Why we should care about parallel programming
in securing Cyber-physical systems

Sandro Bartolini, Biagio Peccerillo

Department of Information Engineering and Mathematical Sciences
University of Siena, ltaly

{bartolini,peccerillo}@dii.unisi.it

Cyber Physical Security Education Workshop - CPSEd
Paris - July 18t, 2017

UNIVERSITA
DI SIENA

1 240

Outline

Introduction

Modular exponentiation parallelization
e m-ary with precomputation

e m-ary on-demand

e Slice method
Parallel Karatsuba multiplication

Conclusions

.*-.. "ty
By 2
EVEELY
3 o
-

UNIVERSITA
DI SIENA

1240

Introduction and motivation — processors

7 ’
10 r ’,’ Transistors
! (thousands)
6 !
10 |
5 |
10" |
| Single-thread
4 | Performance
10 (SpeciINT)
3!
10 |
2| - =+ Typical Power
10 ' (Watts)
1 : "7 Number of
10" | Cores
0 | - A
10 | e
1975 1980 1985 1990 1995 2000 2005 2010 2015
Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

* Processor evolution has changed radically after about 2004

— (potential) performance continued to scale essentially only through parallelism
— End-user performance has become harder to extract

Introduction and motivation — processors 2

 Nowadays processors are parallel ... more and more parallel

— Biggest reason was the emerging of wire-delay issues ... i.e. on-chip latency

— Also mobile/embedded ones (loT ... soon?)

Mer‘rq')ryCoh‘troller

Corel Core2

Controller="

Pentium 4 (1) CoreDuo (2) i7- 980X (6) i7-5960X /MD FX8370 (8)

Kirin 620 smartphone 64-bit ASIC (8 ARM cores, MALI-450 GPU) GTX 1080 (3584 cuda cores) 4

Introduction and motivation - interconnects

20mm

64-bit DP DRAM

200 — T8 .| 26pd 256pJ 16nd [Ry

256-bit Efficient
buses 200pJ [] off-chip link

256-bit access
8 kB SRAM

* Nowadays we need far more energy to bring operands to the cores (across
the chip) than to perform the operation = time to move data around

* For efficiency and preformance scalabiliy:

Elaboration need to be local and parallel !

From Bill Dally’s “GPU Computing to ExaScale and Beyond” keynote, SC'10 5

Introduction and motivation - parallelism

In every field where ‘computational thinking’ is pushed, is nowadays of the
utmost importance to promote:

e Parallel programming concepts

In security applications where performance and/or efficiency is needed, this
is particularly appropriate

—_

* Cryptographic algorithms and protocols

e Embedded systems — cyber-physical systems

e Connected systems

Introduction and motivation - parallelism

From the educational standpoint it is challenging:

e Parallel architectures are heterogeneous
— CPUs, GPUs, hybrid ... with different efficient programming strategies and resources

e Parallel programing is complex in itself ... and debugging is worse ©
— Imperative programming is implicitly sequential

— proving specific techniques are needed

Traditional Sequential Frocessing

* Biginteraction with computer-architecture [IIE=

— caches, coherence, memory consistency model inetructions

l
— Hyperthreading, processor microarchitecture !II“““I I l I l—-— cru |

Farallel Frocessing
e Biginteraction with operating system
— Thread orchestration and management
— Scheduling, migration, etc

Introduction and motivation — parallelism (2)

Need to promote awareness around parallel programming in the
security domain

e Very crucial as cryptographic algorithms were devised without parallelism in mind

e Also from the mathematical standpoint, most of the primitives are intrinsically
sequential
— Maybe it needs to be like this for security reasons ?

We will address two fundamental algorithms of cryptography

e Modular exponentiation (as in RSA)

e Multiplication of big numbers SECURITY®

We propose and discuss a few parallelization strategies

e Educational approach to highlight phenomena without looking for the
ultimate performance/optimizations

Outline

Introduction

Modular exponentiation parallelization
e m-ary with precomputation

e m-ary on-demand

e Slice method
Parallel Karatsuba multiplication

Conclusions

ST
EVEELY
s z
. F

UNIVERSITA
DI SIENA

1240

Modular exponentiation - intro

Modular exponentiation: M ¢ mod(n)

 With M, n and possibly e being ‘big’ enough for security (k-bits)
— E.g.in current RSA 2048- to 4096-bit are deemed safe in the short term

e Square-and multiply or binary method

— Given the binary expansion of e = (e, ;, €, , ... €1 €)

k—1

€ = (('L'—lf'f,-—'z“‘f'lf'[l):ZWT

i—l)

for ¢; € {0, 1}. The binary method for computing C' = M® (mod n) is given below:

The Binary Method

Input: M, e, n.

Qutput: C' = M mod n.

1. ifep ;=1 then O := M else O =1
2. fori=k—2downto 0

2a. C:=C-C (mod ¢ <€

)
2b. ife;=1then C:=C-M (modn) <€
3. return

* From: Kog, C. K. «High-Speed RSA Implementation», RSA Laboratories, 1994

10

m-ary approach with precomputation - intro

The exponent can also be scanned also log,(m)-bits at a time = m-ary method =
reduces number of modular multiplications

At each step:
* log,(m) =rsquarings need to be done on the operand

e Then a multiplication by a specific power of the base
— The powers needed are M?, M3 ..., M™2, M™-1
— E.g. 3-ary 2 powers needed 1 (trivial), 2, 3,4, 5,6, 7

e which can be pre-computed before the scan = precomputation table

Parallel approach:
e Before exponent scan, Np threads prepare the precomp-table
— Powers evenly split between the threads ... simple, can be improved !
e Split the exponent in r-bit slices and we group them in a «comb-like» fashion
 E.g. number of working threads Nt=4

— every r-bit slice of the exponent whose index mod(Nt) is 0 = thread 0
— every r-bit slice of the exponent whose index mod(Nt) is 1 = thread 1

— every r-bit slice of the exponent whose index mod(Nt) is Nt-1 = thread Nt-1

11

e0

el

e2

e3

m-ary approac

th3 | th2 | thl | thO | th3 | th2 | th1l | thO th3 | th2 | th1l | thO
th0 | 0..0 | 0..0 | 0..0 | thO 0.0 0..0(0.0
thl1|0.0|0..0|0..0|thl |0.0 0.0 [0..0 | thl
th2 | 0.0 {0..0 | 0.0 | th2 | 0..0 | 0..0 0..0 | th2 | 0..0
th3{0..0|0..0|0..0|th3 0.0 (0.0 (0.0 th3 | 0..0 | 0..0

Each thread performs a reduced amount of multiplications

M € mod(n) = RO x R1 x R2 x R3 mod(n)

Work of each thread is quite balanced (e is thousands bits, r a few bits)
Work execution time is limited by the exponentiation by e3 ...

n with precomputation — intro (2)

12

m-ary with precomputation - results

Experiments run on:

Dual Xeon E5-2650 v2 @2.60GHz (3.4 GHz turbo), 8c/16t, L1pc 32K+32KB,
L2pc 256KB, L3sc 20 MB, 64 GB RAM

Enforced thread-to-core affinity: big difference in the results

— Thread-data resources are not negligible and occupy cache space
— Thread can be migrated by the OS = unnecessary cold misses

— Same physical processor
Linux Debian 8 or 9 operating system
Key sizes: 1024, 2048, 4096, 8192, 16384, 32768

Repeated experiments:

— From 10s to 1000s times to let benchmark run from 10s of seconds up to a
few minutes for every key size

Benchmarks implemented in C++ relying on GMP/MPIR libraries

Showing improvements over plain square-and-multiply (S&M)
— GMP/MPIR native performance is shown as a reference

13

m-ary with precomputation — results 1024 (1 thr)

1024
2,5
X /
T 2 ///'
[J]
E o
'§ 1,5 x / / S&M
g = = —B-GMP/MPIR
N | _ =¢=1_thr(1_thPr)
(]
5 =#=1_thr(2_thPr)
>
é 0,5 - . = - . —o—1_thr(4_thPr)
0
2 3 4 6
27\r-ary

e 1-thread with 1/2 pre-comp threads: always worse than S&M

— Very slow for 4-ary or 6-ary versions

e 1-thread with 4 pre-comp threads (4-pt): -9% (2%-ary) and -6% (23-ary)

14

m-ary with precomputation — results 1024 (4-thr)

1024
2,5
X /
g 2
£ X //
51,5
'g ! X /
= — -
g_ 1 —— e
Eo 0,5 - [1 1 |
0 I I I
2 3 4 6
27\r-ary
4-threads:

— from -15% to -20% (22-ary, 1-4 threads)

— -23% (23-ary, 4 pre-threads), -20% (22-ary, 2-/4-pt), [-18% :

23-ary, 2-pt; 2%-ary, 4-pt)

S&M
=-GMP/MPIR
»=1_thr(1_thPr)
=#=1_thr(2_thPr)
=@-1_thr(4_thPr)
4 thr(1_thPr)
e===4 thr(2_thPr)
=4 thr(4_thPr)

-15%] (22-ary, 1-pt;

15

m-ary with precomputation — results 1024 (8-thr)

L N
- -
= (6} N (0]

Modular exponentiation time (ms)

o
n

1024

[/

— 7

\

27\r-ary

8-threads:

Best configuration: -26% (2%-ary, 4 pre-computation threads)
8 configurations (m-ary, pt) -17% or better improvement

S&M
=-GMP/MPIR
-1_thr(1_thPr)
=¥=1_thr(2_thPr)
=@-1_thr(4_thPr)
4 thr(1_thPr)
=4 thr(2_thPr)
=4 thr(4_thPr)
8 _thr(1_thPr)
=8 thr(2_thPr)
——38_thr(4_thPr)

16

m-ary with precomputation — results 2048

2048

15 /

13 X S&M
= —8-GMP/MPIR
E11 N /
g ¢ *=1_thr(1_thPr)
§ 9 «1_thr(2_thPr)
5 —@—1_thr(4_thPr)
s 7
g_ E 4 thr(1_thPr)
s 5 ——— ——4_thr(2_thPr)
5 - o O O = Cn
3 3 : =4 thr(4_thPr)
= 8_thr(1_thPr)

1 ~m-8_thr(2_thPr)

-1 F 2 3 4 6 =4—8_thr(4_thPr)

2\ r-ary

e 1-thread: need 4 pre-comp threads to get -14% on 22-ary

* 4-threads: higher 2"-ary configurations sustainable only with multiple pre-
comp threads:

— -29.5% (22-ary, 4-pt), -25% (23-ary, 4-pt; 2

e 8-threads: -25% (various 2"-ary, n-pc configurations)

4-ary, 4-pt; 22-ary, 2-pt)

17

m-ary with precomputation — results 4096

Modular exponentiation time (ms)

80

~N
o

(=2}
o

Ul
o

S
o

w
o

N
o

=
o

o

Increasing key size is easier to exploit pre-computations

4096

- _

Y /(
— 7

2\ r-ary

More configurations get advantages
1-thread: -10% (22-ary,4-pc)
4-threads: -23% (23-ary,4-pc)
8-threads: -26% (23-ary, 4-pc)

S&M
=#-GMP/MPIR
¥=1_thr(1_thPr)
=#=1_thr(2_thPr)
—@-1_thr(4_thPr)
4_thr(1_thPr)
e==4 thr(2_thPr)
=1 thr(4_thPr)
8_thr(1_thPr)
=8 _thr(2_thPr)
——8_thr(4_thPr)

18

m-ary with precomputation — results 8192

g

(

me

onentiation ti

8192

500

450
400

w W
S W
o O

150 = {} &
100 -
50 -
0 .]]
2 3 4
2\r-ary

S&M
=#-GMP/MPIR
*=1_thr(1_thPr)
=#=1_thr(2_thPr)
—@-1_thr(4_thPr)
4 thr(1_thPr)
=4 thr(2_thPr)
=4 thr(4_thPr)
8 thr(1_thPr)
~-8_thr(2_thPr)
——38_thr(4_thPr)

Main threads are needed to take advantage of pre-computations

— 4 or 8 are similar

2/4 pre-computation threads are needed to exploit m-ary (even from 22-

ary)
Best performance: -23.5% (8-threads, 2%-ary, 4-pt)

19

Modular exponentiation time (ms)

m-ary with precomputation — results 16k & 32k

3000

2500

2000

1500

1000

500

16384

2\r-ary

Similar results: Stability of the approach across key sizes

Best performance:
— 16384: -24% (8-threads, 23-ary, 4-pt)
— 32768: -24.5% (8-threads, 23-ary, 4-pt)

—_
7))
£

=1
[}

tim

ion

Modular exponentiat

18000
16000
14000

(Y
N
(=]
(=}
o

10000
8000
6000
4000

2000

32768

20

m-ary with precomputation: wrap up

e 2/4 pre-computation threads can improve m-ary performance
— Up to -25% / -30% improvement

 m-ariety from 22, 23 typically gives best results

— 8-threads and 4-pt can exploit
e 2%ary computation (average improvement: -22%, max -26%)

e 26-3ary computation (average improvement: -14%, max -20%)

 Problems:
— Pre-computations are performed before starting the computation

— Pre-computed values are global
e Cache management can add overhead in the (first) thread access to the

values
e Cache hierarchy traversal

— Big m: not all precomputations are statistically used

Outline

Introduction

Modular exponentiation parallelization
e m-ary with precomputation

e m-ary on-demand

e Slice method
Parallel Karatsuba multiplication

Conclusions

UNIVERSITA
DI SIENA

1240

22

m-ary “on-demand” - intro

N-threads are started immediately

Each one doing the same work as in the «M-ary with precomputation» method

Every time a thread looks for a precomputed value and finds it not available:

— Locks the precomputation table entry
e A first attempt locked the whole table = no concurrency in precomputations, especially in the
early stages

— Calculates the needed power
— Fills the table entry
— Unlocks the table entry

Pros:
— Computation starts immediately
— Only the required precomputed entries are calculated
e Useful for bigger m-ary approaches
— Still cache hierarchy traversal for getting entries where needed

23

m-ary “on-demand” — results 1024

1024

1,8
_ 1,6 X S&M
£ B >
@14 - ~#-GMP/MPIR
:‘g »=1_thr
5 =#=2_thr
c
g --3_thr
(=
§ 4 thr
(1}
3 —5_thr
=

L =6 _thr
0,6 - o . 0 0 0 0 -
C 7_thr
0,4 - T T T T T | —.—8_thr
2 3 4 6 8 10
2\ r-ary

 More configurations improve, compared to the preliminary pre-computation case
e 1 thread exposes the effect of m-ary approach: best at 2%-ary (-22%)

e Increasing thread number is beneficial especially for bigger tables (28/21%-ary)
— Sort of saturation at 2/3 threads for 2%-ary
— Sweet spot at 3-threads 23-ary (-32%)

24

m-ary “on-demand” — results 4k & 8k

4096
60 350
55 =
300
50
5 250

Modular exponentiation time (ms)
S H
o

Modular exponentiation time (ms)

35 200
30
150
25
20 T T T T T 1 100
2 3 4 6 8 10
2\r-ary

e Bigger keys benefit from bigger tables

— On-demand approach limits useless work

8192

S&M

=#-GMP/MPIR
*=1_thr
=#=2_thr
-3 _thr
4 thr
=5 thr
—6_thr
7_thr

| | ! ' —m-8_thr

* Increasing thread number is beneficial especially for bigger tables (8/10-ary)

e Best configurations

— 4096:-27% (26-ary, 3 threads), -27% (24-ary, 4 threads), -26% (24-ary, 6/7/8 threads)
— 8192:-27% (24/26-ary, 3 threads), -25% (23/24-ary, 6/7/8 threads) -25% (26-ary, 3 threads)
25

m-ary “on-demand” — results 16k & 32k

16384 32768
10000
_ 9000 +—— — S&M
g C X
F - —B-GMP/MPIR
T 8000 T— T oelthr
S - X
& C =¥=2_thr
£ 7000 _—W_
< i =@-3_thr
; 6000 : ... - 4_thr
3 - —5_thr
S i
2 500 | B—8—8—8—8—8 —6_thr
C i 7_thr
800 —+ T T T T T 1 4000 - T T T T T | --8_thl’
2 3 4 6 8 10 2 3 4 6 8 10
27\r-ary 27\r-ary

 Pre-computation tables can be exploited also by a few threads

— Less benefits from increasing beyond 5 threads

e Best configurations
— 16384:-27% (2°/28-ary, 3 threads), -26% (26-ary, 7 threads)
— 32768:-27% (2%-ary, 2/8 threads), -26% (28-ary, 7/8 threads)

26

m-ary “on-demand”: wrap up

e Solution quite robust in the number of threads needed
— 3-threads or 6/7/8 threads are the best configuration

— Up to -32% (1024) and never less than -27% in the other cases
e Various «ariety» possible and beneficial: also 2°-28-ary

 Problems:
— Possible conflicts between threads at small «ariety» when the same
pre-computation is needed
 Amortized for bigger keys and less likely for bigger «ariety»
— Pre-computed values are global

e Cache management can add overhead in the (first) thread access to the
values

Bict e ! . ctical |

Outline

Introduction

Modular exponentiation parallelization
e m-ary with precomputation

e m-ary on-demand

e Slice method
Parallel Karatsuba multiplication

Conclusions

UNIVERSITA
DI SIENA

1240

28

Slicing - intro

N-threads are started:
* Each one gets assigned a contiguous «slice» of the exponent

— The other lower bits are zeroed
e After all complete the work: sub-results are multiplied together

e th2 [th2 | th2 | th2 | thl | thl | thl | thl | thO | thO | thO | thO
el thO | thO | thO

el thl [thl |thl|th1|0..0] 0.0 (0.0

e2 th2 {th2 | th2 |th2|0.0]0.0(0..0]0..0/0..0 | 0..0|0..0

M € mod(n) = RO x R1 x R2 mod(n)

29

Slicing — intro (2)

e Cons:
— The load of the threads is quite unbalanced

— Their overall computation time is bounded by the one with the most
significant slice

» After the «slice» exponentiation each thread performs a chain of modular
squares (apart from the first slice)

* Pro:

— The load of the more significant slices can be made thinner with
uneven exponent slicing

— Optimally balanced approaches have been proposed [1]
— Sequences of squares can be cache-friendly: both data and instruction

[1] Lara et al “Parallel modular exponentiation using load balancing without Precomputation”, Journal of Computer and System Sciences, 2010

Slicing — results

Slicing

1
>
o3
)
=0,9
2
S
s
- 0,8
c
(3]
o / ——1024
S
8-0,7 =-2048
[] i
2 / 4096
%0,6 =>=8192
£
5 —#=32768
o 05
£ 1
-
=
o
g0,4 T T T T T T T T T T T T 1
(8]
9 & N Vv » > 9 © A % . K Y S
3 ® N O A N A O A Y & o
3 @Q\@ QR R R R R R R K & N

o

* 3/4 threads, and slices, are typically enough to get the maximum benefit

 Smaller key sizes are accelerated more
— Up to -40% for 1024-bit (4-threads/slices)
— Up to -36.5% for 2048-bit (10-threads/slices), -35.5% (6-thread/slices)

* From 4096 and up, speedup reaches -30% at 3/4 threads/slices

e ‘Optimum’ slicing does not have measurable effect
31

Slicing: wrap up

e 3/4 threads/slices, are enough to get the maximum benefit

— More threads do not alter performance

e Speedups:
— Up to -40% for 1024-bit, -36.5% for 2048-bit, -30% for 4096-32768-bit

Observation:
e Fastest, and stable, even if threads manage unbalanced work, why ?

e The unbalanced work is simple and repetitive

— modular squaring
— Simple: not involving big data structures and simpler than modular
multiplication
e Small memory footprint L1 / L2 caches can support the execution
— Repetitive: many squaring needed in a row
e Temporal locality 2 compiler+processor+cache can support fast execution

Outline

Introduction

Modular exponentiation parallelization
e m-ary with precomputation

e m-ary on-demand

e Slice method
Parallel Karatsuba multiplication

Conclusions

UNIVERSITA
DI SIENA

1240

33

Parallel Karatsuba - intro

A number of crypto-algorithms rely on modular multiplication of big
numbers

Karatsuba algorithm (1960) is a multiplication algorithm that

e Reduces the asymptotic complexity of multiplication from O(n?)to O(n'->83)
 Relies on a ‘divide-and-impera’ approach
e The multiplication of the xI?nd y (N-bits each)vcan be done considering the two ‘halves’

of each numberx =x; 22 + x5,y =y, - 22 + ¥,

high low
high low €
11 Tol
T To | 141 040
+ T,y
U1 Yo ==
+ ToYo
e And doing three N/2 bits multiplications — [(@1 —20) (%1 — %)

We have implemented a parallel version with 3-threads (the main one, plus
two auxiliary ones)

e Each thread perform a N/2-bit multiplication
 and after all are done, the main thread composes the final result

34

Parallel Karatsuba — implementation (sequential)

For investigating parallelism speedup we implemented a sequential karatsuba

as a reference

e Same data structures and same management as the parallel ones

 Note: using C++14 here ...

mpz_class karaMul{mpz_class const& x1, mpz _class constd x2)

1

assert(xl.get mpz t()-> mp size == xl.get mpz t()}-> mp size }; // per ora

auto const partl = splitBigNum limb{x1}; J/ partl is { high_bitsl, low_bitsl}
auto const part2 = splitBigNum_limb(x2); /f part2 is { high_bits2, low_bits2}
mpz_class ®x1llx2L= partl.seccnd*part2.second; J/multiplication 1

mpz_class x1Hx2H= partl.first*part2.first; Jimultiplication 2

mpz_class midTerm= x1Hx2H + x1Lx2L - (partl.first-partl.second) * (part2.first-part2.second);

mp_bitcnt_t halfBits= (xl.get_mpz_%t()->_mp_sizef2) * sizeof(mp_limb_t) * 8;
mpz_class ret= xllx2L + (midTerm << halfBits) + (®x1Hx2H << (2*halfBits));

return ret;

partition

<€

multiplications

//multiplication 3

35

Parallel Karatsuba — implementation (async)

std::async are C++ standard task wrappers which

e (Can execute a function in a separate thread

e Return a handle to the result (std::future) for the caller
 The caller can block on the future waiting for the result
e Quite high-level and simple to use = overhead ?

mpz_class karaMulThrAs(mpz_class const& x1, mpz_class const& x2)

1
mp_bitcnt t halfBits= (xl.get mpz_t()-> mp size/2) * sizeof(mp limb t) * 8;
auto const partl = splitBigNum_limb(x1};
auto const part2 = splitBigNum_limb(x2);
auto retllL = std::async(std::launch::async, standardMul, partl.second, part2.second); Spawn
auto retHH = std::async(std::launch::aspnc, standardMul, partl.first, part2.first); <€
mpz_class midTerm= - (partl.first-partl.second) * (part2.first-part2.second);
mpz_class x1lx2L= retLL.get(); join
mpz_class x1Hx2H= retHH.get(); €—————
midTerm += wllx2L + w1Hwx2H;
mpz_class ret= xllx2L + (midTerm << halfBits) + (x1Hx2H << (2*halfBits));
return ret;
¥

36

Parallel Karatsuba — implementation (threads)

std::threads are C++ standard thread handles which
e (Can execute a function in a separate thread
* Are lower-level than std::asyncs

 We need to explicitly manage the synchronization for getting the result.
— Specifically, joining thread execution explicitly

mpz_class karaMulThr(mpz class const& x1, mpz class const& x2)

1
mp_bitcnt_t halfBits= (x1l.get mpz_t()-> mp_size/2) * sizeof(mp_limb t) * B;
auto const partl = splitBigNum_limb({x1);
auto const part2 = splitBigNum limb(x2);
mpz_class x1lx2L;
auto thrl = std::thread{mulThr, partl.second, part2.second, std::ref(x1lLx2L)); spawn
mpz_class x1Hx2H;
auto thr2 = std::thread(mulThr, partl.first, part2.first, std::ref(xlHx2H));
mpz_class midTerm= - (partl.first-partl.second) * (part2.first-part2.second);
thrl.join(}; join
thr2.join(); €
midTerm += wl1lx2L + x1Hx2H;
mpz_class ret= x1lx2L + (midTerm << halfBits) + (x1Hx2H << (2*halfBits));
return ret;

b

37

Parallel Karatsuba — implementation (threads) discussion
A problem can be that multiplication algorithm is pretty fast

key_size [bits] GMPmul [us] Kara_seq [us]

1024 0,61584 1,72731
2048 0,873759 2,29119
4096 2,57911 4,07022
8192 7,86512 9,55777
16384 21,1608 26,396
32768 55,902 67,8586
65536 153,327 174,204

... compared to the thread spawn and spawn+join time:
- i72600: 6.5us / 16.0 us

- E5-2650v2:4.3 us/10.1us

- 17 6800K: 4.4 us / 10.4 us

Parallel Karatsuba — implementation (thread pool)

Spawning and releasing resources of new threads can be quite costly
compared to the time to perform a multiplication on big integers

 The ‘thread-pool’ solution:

— The helping threads are always ‘active’ and are waiting on a condition-variable
(CV) within an infinite loop

— the main thread fills the threads’ input structures with the operands and
triggers their awakening

— They compute the multiplication, store the result in a data structure accessible
from the main thread and block again

— Once the main thread wants a result, it checks the result’s CV and either
blocks waiting, or proceeds and is able to use the result value

Pros: no overhead from thread spawn/release
Cons: more complex parallel solution

39

Parallel Karatsuba — implementation (thread pool) - 2

Problem: multiplication is fast ... compared to wake up a thread

thread activation time [us] (cond.variables+mutex)

different cores, threads to be unblocked

they lock on their own after their computation is done (no ‘join’ equivalent)
i7 2600: 4.1 us
i7 6800K: 2.3 us

thread activation time [us] (cond.variables+mutex)

same core as main thread, threads to be unblocked

i7 2600: 1.6 us (interesting ! but not usable in this case)
i7 6800K: 1.3 us

e Cons: condition variable wait and unlock still induces a non-
negligible overhead

40

Parallel Karatsuba — implementation (thread pool) - 3

Improvement of infinite-thread: lock-free data structures

e between main thread and helper ones, for feeding operands
 Between helper threads and main one, for retrieving results

 Without explicit synchronization mechanism between the two
— No OS intervention
— No scheduler
— No allocation of data structures or thread resources

e thread activation time [us] (cond. variables+mutex)
- different cores, threads to be unblocked
- they lock on their own after their computation is done (no ‘join’ equivalent)
- 17 2600: 0.12 us (interesting !)
- 17 6800K: 0.18 us

 Then, in any case operands need to be «prepared» in a suitable way

to be fed to the helper threads
41

Parallel karatsuba — results methodology

Experiments run on:

i7-6800K @ 3.40GHz (3.6 GHz turbo), 6¢/12t, L1pc 32K+32KB, L2pc
256KB, L3sc 15 MB, 128 GB RAM

Dual Xeon E5-2650 v2 @2.60GHz (3.4 GHz turbo), 8c/16t, L1pc
32K+32KB, L2pc 256KB, L3sc 20 MB, 64 GB RAM

i7-2600 @3.4 GHz (3.8GHz turbo), 4c¢/8t, L1pc 32K+32KB, L2pc
256KB, L3sc 8 MB, 32 GB RAM

Enforced thread-to-core affinity: not big issue in this case

Linux Debian 8 or 9 operating system
Key sizes: 1024, 2048, 4096, 8192, 16384, 32768, 65536

Repeated experiments:

— From 5000s to 30000s times to let benchmark run for a reasonable
amount of time for every key size

Benchmarks implemented in C++ relying and using GMP/MPIR

library for Big numbers and reference

Showing improvements over plain sequential Karatsuba and
GMP/MPIR

42

Parallel Karatsuba — results parallel simple

i7-2600 @3.4 GHz (3.8GHz turbo), 4¢/8t, L1pc 32K+32KB, L2pc 256KB, L3sc 8 MB

200

180
160

140

120

100

80

Multiplication time (ps)

60

40

20

0 .

1024 2048 4096 8192 16384 32768 65536

B GMPmul
B Kara_seq
Kara_thrAs

m Kara_thr

e std::sync and std::thread approaches are worse/equal than sequential up to 16384
— 32768: -35% (std::async), -37% (std::thread)
— 65536:-52% (std::async), -48% (std::thread)
— Spawn/join threads overhead is limiting the approach

* improvements over GMPmul for big numbers
— 32768:-21% (std::async), -25% (std::thread)
— 65536: -45% (std::async), -41% (std::thread)

43

Parallel Karatsuba — results parallel inf-threads

i7-2600 @3.4 GHz (3.8GHz turbo), 4¢/8t, L1pc 32K+32KB, L2pc 256KB, L3sc 8 MB

100

90

80
- 70
=1
E 60 B GMPmul
'g W Kara_seq
"g >0 Kara_thrAs
g- 40 W Kara_thr
2 30 m Kara_InfThr

20

10 -

0 -

1024 2048 4096 8192 16384 32768 65536

e Infinite-threads improve over simple parallel tasks
— Where they were already good
— -37% than Kara_seq @16384 (-21% than GMP)
— Matches Kara_seq @8192

— For smaller keys:
threads synchronization overhead and parameter passing is limiting the approach

44

Parallel Karatsuba — results parallel inf-threadsLF

100
90
80
70
60
50
40

Multiplication time (ps)

30
20
10

0 -

i7-2600 @3.4 GHz (3.8GHz turbo), 4¢/8t, L1pc 32K+32KB, L2pc 256KB, L3sc 8 MB

H GMPmul

H Kara_seq

m Kara_thrAs

W Kara_thr

m Kara_InfThr

m Kara_InfThrLF

1024 2048 4096 8192 16384 32768 65536

e Lock-free infinite-threads improve over infinite-threads

Number size decreases = improved advantage

Better for small keys: -46% @8192 than Kara_seq (-35% vs GMP)
-25% @4096 than Kara_seq

-3% @2048 than Kara seq

threads parameter preparation and passing is limiting the approach

45

Parallel Karatsuba — results parallel inf-threadsLF (2)

Multiplication time normalized to Square&Multiply

Y
S

E5-2650 v2 @2.60GHz (3.4 GHz turbo), 8c/16t, L1pc 32K+32KB, L2pc 256KB, L3sc 20 MB

(Y
N

[IRY
o

(o]

1024 2048 4096 8192

Normalized results:

4096: -24% vs Kara_seq, +17% vs GMP
8192: -45% vs Kara_seq, -33% vs GMP
16384: -54% vs Kara_seq, -41% vs GMP
32768: -58% vs Kara_seq, -49% vs GMP
65536: -61% vs Kara_seq, -55% vs GMP

16384

32768

65536

B GMPmul

m Kara_seq

B Kara_thrAs

m Kara_thr

m Kara_InfThr
= Kara_InfThrLF

46

Parallel Karatsuba — results parallel inf-threadsLF (3)

[y
o

i7-6800K @ 3.40GHz (3.6 GHz turbo), 6¢/12t, L1pc 32K+32KB, L2pc 256KB, L3sc 15 MB

B GMPmul

m Kara_seq

W Kara_thrAs

m Kara_thr

m Kara_InfThr

N W A~ U1 O N 00 ©

= Kara_InfThrLF

Multiplication time normalized to Karatsuba sequential

1024 2048 4096 8192 16384 32768 65536

 newer HW: slightly better performance on sequential code < turbo frequency, ILP

4096: -15% vs Kara_seq, +49% vs GMP
8192: -38% vs Kara_seq, -19% vs GMP
16384: -52% vs Kara_seq, -39% vs GMP
32768: -56% vs Kara_seq, -48% vs GMP
65536: -61% vs Kara_seq, -54% vs GMP
47

Parallel Karatsuba: wrap up

 Only 3 overall threads can significantly speed up multiplication
— Over plain Karatsuba sequential from 4096 keys (-15%/-25%) up to -55%/60%
— Over GMP: less than -30% @8192 and up to less than -50% for bigger cases
— higher-number of threads could help, especially for bigger keys

e Parallelization opportunities and hurdles
— Difficulty of programming: abstractions = overhead vs abstraction

— Overhead of thread work orchestration

— Interactions with Operating System (OS) and computer architecture (caches,
etc)
— Lack of HW + parallel programming support at the uys scale

e Some parallel-programming strategies can be plug-in to fit the

problem
— Thread-pool and lock-free techniques = complexity

Outline

Introduction

Modular exponentiation parallelization
e m-ary with precomputation

e m-ary on-demand

e Slice method
Parallel Karatsuba multiplication

Conclusions

UNIVERSITA
DI SIENA

1240

49

Conclusions

 Exponentiation, as it is, can be accelerated through parallelism
— -30/-40%

e Big number multiplication, as it is, can be accelerated through multi-
threaded implementations
— -15% to -60% vs sequential Square&Multiply
— -19% to -54% vs native GMP/MPIR

Good case for promoting education into parallel programming in general and,
specifically, in the cyber-physical system security

— Parallelism in hardware is not emerging ... is already happened at almost all levels,
from embedded to HPC

— Need to harness it and exploit it now !

Discussion:

e Different math algorithms could be devised to be more parallelism-
friendly ?

Why we should care about parallel programming
in securing Cyber-physical systems

Thanks for your attention!

Q&A

Cyber Phisical Security Education Workshop - CPSEd
Paris - July 18th, 2017

Sandro Bartolini, Biagio Peccerillo

Department of Information Engineering and Mathematical Sciences University of
Siena, Italy

_Q-.‘DI\T ATy
o

E"'-I:. L =

{bartolini,peccerillo}@dii.unisi.it

Ny g
* b =
Byt

UNIVERSITA
DI SIENA

1240

