
Why we should care about parallel programming
in securing Cyber-physical systems

Sandro Bartolini, Biagio Peccerillo
Department of Information Engineering and Mathematical Sciences

University of Siena, Italy
{bartolini,peccerillo}@dii.unisi.it

Cyber Physical Security Education Workshop - CPSEd
Paris - July 18th, 2017

Outline

2

• Introduction
• Modular exponentiation parallelization

• m-ary with precomputation
• m-ary on-demand
• Slice method

• Parallel Karatsuba multiplication
• Conclusions

Introduction and motivation – processors

• Processor evolution has changed radically after about 2004
– (potential) performance continued to scale essentially only through parallelism
– End-user performance has become harder to extract

3

Introduction and motivation – processors 2
• Nowadays processors are parallel … more and more parallel

– Biggest reason was the emerging of wire-delay issues … i.e. on-chip latency
– Also mobile/embedded ones (IoT … soon?)

• GPU and related architectures further push HW parallelism

Pentium 4 (1) CoreDuo (2) i7- 980X (6) i7-5960X / AMD FX8370 (8)

Kirin 620 smartphone 64-bit ASIC (8 ARM cores, MALI-450 GPU) GTX 1080 (3584 cuda cores) 4

Introduction and motivation - interconnects

• Nowadays we need far more energy to bring operands to the cores (across
the chip) than to perform the operation Æ time to move data around

• For efficiency and preformance scalabiliy:

Elaboration need to be local and parallel !
From Bill Dally’s “GPU Computing to ExaScale and Beyond” keynote, SC’10 5

Introduction and motivation - parallelism

6

In every field where ‘computational thinking’ is pushed, is nowadays of the
utmost importance to promote:
• Parallel programming concepts

In security applications where performance and/or efficiency is needed, this
is particularly appropriate
• Cryptographic algorithms and protocols
• Embedded systems cyber-physical systems
• Connected systems

Introduction and motivation - parallelism

7

From the educational standpoint it is challenging:
• Parallel architectures are heterogeneous

– CPUs, GPUs, hybrid … with different efficient programming strategies and resources

• Parallel programing is complex in itself … and debugging is worse ☺
– Imperative programming is implicitly sequential
– proving specific techniques are needed

• Big interaction with computer-architecture
– caches, coherence, memory consistency model
– Hyperthreading, processor microarchitecture

• Big interaction with operating system
– Thread orchestration and management
– Scheduling, migration, etc

Introduction and motivation – parallelism (2)

8

Need to promote awareness around parallel programming in the
security domain
• Very crucial as cryptographic algorithms were devised without parallelism in mind
• Also from the mathematical standpoint, most of the primitives are intrinsically

sequential
– Maybe it needs to be like this for security reasons ?

We will address two fundamental algorithms of cryptography
• Modular exponentiation (as in RSA)

• Multiplication of big numbers

We propose and discuss a few parallelization strategies
• Educational approach to highlight phenomena without looking for the

ultimate performance/optimizations

Outline

9

• Introduction
• Modular exponentiation parallelization

• m-ary with precomputation
• m-ary on-demand
• Slice method

• Parallel Karatsuba multiplication
• Conclusions

Modular exponentiation - intro

Modular exponentiation: M e mod(n)
• With M, n and possibly e being ‘big’ enough for security (k-bits)

– E.g. in current RSA 2048- to 4096-bit are deemed safe in the short term

• Square-and multiply or binary method
– Given the binary expansion of e = (ek-1, ek-2 , … e1, e0)

10
* From: Koç, Ç. K. «High-Speed RSA Implementation», RSA Laboratories, 1994

m-ary approach with precomputation - intro
The exponent can also be scanned also log2(m)-bits at a time Æm-ary methodÆ
reduces number of modular multiplications
At each step:
• log2(m) = r squarings need to be done on the operand
• Then a multiplication by a specific power of the base

– The powers needed are M2, M3 … , Mm-2, Mm-1

– E.g. 3-ary Æ powers needed 1 (trivial), 2, 3, 4, 5, 6, 7

• which can be pre-computed before the scan Æ precomputation table

Parallel approach:
• Before exponent scan, Np threads prepare the precomp-table

– Powers evenly split between the threads … simple, can be improved !

• Split the exponent in r-bit slices and we group them in a «comb-like» fashion
• E.g. number of working threads Nt= 4

– every r-bit slice of the exponent whose index mod(Nt) is 0 Æ thread 0
– every r-bit slice of the exponent whose index mod(Nt) is 1 Æ thread 1
– …
– every r-bit slice of the exponent whose index mod(Nt) is Nt-1 Æ thread Nt-1

11

m-ary approach with precomputation – intro (2)

12

e th0th1th2th3 th0th1th2th3 th0th1th2th3…

M e mod(n) = R0 x R1 x R2 x R3 mod(n)

e0 th0 th0 th00..00..00..0…0..00..00..0 th0 R0

e1 th1 th1 th1… 0..00..00..00..00..00..00..0 th1 R1

e2 th2 th2 th2… 0..00..00..00..00..00..00..00..0 th2 R2

e3 th3 th3 th3…0..00..00..0 0..00..00..0 0..00..00..0 th3 R3

Each thread performs a reduced amount of multiplications
Work of each thread is quite balanced (e is thousands bits, r a few bits)
Work execution time is limited by the exponentiation by e3 …

m-ary with precomputation - results

Experiments run on:
• Dual Xeon E5-2650 v2 @2.60GHz (3.4 GHz turbo), 8c/16t, L1pc 32K+32KB,

L2pc 256KB, L3sc 20 MB, 64 GB RAM
• Enforced thread-to-core affinity: big difference in the results

– Thread-data resources are not negligible and occupy cache space
– Thread can be migrated by the OS Æ unnecessary cold misses
– Same physical processor

• Linux Debian 8 or 9 operating system
• Key sizes: 1024, 2048, 4096, 8192, 16384, 32768
• Repeated experiments:

– From 10s to 1000s times to let benchmark run from 10s of seconds up to a
few minutes for every key size

• Benchmarks implemented in C++ relying on GMP/MPIR libraries

• Showing improvements over plain square-and-multiply (S&M)
– GMP/MPIR native performance is shown as a reference

13

m-ary with precomputation – results 1024 (1 thr)

• 1-thread with 1/2 pre-comp threads: always worse than S&M
– Very slow for 4-ary or 6-ary versions

• 1-thread with 4 pre-comp threads (4-pt): -9% (22-ary) and -6% (23-ary)

14

0

0,5

1

1,5

2

2,5

2 3 4 6

M
od

ul
ar

 e
xp

on
en

tia
tio

n
tim

e
(m

s)

2^r-ary

1024

S&M

GMP/MPIR

1_thr(1_thPr)

1_thr(2_thPr)

1_thr(4_thPr)

m-ary with precomputation – results 1024 (4-thr)

• 4-threads:
– from -15% to -20% (22-ary, 1-4 threads)
– -23% (23-ary, 4 pre-threads), -20% (22-ary, 2-/4-pt), [-18% : -15%] (22-ary, 1-pt;

23-ary, 2-pt; 24-ary, 4-pt)

15

0

0,5

1

1,5

2

2,5

2 3 4 6

M
od

ul
ar

 e
xp

on
en

tia
tio

n
tim

e
(m

s)

2^r-ary

1024

S&M

GMP/MPIR

1_thr(1_thPr)

1_thr(2_thPr)

1_thr(4_thPr)

4_thr(1_thPr)

4_thr(2_thPr)

4_thr(4_thPr)

m-ary with precomputation – results 1024 (8-thr)

• 8-threads:
– Best configuration: -26% (24-ary, 4 pre-computation threads)
– 8 configurations (m-ary, pt) -17% or better improvement

16

0

0,5

1

1,5

2

2,5

2 3 4 6

M
od

ul
ar

 e
xp

on
en

tia
tio

n
tim

e
(m

s)

2^r-ary

1024

S&M

GMP/MPIR

1_thr(1_thPr)

1_thr(2_thPr)

1_thr(4_thPr)

4_thr(1_thPr)

4_thr(2_thPr)

4_thr(4_thPr)

8_thr(1_thPr)

8_thr(2_thPr)

8_thr(4_thPr)

m-ary with precomputation – results 2048

• 1-thread: need 4 pre-comp threads to get -14% on 22-ary
• 4-threads: higher 2r-ary configurations sustainable only with multiple pre-

comp threads:
– -29.5% (22-ary, 4-pt), -25% (23-ary, 4-pt; 24-ary, 4-pt; 22-ary, 2-pt)

• 8-threads: -25% (various 2r-ary, n-pc configurations)
17

-1

1

3

5

7

9

11

13

15

2 3 4 6

M
od

ul
ar

 e
xp

on
en

tia
tio

n
tim

e
(m

s)

2^r-ary

2048

S&M

GMP/MPIR

1_thr(1_thPr)

1_thr(2_thPr)

1_thr(4_thPr)

4_thr(1_thPr)

4_thr(2_thPr)

4_thr(4_thPr)

8_thr(1_thPr)

8_thr(2_thPr)

8_thr(4_thPr)

m-ary with precomputation – results 4096

• Increasing key size is easier to exploit pre-computations
– More configurations get advantages
– 1-thread: -10% (22-ary,4-pc)
– 4-threads: -23% (23-ary,4-pc)
– 8-threads: -26% (23-ary, 4-pc)

18

0

10

20

30

40

50

60

70

80

2 3 4 6

M
od

ul
ar

 e
xp

on
en

tia
tio

n
tim

e
(m

s)

2^r-ary

4096

S&M

GMP/MPIR

1_thr(1_thPr)

1_thr(2_thPr)

1_thr(4_thPr)

4_thr(1_thPr)

4_thr(2_thPr)

4_thr(4_thPr)

8_thr(1_thPr)

8_thr(2_thPr)

8_thr(4_thPr)

m-ary with precomputation – results 8192

• Main threads are needed to take advantage of pre-computations
– 4 or 8 are similar

• 2/4 pre-computation threads are needed to exploit m-ary (even from 22-
ary)

• Best performance: -23.5% (8-threads, 22-ary, 4-pt)
19

0

50

100

150

200

250

300

350

400

450

500

2 3 4 6

M
od

ul
ar

 e
xp

on
en

tia
tio

n
tim

e
(m

s)

2^r-ary

8192

S&M

GMP/MPIR

1_thr(1_thPr)

1_thr(2_thPr)

1_thr(4_thPr)

4_thr(1_thPr)

4_thr(2_thPr)

4_thr(4_thPr)

8_thr(1_thPr)

8_thr(2_thPr)

8_thr(4_thPr)

m-ary with precomputation – results 16k & 32k

• Similar results: Stability of the approach across key sizes

• Best performance:
– 16384: -24% (8-threads, 23-ary, 4-pt)
– 32768: -24.5% (8-threads, 23-ary, 4-pt)

20

0

500

1000

1500

2000

2500

3000

2 3 4 6

M
od

ul
ar

 e
xp

on
en

tia
tio

n
tim

e
(m

s)

2^r-ary

16384

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

2 3 4 6
M

od
ul

ar
 e

xp
on

en
tia

tio
n

tim
e

(m
s)

2^r-ary

32768

m-ary with precomputation: wrap up

• 2/4 pre-computation threads can improve m-ary performance
– Up to -25% / -30% improvement

• m-ariety from 22, 23 typically gives best results
– 8-threads and 4-pt can exploit

• 24-ary computation (average improvement: -22%, max -26%)
• 26-ary computation (average improvement: -14%, max -20%)

• Problems:
– Pre-computations are performed before starting the computation
– Pre-computed values are global

• Cache management can add overhead in the (first) thread access to the
values

• Cache hierarchy traversal
– Big m: not all precomputations are statistically used

Outline

22

• Introduction
• Modular exponentiation parallelization

• m-ary with precomputation
• m-ary on-demand
• Slice method

• Parallel Karatsuba multiplication
• Conclusions

m-ary “on-demand” - intro

N-threads are started immediately
• Each one doing the same work as in the «M-ary with precomputation» method

• Every time a thread looks for a precomputed value and finds it not available:
– Locks the precomputation table entry

• A first attempt locked the whole table Æ no concurrency in precomputations, especially in the
early stages

– Calculates the needed power
– Fills the table entry
– Unlocks the table entry

• Pros:
– Computation starts immediately
– Only the required precomputed entries are calculated

• Useful for bigger m-ary approaches
– Still cache hierarchy traversal for getting entries where needed

23

m-ary “on-demand” – results 1024

• More configurations improve, compared to the preliminary pre-computation case
• 1 thread exposes the effect of m-ary approach: best at 24-ary (-22%)
• Increasing thread number is beneficial especially for bigger tables (28/210-ary)

– Sort of saturation at 2/3 threads for 24-ary
– Sweet spot at 3-threads 23-ary (-32%)

24

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2 3 4 6 8 10

M
od

ul
ar

 e
xp

on
en

tia
tio

n
tim

e
(m

s)

2^r-ary

1024

S&M

GMP/MPIR

1_thr

2_thr

3_thr

4_thr

5_thr

6_thr

7_thr

8_thr

m-ary “on-demand” – results 4k & 8k

• Bigger keys benefit from bigger tables
– On-demand approach limits useless work

• Increasing thread number is beneficial especially for bigger tables (8/10-ary)
• Best configurations

– 4096: -27% (26-ary, 3 threads), -27% (24-ary, 4 threads), -26% (24-ary, 6/7/8 threads)
– 8192: -27% (24/26-ary, 3 threads), -25% (23/24-ary, 6/7/8 threads) -25% (26-ary, 3 threads)

25

20

25

30

35

40

45

50

55

60

2 3 4 6 8 10

M
od

ul
ar

 e
xp

on
en

tia
tio

n
tim

e
(m

s)

2^r-ary

4096

100

150

200

250

300

350

2 3 4 6 8 10
M

od
ul

ar
 e

xp
on

en
tia

tio
n

tim
e

(m
s)

2^r-ary

8192

S&M

GMP/MPIR

1_thr

2_thr

3_thr

4_thr

5_thr

6_thr

7_thr

8_thr

m-ary “on-demand” – results 16k & 32k

• Pre-computation tables can be exploited also by a few threads
– Less benefits from increasing beyond 5 threads

• Best configurations
– 16384: -27% (26/28-ary, 3 threads), -26% (26-ary, 7 threads)
– 32768: -27% (26-ary, 2/8 threads), -26% (28-ary, 7/8 threads)

26

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

2 3 4 6 8 10

M
od

ul
ar

 e
xp

on
en

tia
tio

n
tim

e
(m

s)

2^r-ary

16384

4000

5000

6000

7000

8000

9000

10000

2 3 4 6 8 10
M

od
ul

ar
 e

xp
on

en
tia

tio
n

tim
e

(m
s)

2^r-ary

32768

S&M

GMP/MPIR

1_thr

2_thr

3_thr

4_thr

5_thr

6_thr

7_thr

8_thr

m-ary “on-demand”: wrap up

• Solution quite robust in the number of threads needed
– 3-threads or 6/7/8 threads are the best configuration
– Up to -32% (1024) and never less than -27% in the other cases

• Various «ariety» possible and beneficial: also 26-28-ary

• Problems:
– Possible conflicts between threads at small «ariety» when the same

pre-computation is needed
• Amortized for bigger keys and less likely for bigger «ariety»

– Pre-computed values are global
• Cache management can add overhead in the (first) thread access to the

values
– Big m: not all precomputations are statistically used

Outline

28

• Introduction
• Modular exponentiation parallelization

• m-ary with precomputation
• m-ary on-demand
• Slice method

• Parallel Karatsuba multiplication
• Conclusions

Slicing - intro
N-threads are started:
• Each one gets assigned a contiguous «slice» of the exponent

– The other lower bits are zeroed

• After all complete the work: sub-results are multiplied together

29

e th2th2th2th2 th1th1th1th1 th0th0th0th0

M e mod(n) = R0 x R1 x R2 mod(n)

th0 R0

th1 R1

th2 R2

e0 th0th0th0th0

e1 th1th1th1th1

e2 th2th2th2th2

0..0 0..00..0 0..0

0..0 0..00..0 0..0 0..0 0..00..0 0..0

Slicing – intro (2)

• Cons:
– The load of the threads is quite unbalanced
– Their overall computation time is bounded by the one with the most

significant slice
• After the «slice» exponentiation each thread performs a chain of modular

squares (apart from the first slice)

• Pro:
– The load of the more significant slices can be made thinner with

uneven exponent slicing
– Optimally balanced approaches have been proposed [1]
– Sequences of squares can be cache-friendly: both data and instruction

30[1] Lara et al “Parallel modular exponentiation using load balancing without Precomputation”, Journal of Computer and System Sciences, 2010

Slicing – results

• 3/4 threads, and slices, are typically enough to get the maximum benefit
• Smaller key sizes are accelerated more

– Up to -40% for 1024-bit (4-threads/slices)
– Up to -36.5% for 2048-bit (10-threads/slices), -35.5% (6-thread/slices)

• From 4096 and up, speedup reaches -30% at 3/4 threads/slices
• ‘Optimum’ slicing does not have measurable effect

31

0,4

0,5

0,6

0,7

0,8

0,9

1

Ex
ec

ut
io

n
tim

e
no

rm
al

iz
ed

 to
 S

qu
ar

e
an

d
M

ul
tip

ly
 (S

&
M

)
Slicing

1024

2048

4096

8192

32768

Slicing: wrap up

• 3/4 threads/slices, are enough to get the maximum benefit
– More threads do not alter performance

• Speedups:
– Up to -40% for 1024-bit, -36.5% for 2048-bit, -30% for 4096-32768-bit

Observation:
• Fastest, and stable, even if threads manage unbalanced work, why ?

• The unbalanced work is simple and repetitive
– modular squaring
– Simple: not involving big data structures and simpler than modular

multiplication
• Small memory footprint ÆL1 / L2 caches can support the execution

– Repetitive: many squaring needed in a row
• Temporal locality Æ compiler+processor+cache can support fast execution

Outline

33

• Introduction
• Modular exponentiation parallelization

• m-ary with precomputation
• m-ary on-demand
• Slice method

• Parallel Karatsuba multiplication
• Conclusions

Parallel Karatsuba - intro
A number of crypto-algorithms rely on modular multiplication of big
numbers
Karatsuba algorithm (1960) is a multiplication algorithm that
• Reduces the asymptotic complexity of multiplication from O(n2)to O(n1.583)
• Relies on a ‘divide-and-impera’ approach
• The multiplication of the x and y (N-bits each) can be done considering the two ‘halves’

of each number ݔ = ଵݔ ∙ 2మಿ + ଴ݔ ݕ , = ଵݕ ∙ 2మಿ + ଴ݕ

• And doing three N/2 bits multiplications

We have implemented a parallel version with 3-threads (the main one, plus
two auxiliary ones)
• Each thread perform a N/2-bit multiplication
• and after all are done, the main thread composes the final result

34

Parallel Karatsuba – implementation (sequential)

35

For investigating parallelism speedup we implemented a sequential karatsuba
as a reference
• Same data structures and same management as the parallel ones
• Note: using C++14 here …

partition

multiplications

Parallel Karatsuba – implementation (async)

36

std::async are C++ standard task wrappers which
• Can execute a function in a separate thread
• Return a handle to the result (std::future) for the caller
• The caller can block on the future waiting for the result
• Quite high-level and simple to use Æ overhead ?

spawn

join

Parallel Karatsuba – implementation (threads)

37

std::threads are C++ standard thread handles which
• Can execute a function in a separate thread
• Are lower-level than std::asyncs
• We need to explicitly manage the synchronization for getting the result.

– Specifically, joining thread execution explicitly

spawn

join

Parallel Karatsuba – implementation (threads) discussion

38

A problem can be that multiplication algorithm is pretty fast

… compared to the thread spawn and spawn+join time:
- i7 2600: 6.5 us / 16.0 us
- E5-2650 v2: 4.3 us / 10.1 us
- i7 6800K: 4.4 us / 10.4 us

key_size [bits] GMPmul [us] Kara_seq [us]

1024 0,61584 1,72731
2048 0,873759 2,29119
4096 2,57911 4,07022
8192 7,86512 9,55777

16384 21,1608 26,396
32768 55,902 67,8586
65536 153,327 174,204

Parallel Karatsuba – implementation (thread pool)

39

Spawning and releasing resources of new threads can be quite costly
compared to the time to perform a multiplication on big integers

• The ‘thread-pool’ solution:
– The helping threads are always ‘active’ and are waiting on a condition-variable

(CV) within an infinite loop
– the main thread fills the threads’ input structures with the operands and

triggers their awakening
– They compute the multiplication, store the result in a data structure accessible

from the main thread and block again
– Once the main thread wants a result, it checks the result’s CV and either

blocks waiting, or proceeds and is able to use the result value

Pros: no overhead from thread spawn/release
Cons: more complex parallel solution

Parallel Karatsuba – implementation (thread pool) - 2

40

Problem: multiplication is fast … compared to wake up a thread

• thread activation time [us] (cond.variables+mutex)
- different cores, threads to be unblocked
- they lock on their own after their computation is done (no ‘join’ equivalent)
- i7 2600: 4.1 us
- i7 6800K: 2.3 us

• thread activation time [us] (cond.variables+mutex)
- same core as main thread, threads to be unblocked
- i7 2600: 1.6 us (interesting ! but not usable in this case)
- i7 6800K: 1.3 us

• Cons: condition variable wait and unlock still induces a non-
negligible overhead

Parallel Karatsuba – implementation (thread pool) - 3

41

Improvement of infinite-thread: lock-free data structures
• between main thread and helper ones, for feeding operands
• Between helper threads and main one, for retrieving results
• Without explicit synchronization mechanism between the two

– No OS intervention
– No scheduler
– No allocation of data structures or thread resources

• thread activation time [us] (cond. variables+mutex)
- different cores, threads to be unblocked
- they lock on their own after their computation is done (no ‘join’ equivalent)
- i7 2600: 0.12 us (interesting !)
- i7 6800K: 0.18 us

• Then, in any case operands need to be «prepared» in a suitable way
to be fed to the helper threads

Parallel karatsuba – results methodology
Experiments run on:
• i7-6800K @ 3.40GHz (3.6 GHz turbo), 6c/12t, L1pc 32K+32KB, L2pc

256KB, L3sc 15 MB, 128 GB RAM
• Dual Xeon E5-2650 v2 @2.60GHz (3.4 GHz turbo), 8c/16t, L1pc

32K+32KB, L2pc 256KB, L3sc 20 MB, 64 GB RAM
• i7-2600 @3.4 GHz (3.8GHz turbo), 4c/8t, L1pc 32K+32KB, L2pc

256KB, L3sc 8 MB, 32 GB RAM
• Enforced thread-to-core affinity: not big issue in this case
• Linux Debian 8 or 9 operating system
• Key sizes: 1024, 2048, 4096, 8192, 16384, 32768, 65536
• Repeated experiments:

– From 5000s to 30000s times to let benchmark run for a reasonable
amount of time for every key size

• Benchmarks implemented in C++ relying and using GMP/MPIR
library for Big numbers and reference

• Showing improvements over plain sequential Karatsuba and
GMP/MPIR

42

Parallel Karatsuba – results parallel simple

• std::sync and std::thread approaches are worse/equal than sequential up to 16384
– 32768: -35% (std::async), -37% (std::thread)
– 65536: -52% (std::async), -48% (std::thread)
– Spawn/join threads overhead is limiting the approach

• improvements over GMPmul for big numbers
– 32768: -21% (std::async), -25% (std::thread)
– 65536: -45% (std::async), -41% (std::thread)

43

0

20

40

60

80

100

120

140

160

180

200

1024 2048 4096 8192 16384 32768 65536

M
ul

tip
lic

at
io

n
tim

e
(μ

s)

i7-2600 @3.4 GHz (3.8GHz turbo), 4c/8t, L1pc 32K+32KB, L2pc 256KB, L3sc 8 MB

GMPmul

Kara_seq

Kara_thrAs

Kara_thr

Parallel Karatsuba – results parallel inf-threads

• Infinite-threads improve over simple parallel tasks
– Where they were already good
– -37% than Kara_seq @16384 (-21% than GMP)
– Matches Kara_seq @8192
– For smaller keys:

threads synchronization overhead and parameter passing is limiting the approach
44

0

10

20

30

40

50

60

70

80

90

100

1024 2048 4096 8192 16384 32768 65536

M
ul

tip
lic

at
io

n
tim

e
(μ

s)

i7-2600 @3.4 GHz (3.8GHz turbo), 4c/8t, L1pc 32K+32KB, L2pc 256KB, L3sc 8 MB

GMPmul

Kara_seq

Kara_thrAs

Kara_thr

Kara_InfThr

Parallel Karatsuba – results parallel inf-threadsLF

• Lock-free infinite-threads improve over infinite-threads
– Number size decreases Æ improved advantage
– Better for small keys: -46% @8192 than Kara_seq (-35% vs GMP)
– -25% @4096 than Kara_seq
– -3% @2048 than Kara_seq
– threads parameter preparation and passing is limiting the approach

45

0

10

20

30

40

50

60

70

80

90

100

1024 2048 4096 8192 16384 32768 65536

M
ul

tip
lic

at
io

n
tim

e
(μ

s)

i7-2600 @3.4 GHz (3.8GHz turbo), 4c/8t, L1pc 32K+32KB, L2pc 256KB, L3sc 8 MB

GMPmul

Kara_seq

Kara_thrAs

Kara_thr

Kara_InfThr

Kara_InfThrLF

Parallel Karatsuba – results parallel inf-threadsLF (2)

• Normalized results:
– 4096: -24% vs Kara_seq, +17% vs GMP
– 8192: -45% vs Kara_seq, -33% vs GMP
– 16384: -54% vs Kara_seq, -41% vs GMP
– 32768: -58% vs Kara_seq, -49% vs GMP
– 65536: -61% vs Kara_seq, -55% vs GMP

46

0

2

4

6

8

10

12

14

1024 2048 4096 8192 16384 32768 65536

M
ul

tip
lic

at
io

n
tim

e
no

rm
al

iz
ed

 to
 S

qu
ar

e&
M

ul
tip

ly

E5-2650 v2 @2.60GHz (3.4 GHz turbo), 8c/16t, L1pc 32K+32KB, L2pc 256KB, L3sc 20 MB

GMPmul

Kara_seq

Kara_thrAs

Kara_thr

Kara_InfThr

Kara_InfThrLF

Parallel Karatsuba – results parallel inf-threadsLF (3)

• newer HW: slightly better performance on sequential code  turbo frequency, ILP
– 4096: -15% vs Kara_seq, +49% vs GMP
– 8192: -38% vs Kara_seq, -19% vs GMP
– 16384: -52% vs Kara_seq, -39% vs GMP
– 32768: -56% vs Kara_seq, -48% vs GMP
– 65536: -61% vs Kara_seq, -54% vs GMP

47

0

1

2

3

4

5

6

7

8

9

10

1024 2048 4096 8192 16384 32768 65536

M
ul

tip
lic

at
io

n
tim

e
no

rm
al

iz
ed

 to
 K

ar
at

su
ba

 s
eq

ue
nt

ia
l

i7-6800K @ 3.40GHz (3.6 GHz turbo), 6c/12t, L1pc 32K+32KB, L2pc 256KB, L3sc 15 MB

GMPmul

Kara_seq

Kara_thrAs

Kara_thr

Kara_InfThr

Kara_InfThrLF

Parallel Karatsuba: wrap up

• Only 3 overall threads can significantly speed up multiplication
– Over plain Karatsuba sequential from 4096 keys (-15%/-25%) up to -55%/60%
– Over GMP: less than -30% @8192 and up to less than -50% for bigger cases
– higher-number of threads could help, especially for bigger keys

• Parallelization opportunities and hurdles
– Difficulty of programming: abstractions Æ overhead vs abstraction
– Overhead of thread work orchestration
– Interactions with Operating System (OS) and computer architecture (caches,

etc)
– Lack of HW + parallel programming support at the μs scale

• Some parallel-programming strategies can be plug-in to fit the
problem
– Thread-pool and lock-free techniques Æ complexity

Outline

49

• Introduction
• Modular exponentiation parallelization

• m-ary with precomputation
• m-ary on-demand
• Slice method

• Parallel Karatsuba multiplication
• Conclusions

Conclusions
• Exponentiation , as it is, can be accelerated through parallelism

– -30/-40%

• Big number multiplication, as it is, can be accelerated through multi-
threaded implementations
– -15% to -60% vs sequential Square&Multiply
– -19% to -54% vs native GMP/MPIR

Good case for promoting education into parallel programming in general and,
specifically, in the cyber-physical system security

– Parallelism in hardware is not emerging … is already happened at almost all levels,
from embedded to HPC

– Need to harness it and exploit it now !

Discussion:
• Different math algorithms could be devised to be more parallelism-

friendly ?

Thanks for your attention!

Q & A

Why we should care about parallel programming
in securing Cyber-physical systems

Sandro Bartolini, Biagio Peccerillo
Department of Information Engineering and Mathematical Sciences University of

Siena, Italy

{bartolini,peccerillo}@dii.unisi.it

Cyber Phisical Security Education Workshop - CPSEd
Paris - July 18th, 2017

