it is challenging:

e Parallel architectures are heterogeneous
— CPUs, GPUs, hybrid ... with different efficient programming strategies and resources

e Parallel programing is complex in itself ... and debugging is worse ©
— Imperative programming is implicitly sequential

— proving specific techniques are needed

Traditional Sequential Frocessing

* Biginteraction with computer-architecture [IIE=

— caches, coherence, memory consistency model inetructions

l
— Hyperthreading, processor microarchitecture !II“““I I l I l—-— cru |

Farallel Frocessing
e Biginteraction with operating system
— Thread orchestration and management
— Scheduling, migration, etc




Introduction and motivation — parallelism (2)

Need to promote awareness around parallel programming in the
security domain

e Very crucial as cryptographic algorithms were devised without parallelism in mind

e Also from the mathematical standpoint, most of the primitives are intrinsically
sequential
— Maybe it needs to be like this for security reasons ?

We will address two fundamental algorithms of cryptography

e Modular exponentiation (as in RSA)

e Multiplication of big numbers SECURITY®

We propose and discuss a few parallelization strategies

e Educational approach to highlight phenomena without looking for the
ultimate performance/optimizations
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Modular exponentiation - intro

Modular exponentiation: M ¢ mod(n)

 With M, n and possibly e being ‘big’ enough for security (k-bits)
— E.g.in current RSA 2048- to 4096-bit are deemed safe in the short term

e Square-and multiply or binary method

— Given the binary expansion of e = (e, ;, €, , ... €1 €)

k—1

€ = (('L'—lf'f,-—'z“‘f'lf'[l):ZWT

i—l)

for ¢; € {0, 1}. The binary method for computing C' = M® (mod n) is given below:

The Binary Method

Input: M, e, n.

Qutput: C' = M mod n.

1. ifep ;=1 then O := M else O =1
2. fori=k—2downto 0

2a. C:=C-C (mod ¢ <€

)
2b. ife;=1then C:=C-M (modn) <€
3. return

* From: Kog, C. K. «High-Speed RSA Implementation», RSA Laboratories, 1994
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m-ary approach with precomputation - intro

The exponent can also be scanned also log,(m)-bits at a time = m-ary method =
reduces number of modular multiplications

At each step:
* log,(m) =rsquarings need to be done on the operand

e Then a multiplication by a specific power of the base
— The powers needed are M?, M3 ..., M™2, M™-1
— E.g. 3-ary 2 powers needed 1 (trivial), 2, 3,4, 5,6, 7

e which can be pre-computed before the scan = precomputation table

Parallel approach:
e Before exponent scan, Np threads prepare the precomp-table
— Powers evenly split between the threads ... simple, can be improved !
e Split the exponent in r-bit slices and we group them in a «comb-like» fashion
 E.g. number of working threads Nt=4

— every r-bit slice of the exponent whose index mod(Nt) is 0 = thread 0
— every r-bit slice of the exponent whose index mod(Nt) is 1 = thread 1

— every r-bit slice of the exponent whose index mod(Nt) is Nt-1 = thread Nt-1

11
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m-ary approac

th3 | th2 | thl | thO | th3 | th2 | th1l | thO th3 | th2 | th1l | thO
th0 | 0..0 | 0..0 | 0..0 | thO 0.0 0..0(0.0
thl1|0.0|0..0|0..0|thl |0.0 0.0 [ 0..0 | thl
th2 | 0.0 {0..0 | 0.0 | th2 | 0..0 | 0..0 0..0 | th2 | 0..0
th3{0..0|0..0|0..0|th3 0.0 (0.0 (0.0 th3 | 0..0 | 0..0

Each thread performs a reduced amount of multiplications

M € mod(n) = RO x R1 x R2 x R3 mod(n)

Work of each thread is quite balanced (e is thousands bits, r a few bits)
Work execution time is limited by the exponentiation by e3 ...

n with precomputation — intro (2)

12



m-ary with precomputation - results

Experiments run on:

Dual Xeon E5-2650 v2 @2.60GHz (3.4 GHz turbo), 8c/16t, L1pc 32K+32KB,
L2pc 256KB, L3sc 20 MB, 64 GB RAM

Enforced thread-to-core affinity: big difference in the results

— Thread-data resources are not negligible and occupy cache space
— Thread can be migrated by the OS = unnecessary cold misses

— Same physical processor
Linux Debian 8 or 9 operating system
Key sizes: 1024, 2048, 4096, 8192, 16384, 32768

Repeated experiments:

— From 10s to 1000s times to let benchmark run from 10s of seconds up to a
few minutes for every key size

Benchmarks implemented in C++ relying on GMP/MPIR libraries

Showing improvements over plain square-and-multiply (S&M)
— GMP/MPIR native performance is shown as a reference

13



m-ary with precomputation — results 1024 (1 thr)
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e 1-thread with 1/2 pre-comp threads: always worse than S&M

— Very slow for 4-ary or 6-ary versions

e 1-thread with 4 pre-comp threads (4-pt): -9% (2%-ary) and -6% (23-ary)
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m-ary with precomputation — results 1024 (4-thr)
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4-threads:

— from -15% to -20% (22-ary, 1-4 threads)

— -23% (23-ary, 4 pre-threads), -20% (22-ary, 2-/4-pt), [-18% :

23-ary, 2-pt; 2%-ary, 4-pt)
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m-ary with precomputation — results 1024 (8-thr)
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Best configuration: -26% (2%-ary, 4 pre-computation threads)
8 configurations (m-ary, pt) -17% or better improvement
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m-ary with precomputation — results 2048
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e 1-thread: need 4 pre-comp threads to get -14% on 22-ary

* 4-threads: higher 2"-ary configurations sustainable only with multiple pre-
comp threads:

— -29.5% (22-ary, 4-pt), -25% (23-ary, 4-pt; 2

e 8-threads: -25% (various 2"-ary, n-pc configurations)

4-ary, 4-pt; 22-ary, 2-pt)
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m-ary with precomputation — results 4096
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Increasing key size is easier to exploit pre-computations
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More configurations get advantages
1-thread: -10% (22-ary,4-pc)
4-threads: -23% (23-ary,4-pc)
8-threads: -26% (23-ary, 4-pc)
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m-ary with precomputation — results 8192
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Main threads are needed to take advantage of pre-computations

— 4 or 8 are similar

2/4 pre-computation threads are needed to exploit m-ary (even from 22-

ary)
Best performance: -23.5% (8-threads, 2%-ary, 4-pt)
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Modular exponentiation time (ms)

m-ary with precomputation — results 16k & 32k
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Similar results: Stability of the approach across key sizes

Best performance:
— 16384: -24% (8-threads, 23-ary, 4-pt)
— 32768: -24.5% (8-threads, 23-ary, 4-pt)
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m-ary with precomputation: wrap up

e 2/4 pre-computation threads can improve m-ary performance
— Up to -25% / -30% improvement

 m-ariety from 22, 23 typically gives best results

— 8-threads and 4-pt can exploit
e 2%ary computation (average improvement: -22%, max -26%)

e 26-3ary computation (average improvement: -14%, max -20%)

 Problems:
— Pre-computations are performed before starting the computation

— Pre-computed values are global
e Cache management can add overhead in the (first) thread access to the

values
e Cache hierarchy traversal

— Big m: not all precomputations are statistically used
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m-ary “on-demand” - intro

N-threads are started immediately

Each one doing the same work as in the «M-ary with precomputation» method

Every time a thread looks for a precomputed value and finds it not available:

— Locks the precomputation table entry
e A first attempt locked the whole table = no concurrency in precomputations, especially in the
early stages

— Calculates the needed power
— Fills the table entry
— Unlocks the table entry

Pros:
— Computation starts immediately
— Only the required precomputed entries are calculated
e Useful for bigger m-ary approaches
— Still cache hierarchy traversal for getting entries where needed

23



m-ary “on-demand” — results 1024
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 More configurations improve, compared to the preliminary pre-computation case
e 1 thread exposes the effect of m-ary approach: best at 2%-ary (-22%)

e Increasing thread number is beneficial especially for bigger tables (28/21%-ary)
— Sort of saturation at 2/3 threads for 2%-ary
— Sweet spot at 3-threads 23-ary (-32%)
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m-ary “on-demand” — results 4k & 8k
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e Bigger keys benefit from bigger tables

— On-demand approach limits useless work

8192
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=#-GMP/MPIR
*=1_thr
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| | ! ' —m-8_thr

* Increasing thread number is beneficial especially for bigger tables (8/10-ary)

e Best configurations

— 4096:-27% (26-ary, 3 threads), -27% (24-ary, 4 threads), -26% (24-ary, 6/7/8 threads)
— 8192:-27% (24/26-ary, 3 threads), -25% (23/24-ary, 6/7/8 threads) -25% (26-ary, 3 threads)
25



m-ary “on-demand” — results 16k & 32k
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 Pre-computation tables can be exploited also by a few threads

— Less benefits from increasing beyond 5 threads

e Best configurations
— 16384:-27% (2°/28-ary, 3 threads), -26% (26-ary, 7 threads)
— 32768:-27% (2%-ary, 2/8 threads), -26% (28-ary, 7/8 threads)
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m-ary “on-demand”: wrap up

e Solution quite robust in the number of threads needed
— 3-threads or 6/7/8 threads are the best configuration

— Up to -32% (1024) and never less than -27% in the other cases
e Various «ariety» possible and beneficial: also 2°-28-ary

 Problems:
— Possible conflicts between threads at small «ariety» when the same
pre-computation is needed
 Amortized for bigger keys and less likely for bigger «ariety»
— Pre-computed values are global

e Cache management can add overhead in the (first) thread access to the
values

Bict e ! . ctical |
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Slicing - intro

N-threads are started:
* Each one gets assigned a contiguous «slice» of the exponent

— The other lower bits are zeroed
e After all complete the work: sub-results are multiplied together

e th2 [ th2 | th2 | th2 | thl | thl | thl | thl | thO | thO | thO | thO
el thO | thO | thO

el thl [ thl |thl|th1|0..0] 0.0 (0.0

e2 th2 {th2 | th2 |th2|0.0]0.0(0..0]0..0/0..0 | 0..0|0..0

M € mod(n) = RO x R1 x R2 mod(n)

29



Slicing — intro (2)

e Cons:
— The load of the threads is quite unbalanced

— Their overall computation time is bounded by the one with the most
significant slice

» After the «slice» exponentiation each thread performs a chain of modular
squares (apart from the first slice)

* Pro:

— The load of the more significant slices can be made thinner with
uneven exponent slicing

— Optimally balanced approaches have been proposed [1]
— Sequences of squares can be cache-friendly: both data and instruction

[1] Lara et al “Parallel modular exponentiation using load balancing without Precomputation”, Journal of Computer and System Sciences, 2010



Slicing — results
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* 3/4 threads, and slices, are typically enough to get the maximum benefit

 Smaller key sizes are accelerated more
— Up to -40% for 1024-bit (4-threads/slices)
— Up to -36.5% for 2048-bit (10-threads/slices), -35.5% (6-thread/slices)

* From 4096 and up, speedup reaches -30% at 3/4 threads/slices

e ‘Optimum’ slicing does not have measurable effect
31



Slicing: wrap up

e 3/4 threads/slices, are enough to get the maximum benefit

— More threads do not alter performance

e Speedups:
—  Up to -40% for 1024-bit, -36.5% for 2048-bit, -30% for 4096-32768-bit

Observation:
e Fastest, and stable, even if threads manage unbalanced work, why ?

e The unbalanced work is simple and repetitive

— modular squaring
— Simple: not involving big data structures and simpler than modular
multiplication
e Small memory footprint L1 / L2 caches can support the execution
— Repetitive: many squaring needed in a row
e Temporal locality 2 compiler+processor+cache can support fast execution
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Parallel Karatsuba - intro

A number of crypto-algorithms rely on modular multiplication of big
numbers

Karatsuba algorithm (1960) is a multiplication algorithm that

e Reduces the asymptotic complexity of multiplication from O(n?)to O(n'->83)
 Relies on a ‘divide-and-impera’ approach
e The multiplication of the xI?nd y (N-bits each)vcan be done considering the two ‘halves’

of each numberx =x; 22 + x5,y =y, - 22 + ¥,

high low
high low €
11 Tol
T To | 141 040
+ T,y
U1 Yo ==
+ ToYo
e And doing three N/2 bits multiplications — [ (@1 —20) (%1 — %)

We have implemented a parallel version with 3-threads (the main one, plus
two auxiliary ones)

e Each thread perform a N/2-bit multiplication
 and after all are done, the main thread composes the final result

34



Parallel Karatsuba — implementation (sequential)

For investigating parallelism speedup we implemented a sequential karatsuba

as a reference

e Same data structures and same management as the parallel ones

 Note: using C++14 here ...

mpz_class karaMul{mpz_class const& x1, mpz _class constd x2)

1

assert( xl.get mpz t()-> mp size == xl.get mpz t()}-> mp size }; // per ora

auto const partl = splitBigNum limb{x1}; J/ partl is { high_bitsl, low_bitsl}
auto const part2 = splitBigNum_limb(x2); /f part2 is { high_bits2, low_bits2}
mpz_class ®x1llx2L= partl.seccnd*part2.second; J/multiplication 1

mpz_class x1Hx2H= partl.first*part2.first; Jimultiplication 2

mpz_class midTerm= x1Hx2H + x1Lx2L - (partl.first-partl.second) * (part2.first-part2.second);

mp_bitcnt_t halfBits= (xl.get_mpz_%t()->_mp_sizef2) * sizeof(mp_limb_t) * 8;
mpz_class ret= xllx2L + (midTerm << halfBits) + (®x1Hx2H << (2*halfBits));

return ret;

partition

<€

multiplications

//multiplication 3

35



Parallel Karatsuba — implementation (async)

std::async are C++ standard task wrappers which

e (Can execute a function in a separate thread

e Return a handle to the result (std::future) for the caller
 The caller can block on the future waiting for the result
e Quite high-level and simple to use = overhead ?

mpz_class karaMulThrAs(mpz_class const& x1, mpz_class const& x2)

1
mp_bitcnt t halfBits= (xl.get mpz_t()-> mp size/2) * sizeof(mp limb t) * 8;
auto const partl = splitBigNum_limb(x1};
auto const part2 = splitBigNum_limb(x2);
auto retllL = std::async(std::launch::async, standardMul, partl.second, part2.second); Spawn
auto retHH = std::async(std::launch::aspnc, standardMul, partl.first, part2.first); <€
mpz_class midTerm= - (partl.first-partl.second) * (part2.first-part2.second);
mpz_class x1lx2L= retLL.get(); join
mpz_class x1Hx2H= retHH.get(); €—————
midTerm += wllx2L + w1Hwx2H;
mpz_class ret= xllx2L + (midTerm << halfBits) + (x1Hx2H << (2*halfBits));
return ret;
¥
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Parallel Karatsuba — implementation (threads)

std::threads are C++ standard thread handles which
e (Can execute a function in a separate thread
* Are lower-level than std::asyncs

 We need to explicitly manage the synchronization for getting the result.
— Specifically, joining thread execution explicitly

mpz_class karaMulThr(mpz class const& x1, mpz class const& x2)

1
mp_bitcnt_t halfBits= (x1l.get mpz_t()-> mp_size/2) * sizeof(mp_limb t) * B;
auto const partl = splitBigNum_limb({x1);
auto const part2 = splitBigNum limb(x2);
mpz_class x1lx2L;
auto thrl = std::thread{mulThr, partl.second, part2.second, std::ref(x1lLx2L)); spawn
mpz_class x1Hx2H;
auto thr2 = std::thread(mulThr, partl.first, part2.first, std::ref(xlHx2H));
mpz_class midTerm= - (partl.first-partl.second) * (part2.first-part2.second);
thrl.join(}; join
thr2.join(); €
midTerm += wl1lx2L + x1Hx2H;
mpz_class ret= x1lx2L + (midTerm << halfBits) + (x1Hx2H << (2*halfBits));
return ret;

b
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Parallel Karatsuba — implementation (threads) discussion
A problem can be that multiplication algorithm is pretty fast

key_size [bits] GMPmul [us] Kara_seq [us]

1024 0,61584 1,72731
2048 0,873759 2,29119
4096 2,57911 4,07022
8192 7,86512 9,55777
16384 21,1608 26,396
32768 55,902 67,8586
65536 153,327 174,204

... compared to the thread spawn and spawn+join time:
- i72600: 6.5us / 16.0 us

- E5-2650v2:4.3 us/10.1us

- 17 6800K: 4.4 us / 10.4 us



Parallel Karatsuba — implementation (thread pool)

Spawning and releasing resources of new threads can be quite costly
compared to the time to perform a multiplication on big integers

 The ‘thread-pool’ solution:

— The helping threads are always ‘active’ and are waiting on a condition-variable
(CV) within an infinite loop

— the main thread fills the threads’ input structures with the operands and
triggers their awakening

— They compute the multiplication, store the result in a data structure accessible
from the main thread and block again

— Once the main thread wants a result, it checks the result’s CV and either
blocks waiting, or proceeds and is able to use the result value

Pros: no overhead from thread spawn/release
Cons: more complex parallel solution
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Parallel Karatsuba — implementation (thread pool) - 2

Problem: multiplication is fast ... compared to wake up a thread

thread activation time [us] (cond.variables+mutex)

different cores, threads to be unblocked

they lock on their own after their computation is done (no ‘join’ equivalent)
i7 2600: 4.1 us
i7 6800K: 2.3 us

thread activation time [us] (cond.variables+mutex)

same core as main thread, threads to be unblocked

i7 2600: 1.6 us (interesting ! but not usable in this case)
i7 6800K: 1.3 us

e Cons: condition variable wait and unlock still induces a non-
negligible overhead
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Parallel Karatsuba — implementation (thread pool) - 3

Improvement of infinite-thread: lock-free data structures

e between main thread and helper ones, for feeding operands
 Between helper threads and main one, for retrieving results

 Without explicit synchronization mechanism between the two
— No OS intervention
— No scheduler
— No allocation of data structures or thread resources

e thread activation time [us] (cond. variables+mutex)
- different cores, threads to be unblocked
- they lock on their own after their computation is done (no ‘join’ equivalent)
- 17 2600: 0.12 us (interesting !)
- 17 6800K: 0.18 us

 Then, in any case operands need to be «prepared» in a suitable way

to be fed to the helper threads
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Parallel karatsuba — results methodology

Experiments run on:

i7-6800K @ 3.40GHz (3.6 GHz turbo), 6¢/12t, L1pc 32K+32KB, L2pc
256KB, L3sc 15 MB, 128 GB RAM

Dual Xeon E5-2650 v2 @2.60GHz (3.4 GHz turbo), 8c/16t, L1pc
32K+32KB, L2pc 256KB, L3sc 20 MB, 64 GB RAM

i7-2600 @3.4 GHz (3.8GHz turbo), 4c¢/8t, L1pc 32K+32KB, L2pc
256KB, L3sc 8 MB, 32 GB RAM

Enforced thread-to-core affinity: not big issue in this case

Linux Debian 8 or 9 operating system
Key sizes: 1024, 2048, 4096, 8192, 16384, 32768, 65536

Repeated experiments:

— From 5000s to 30000s times to let benchmark run for a reasonable
amount of time for every key size

Benchmarks implemented in C++ relying and using GMP/MPIR

library for Big numbers and reference

Showing improvements over plain sequential Karatsuba and
GMP/MPIR

42



Parallel Karatsuba — results parallel simple

i7-2600 @3.4 GHz (3.8GHz turbo), 4¢/8t, L1pc 32K+32KB, L2pc 256KB, L3sc 8 MB

200

180
160

140

120

100

80

Multiplication time (ps)

60

40

20

0 .

1024 2048 4096 8192 16384 32768 65536

B GMPmul
B Kara_seq
Kara_thrAs

m Kara_thr

e std::sync and std::thread approaches are worse/equal than sequential up to 16384
— 32768: -35% (std::async), -37% (std::thread)
— 65536:-52% (std::async), -48% (std::thread)
— Spawn/join threads overhead is limiting the approach

* improvements over GMPmul for big numbers
— 32768:-21% (std::async), -25% (std::thread)
— 65536: -45% (std::async), -41% (std::thread)
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Parallel Karatsuba — results parallel inf-threads

i7-2600 @3.4 GHz (3.8GHz turbo), 4¢/8t, L1pc 32K+32KB, L2pc 256KB, L3sc 8 MB

100

90

80
- 70
=1
E 60 B GMPmul
'g W Kara_seq
"g >0  Kara_thrAs
g- 40 W Kara_thr
2 30 m Kara_InfThr

20

10 -

0 -

1024 2048 4096 8192 16384 32768 65536

e Infinite-threads improve over simple parallel tasks
— Where they were already good
— -37% than Kara_seq @16384 (-21% than GMP)
— Matches Kara_seq @8192

— For smaller keys:
threads synchronization overhead and parameter passing is limiting the approach
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Parallel Karatsuba — results parallel inf-threadsLF

100
90
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60
50
40

Multiplication time (ps)

30
20
10

0 -

i7-2600 @3.4 GHz (3.8GHz turbo), 4¢/8t, L1pc 32K+32KB, L2pc 256KB, L3sc 8 MB

H GMPmul

H Kara_seq

m Kara_thrAs

W Kara_thr

m Kara_InfThr

m Kara_InfThrLF

1024 2048 4096 8192 16384 32768 65536

e Lock-free infinite-threads improve over infinite-threads

Number size decreases = improved advantage

Better for small keys: -46% @8192 than Kara_seq (-35% vs GMP)
-25% @4096 than Kara_seq

-3% @2048 than Kara seq

threads parameter preparation and passing is limiting the approach
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Parallel Karatsuba — results parallel inf-threadsLF (2)

Multiplication time normalized to Square&Multiply

Y
S

E5-2650 v2 @2.60GHz (3.4 GHz turbo), 8c/16t, L1pc 32K+32KB, L2pc 256KB, L3sc 20 MB

(Y
N

[IRY
o

(o]

1024 2048 4096 8192

Normalized results:

4096: -24% vs Kara_seq, +17% vs GMP
8192: -45% vs Kara_seq, -33% vs GMP
16384: -54% vs Kara_seq, -41% vs GMP
32768: -58% vs Kara_seq, -49% vs GMP
65536: -61% vs Kara_seq, -55% vs GMP

16384

32768

65536

B GMPmul

m Kara_seq

B Kara_thrAs

m Kara_thr

m Kara_InfThr
= Kara_InfThrLF
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Parallel Karatsuba — results parallel inf-threadsLF (3)

[y
o

i7-6800K @ 3.40GHz (3.6 GHz turbo), 6¢/12t, L1pc 32K+32KB, L2pc 256KB, L3sc 15 MB

B GMPmul

m Kara_seq

W Kara_thrAs

m Kara_thr

m Kara_InfThr

N W A~ U1 O N 00 ©

= Kara_InfThrLF

Multiplication time normalized to Karatsuba sequential

1024 2048 4096 8192 16384 32768 65536

 newer HW: slightly better performance on sequential code < turbo frequency, ILP

4096: -15% vs Kara_seq, +49% vs GMP
8192: -38% vs Kara_seq, -19% vs GMP
16384: -52% vs Kara_seq, -39% vs GMP
32768: -56% vs Kara_seq, -48% vs GMP
65536: -61% vs Kara_seq, -54% vs GMP
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Parallel Karatsuba: wrap up

 Only 3 overall threads can significantly speed up multiplication
— Over plain Karatsuba sequential from 4096 keys (-15%/-25%) up to -55%/60%
— Over GMP: less than -30% @8192 and up to less than -50% for bigger cases
— higher-number of threads could help, especially for bigger keys

e Parallelization opportunities and hurdles
— Difficulty of programming: abstractions = overhead vs abstraction

— Overhead of thread work orchestration

— Interactions with Operating System (OS) and computer architecture (caches,
etc)
— Lack of HW + parallel programming support at the uys scale

e Some parallel-programming strategies can be plug-in to fit the

problem
— Thread-pool and lock-free techniques = complexity
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Conclusions

 Exponentiation, as it is, can be accelerated through parallelism
— -30/-40%

e Big number multiplication, as it is, can be accelerated through multi-
threaded implementations
— -15% to -60% vs sequential Square&Multiply
— -19% to -54% vs native GMP/MPIR

Good case for promoting education into parallel programming in general and,
specifically, in the cyber-physical system security

— Parallelism in hardware is not emerging ... is already happened at almost all levels,
from embedded to HPC

— Need to harness it and exploit it now !

Discussion:

e Different math algorithms could be devised to be more parallelism-
friendly ?



Why we should care about parallel programming
in securing Cyber-physical systems
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