
Design and Verify CPS with
a Constraint Satisfaction Problem (CSP) Approach

Alexandre Chapoutot

joint work with Julien Alexandre dit Sandretto and Olivier Mullier
U2IS, ENSTA ParisTech, Palaiseau, France

CPS Education Workshop
July 17, 2017

A small cyber-physical system: closed-loop control

Control

Physics

r(t) e(t) u(t)
−

y(t)

Physics is usually defined by non-linear differential equations (with parameters)

ẋ = f (x(t), u(t), p) , y(t) = g(x(t))

Control may be a continuous-time PI algorithm

e(t) = r(t)− y(t) , u(t) = Kpe(t) + Ki

∫ t

0
e(τ)dτ

What is designing a controller?
Find values for Kp and Ki such that a given specification is satisfied.

2 / 40

Specification of PID Controllers
PID controller: requirements based on closed-loop response

We observe the output of the plant

Overshoot: Less than 10%
Steady-state error: Less than 2%
Settling time: Less than 10s
Rise time: Less than 2s

0 2 4 6 8 100

1

Note: such properties come from the asymptotic behavior of the closed-loop system.

Classical method to study/verify closed-loop systems
Numerical simulations but

do not take into account that models are only an approximation;
produce approximate results.

and not adapted to deal with uncertainties
3 / 40

Synthesis and Verification methods for/of cyber-physical systems
Some requirements

Shall deal with discrete-time, continuous-time parts and their interactions
Shall take into account uncertainties: model, data, resolution methods
Shall consider temporal properties

Example of properties (coming from
box-RRT1)

system stays in safe zone (∀t) or
finishes in goal zone (∃t)
system avoids obstacle (∃t)

for different quantification’s of initial
state-space (∀x or ∃x), parameters, etc.

1Pepy et al. Reliable robust path planning, Journal of AMCS, 2009
4 / 40

Set-based simulation

Definition
numerical simulation methods implemented with interval analysis methods

Goals
takes into account various uncertainties (bounded) or approximations to produce rigorous
results

Example
A simple nonlinear dynamics of a car

v̇ = −50.0v − 0.4v 2

m with m ∈ [990, 1010] and v(0) ∈ [10, 11]

One Implementation DynIBEX: a combination of CSP solver (IBEX1) with validated
numerical integration methods based on Runge-Kutta

1Gilles Chabert (EMN) et al. http://www.ibex-lib.org

5 / 40

http://www.ibex-lib.org

Constraint Satisfaction Problems

Constraint Satisfaction Problems

Constraint Satisfaction Problems

Validated numerical integration

Differential constraint satisfaction problems

Some experiments

6 / 40

Constraint Satisfaction Problems

Basics of interval analysis

Interval arithmetic (defined also for: sin, cos, etc.):

[x , x] + [y , y] =[x + y , x + y]
[x , x] ∗ [y , y] =[min{x ∗ y , x ∗ y , x ∗ y , x ∗ y},

max{x ∗ y , x ∗ y , x ∗ y , x ∗ y}]

Let an inclusion function [f] : IR→ IR for f : R→ R is defined as:

{f (a) | ∃a ∈ [I]} ⊆ [f]([I])

with a ∈ R and I ∈ IR.

Example of inclusion function: Natural inclusion
[x] = [1, 2], [y] = [−1, 3], and f (x , y) = xy + x

[f]
(

[x], [y]
)

:= [x] ∗ [y] + [x]

= [1, 2] ∗ [−1, 3] + [1, 2] = [−2, 6] + [1, 2] = [−1, 8]

7 / 40

Constraint Satisfaction Problems

Numerical Constraint Satisfaction Problems
NCSP
A NCSP (V,D, C) is defined as follows:
V := {v1, . . . , vn} is a finite set of variables which can also be represented by the
vector v;
D := {[v1], . . . , [vn]} is a set of intervals such that [vi] contains all possible values of
vi . It can be represented by a box [v] gathering all [vi];
C := {c1, . . . , cm} is a set of constraints of the form ci (v) ≡ fi (v) = 0 or
ci (v) ≡ gi (v) 6 0, with fi : Rn → R, gi : Rn → R for 1 6 i 6 m.
Note: Constraints C are interpreted as a conjunction of equalities and inequalities.

Remark: The solution of a NCSP is a valuation of v ranging in [v] and satisfying the
constraints C.
Example

V = {x}
Dx =

{
[1, 10]

}
C =

{
x exp(x) 6 3

} =⇒ x ∈ [1, 1.09861]

Remark: if [v] = ∅ then the problem is not satistafiable
8 / 40

Constraint Satisfaction Problems

Interval constraints and contractor
Interval constraint
Given a inclusion function [f], a box [z], we look for a box [x], s.t.

[f]([x]) ⊆ [z]

Remark: if [x] = ∅ then the problem is unsafisiable

A simple resolution algorithm
put [x] in a list X
while X is not empty

take [x] in X
if [f]([x]) is included in [z] then keep [x] in S as a solution
else if width([x]) < tol then split [x], put [x1] and [x2] in X

Contractor
A contractor C[f],[z] associated to constraint [f]([x]) ⊆ [z] such that

Reduction:
C[f],[z] ([x]) ⊆ [x]

Soundness:
[f] ([x]) ∩ [z] = [f]

(
C[f],[z] ([x])

)
∩ [z]

Note: several contractor algorithms exist, e.g., FwdBwd, 3BCID, etc.
9 / 40

Constraint Satisfaction Problems

Contractor: example FwdBwd

Example

V = {x , y , z}
D =

{
[1, 2], [−1, 3], [0, 1]

}
C =

{
x + y = z

}
Forward evaluation

[z] = [z] ∩ ([x] + [y])
as [x] + [y] = [1, 2] + [−1, 3] = [0, 5] ⇒ [z] = [0, 1] ∩ [0, 5] No improvement yet

Backward evaluation
[y] = [y] ∩ ([z]− [x]) = [−1, 3] ∩ [−2, 0] = [−1, 0] Refinement of [y]
[x] = [x] ∩ ([z]− [y]) = [1, 2] ∩ [0, 2] = [1, 2] No refinement of [x]

Remark: this process can be iterated until a fixpoint is reached

Remark: the order of constraints is important for a fast convergence

10 / 40

Constraint Satisfaction Problems

IBEX in one slide

Easy definition of
functions

Numerical constraints

Pruning methods

Interval evaluation of
functions

#include "ibex.h"

using namespace std;
using namespace ibex;

int main() {

Variable x;
Function f (x, x*exp(x));

NumConstraint c1(x, f(x) <= 3.0);

CtcFwdBwd contractor(c1);

IntervalVector box(1);
box[0]=Interval(1,10);

cout << "f" << box << " = " << f.eval(box) << endl;
contractor.contract(box);
cout << "after contraction box = " << box << endl;

}

IBEX is also a parametric solver of constraints, an optimizer, etc.

11 / 40

Validated numerical integration

Validated numerical integration

Constraint Satisfaction Problems

Validated numerical integration

Differential constraint satisfaction problems

Some experiments

12 / 40

Validated numerical integration

Initial Value Problem of Ordinary Differential Equations

Consider an IVP for ODE, over the time interval [0,T]

ẏ = f (y) with y(0) = y0

IVP has a unique solution y(t; y0) if f : Rn → Rn is Lipschitz in y
but for our purpose we suppose f smooth enough, i.e., of class C k

Goal of numerical integration

Compute a sequence of time instants: t0 = 0 < t1 < · · · < tn = T
Compute a sequence of values: y0, y1, . . . , yn such that

∀i ∈ [0, n], yi ≈ y(ti ; y0) .

13 / 40

Validated numerical integration

Validated solution of IVP for ODE

Goal of validated numerical integration

Compute a sequence of time instants: t0 = 0 < t1 < · · · < tn = T
Compute a sequence of values: [y0], [y1], . . . , [yn] such that

∀i ∈ [0, n], [yi] 3 y(ti ; y0) .

A two-step approach

Exact solution of ẏ = f (y(t)) with y(0) ∈ Y0

Safe approximation at discrete time instants
Safe approximation between time instants

14 / 40

Validated numerical integration

State of the Art on Validated Numerical Integration

Taylor methods
They have been developed since 60’s (Moore, Lohner, Makino and Berz, Corliss and
Rhim, Neher et al., Jackson and Nedialkov, etc.)

prove the existence and uniqueness: high order interval Picard-Lindelöf
works very well on various kinds of problems:

I non stiff and moderately stiff linear and non-linear systems,
I with thin uncertainties on initial conditions
I with (a writing process) thin uncertainties on parameters

very efficient with automatic differentiation techniques
wrapping effect fighting: interval centered form and QR decomposition
many software: AWA, COSY infinity, VNODE-LP, CAPD, etc.

Some extensions
Taylor polynomial with Hermite-Obreskov (Jackson and Nedialkov)
Taylor polynomial in Chebyshev basis (T. Dzetkulic)
etc.

15 / 40

Validated numerical integration

New validated methods, why?

Numerical solutions of IVP for ODEs are produced by
Adams-Bashworth/Moulton methods
BDF methods
Runge-Kutta methods
etc.

each of these methods is adapted to a particular class of ODEs

Runge-Kutta methods

have strong stability properties for various kinds of problems (A-stable, L-stable,
algebraic stability, etc.)
may preserve quadratic algebraic invariant (symplectic methods)
can produce continuous output (polynomial approximation of y(t; y0))

Can we benefit these properties in validated computations?

16 / 40

Validated numerical integration

History on Interval Runge-Kutta methods

Andrzej Marciniak et al. work on this topic since 1999
“The form of ψ(t, y(t)) is very complicated and cannot be written in a

general form for an arbitrary p”

The implementation OOIRK is not freely available and limited number of methods.

Hartmann and Petras, ICIAM 1999
No more information than an abstract of 5 lines.

Bouissou and Martel, SCAN 2006 (only RK4 method)
Implementation GRKLib is not available

Bouissou, Chapoutot and Djoudi, NFM 2013 (any explicit RK)
Implementation is not available

Alexandre dit Sandretto and Chapoutot, 2016 (any explicit and implicit RK)
implementation DynIBEX is open-source, combine with IBEX

17 / 40

Validated numerical integration

Examples of Runge-Kutta methods

Single-step fixed step-size explicit Runge-Kutta method

e.g. explicit Trapzoidal method (or Heun’s method)2 is defined by:

k1 = f (t`, y`) , k2 = f (t` + 1h, y` + h1k1)

yi+1 = y` + h
(1

2 k1 + 1
2 k2

) 0
1 1

1
2

1
2

Intuition
ẏ = t2 + y 2

y0 = 0.46
h = 1.0

dotted line is the exact solution.

28 II. Numerical Integrators

II.1.1 Runge–Kutta Methods

In this section, we treat non-autonomous systems of first-order ordinary differential
equations

ẏ = f(t, y), y(t0) = y0. (1.1)

The integration of this equation gives y(t1) = y0 +
∫ t1

t0
f(t, y(t)) dt, and replacing

the integral by the trapezoidal rule, we obtain

y1 = y0 +
h

2

(
f(t0, y0) + f(t1, y1)

)
. (1.2)

This is the implicit trapezoidal rule, which, in addition to its historical impor-
tance for computations in partial differential equations (Crank–Nicolson) and in
A-stability theory (Dahlquist), played a crucial role even earlier in the discovery of
Runge–Kutta methods. It was the starting point of Runge (1895), who “predicted”
the unknown y1-value to the right by an Euler step, and obtained the first of the
following formulas (the second being the analogous formula for the midpoint rule)

k1 = f(t0, y0)

k2 = f(t0 + h, y0 + hk1)

y1 = y0 + h
2

(
k1 + k2

)

k1 = f(t0, y0)

k2 = f(t0 + h
2 , y0 + h

2 k1)

y1 = y0 + hk2.

(1.3)

These methods have a nice geometric interpretation (which is illustrated in the first
two pictures of Fig. 1.2 for a famous problem, the Riccati equation): they consist
of polygonal lines, which assume the slopes prescribed by the differential equation
evaluated at previous points.

Idea of Heun (1900) and Kutta (1901): compute several polygonal lines, each start-
ing at y0 and assuming the various slopes kj on portions of the integration interval,
which are proportional to some given constants aij ; at the final point of each poly-
gon evaluate a new slope ki. The last of these polygons, with constants bi, deter-
mines the numerical solution y1 (see the third picture of Fig. 1.2). This idea leads to
the class of explicit Runge–Kutta methods, i.e., formula (1.4) below with aij = 0
for i ≤ j.

1

1

1

1

1

1

t

y

y0

k1

1
2

k2

y1

expl. trap. rule

t

y

k1

y0 1
2

k2

y1

expl. midp. rule

t

y

y0

k1

a21
c2

a31 a32

c3

b1 b2 b3

1

k2

k3

y1

Fig. 1.2. Runge–Kutta methods for ẏ = t2 + y2, y0 = 0.46, h = 1; dotted: exact solution

2example coming from “Geometric Numerical Integration”, Hairer, Lubich and Wanner.
18 / 40

Validated numerical integration

Runge-Kutta methods

s-stage Runge-Kutta methods are described by a Butcher tableau
c1 a11 a12 · · · a1s
...

...
...

...
cs as1 as2 · · · ass

b1 b2 · · · bs

b′1 b′2 · · · b′s (optional)
i

j

which induces the following algorithm

ki = f

(
t` + ci h`, y` + h`

s∑
j=1

aij kj

)
, y`+1 = y` + h`

s∑
i=1

bi ki

Explicit method (ERK) if aij = 0 is i 6 j
Diagonal Implicit method (DIRK) if aij = 0 is i 6 j and at least one aii 6= 0
Implicit method (IRK) otherwise

19 / 40

Validated numerical integration

Validated Runge-Kutta methods
A validated algorithm

[y`+1] = [RK] (h, [y`]) + LTE .

Challenges

1. Computing with sets of values (intervals) taking into account dependency problem
and wrapping effect;

2. Bounding the approximation error of Runge-Kutta formula.

Our approach

Problem 1 is solved using affine arithmetic (an extension of interval) replacing
centered form and QR decomposition
Problem 2 is solved by bounding the Local Truncation Error (LTE) of
Runge-Kutta methods based on B-series and Order condition.

Order condition states that a method of Runge-Kutta family is of order p iff
the Taylor expansion of the exact solution
and the Taylor expansion of the numerical methods

have the same p + 1 first coefficients.
20 / 40

Validated numerical integration

Simulation of an open loop system
A simple dynamics of a car

ẏ = −50.0y − 0.4y 2

m with m ∈ [990, 1010]

Simulation for 100 seconds with y(0) = 10

The last step is y(100) = [0.0591842, 0.0656237]
21 / 40

Validated numerical integration

Simulation of an open loop system

ODE definition

IVP definition

Parametric simulation
engine

int main(){

const int n = 1;
Variable y(n);

IntervalVector state(n);
state[0] = 10.0;

// Dynamique d’une voiture avec incertitude sur sa
masse

Function ydot(y, (-50.0 * y[0] - 0.4 * y[0] * y[0])
/ Interval (990, 1010));

ivp ode vdp = ivp ode(ydot, 0.0, state);

// Integration numerique ensembliste
simulation simu = simulation(&vdp, 100, RK4, 1e-5);
simu.run simulation();

//For an export in order to plot
simu.export1d yn("export-open-loop.txt", 0);

return 0;
}

22 / 40

Validated numerical integration

Simulation of a closed-loop system
A simple dynamics of a car with a PI controller(

ẏ
ẇ

)
=
(

kp (10.0−y)+ki w−50.0y−0.4y2

m
10.0− y

)
with m ∈ [990, 1010], kp = 1440, ki = 35

Simulation for 10 seconds with y(0) = w(0) = 0

The last step is y(10) = [9.83413, 9.83715]
23 / 40

Validated numerical integration

Simulation of a closed-loop system
#include "ibex.h"

using namespace ibex;

int main(){

const int n = 2;
Variable y(n);

IntervalVector state(n);
state[0] = 0.0;
state[1] = 0.0;

// Dynamique d’une voiture avec incertitude sur sa masse + PI
Function ydot(y, Return ((1440.0 * (10.0 - y[0]) + 35.0 * y[1] - y[0] * (50.0 + 0.4 * y[0]))

/ Interval (990, 1010),
10.0 - y[0]));

ivp ode vdp = ivp ode(ydot, 0.0, state);

// Integration numerique ensembliste
simulation simu = simulation(&vdp, 10.0, RK4, 1e-7);
simu.run simulation();

simu.export1d yn("export-closed-loop.txt", 0);

return 0;
}

24 / 40

Validated numerical integration

Simulation of an hybrid closed-loop system
A simple dynamics of a car with a discrete PI controller

ẏ = u(k)− 50.0y − 0.4y 2

m with m ∈ [990, 1010]

i(tk) = i(tk−1) + h(c − y(tk)) with h = 0.005
u(tk) = kp(c − y(tk)) + ki i(tk) with kp = 1400, ki = 35

Simulation for 3 seconds with y(0) = 0 and c = 10

25 / 40

Validated numerical integration

Simulation of an hybrid closed-loop system
#include "ibex.h"

using namespace ibex;
using namespace std;

int main(){
const int n = 2; Variable y(n);
Affine2Vector state(n);
state[0] = 0.0; state[1] = 0.0;

double t = 0; const double sampling = 0.005;
Affine2 integral(0.0);

while (t < 3.0) {
Affine2 goal(10.0);
Affine2 error = goal - state[0];

// Controleur PI discret
integral = integral + sampling * error;
Affine2 u = 1400.0 * error + 35.0 * integral;
state[1] = u;

// Dynamique d’une voiture avec incertitude sur sa masse
Function ydot(y, Return((y[1] - 50.0 * y[0] - 0.4 * y[0] * y[0])

/ Interval (990, 1010), Interval(0.0)));
ivp ode vdp = ivp ode(ydot, 0.0, state);

// Integration numerique ensembliste
simulation simu = simulation(&vdp, sampling, RK4, 1e-6);
simu.run simulation();

// Mise a jour du temps et des etats
state = simu.get last(); t += sampling;

}

return 0;
}

Manual handling of
discrete-time evolution

26 / 40

Differential constraint satisfaction problems

Differential constraint satisfaction problems

Constraint Satisfaction Problems

Validated numerical integration

Differential constraint satisfaction problems

Some experiments

27 / 40

Differential constraint satisfaction problems

Goal: Extension of CSP to deal with ODEs

Our goal: add differential constraints into CSP framework.

State of the Art on CSP + ODE
J. Cruz in 2003 introduces ODE into CSP framework
by adding a differential problems combined with NSCP
A. Goldsztejn et al. in 2010 extended CSP with ODE
by only using solution operator of ODE

This work pursues the work of Goldsztejn et al. by providing a free open-source
implementation: DynIBEX

Main idea is to add some constraints on the results of validated numerical integration.

28 / 40

Differential constraint satisfaction problems

Quantified Constraint Satisfaction Differential Problems

S ≡ ẏ = f (y(t), p)

QCSDP
Let S be a differential system and tend ∈ R+ the time limit. A QCSDP is a NCSP defined
by

a set of variables V including t, a vector y0, p
We represent these variables by the vector v;
an initial domain D containing at least [0, tend], Y0, and P;
a set of constraints C = {c1, . . . , ce} composed of predicates over sets, that is,
constraints of the form

ci ≡ Qv ∈ Di .fi (v) � A, ∀1 6 i 6 e

with Q ∈ {∃,∀}, fi : ℘(R|V|)→ ℘(Rq) stands for non-linear arithmetic expressions
defined over variables v and solution of differential system S, y(t; y0, p, u) ≡ y(v),
� ∈ {⊆,∩∅} and A ⊆ Rq where q > 0.

Note: we follow the same approach that Goldsztejn et al.3

3Including ODE Based Constraints in the Standard CP Framework, CP10
29 / 40

Differential constraint satisfaction problems

Box-QCSDP as abstraction of QCSDP

Box-QCSDP
Let S be a differential system and tend ∈ R+ the time limit A Box-QCSDP is defined by

a set of variables V including at least t, a vector y0, p, u
We represent these variables by the vector v;
an initial box [d] containing at least [0, tend], [y0], [u], and [p];
a set of interval constraints C = {c1, . . . , ce} composed of predicates over sets, that
is, constraints of the form

ci ≡ Qv ∈ [di].[fi](v) � α(A), ∀1 6 i 6 e

with Q ∈ {∃, ∀}, [fi] : IR|V| → IRq stands for non-linear arithmetic expressions
defined over variables v and interval enclosure solution [y](t; y0, p, u) ≡ [y](v),
� ∈ {⊆,∩∅} and α ∈ {Hull, Int}

A simple resolution algorithm
1. Solve ODE with validated numerical integration
2. Solve constraints using standard NSCP techniques

30 / 40

Differential constraint satisfaction problems

Box-QCSDP as abstraction of QCSDP

Abstraction using boxes is not so straightforward to preserve soundness, each possible
constraints must be studied !

α(A)
Int(A) Hull(A)

α(g) [g]

⊂ true ?
⊃ false ?
∩=∅ ? true
∩6=∅ ? false

Legend
?: no result implies guaranteed result on original formula
true: abstract formula valid then the original one valid,

[g](v) ⊂ Int(A)⇒ g(v) ⊂ A

false: abstract formula not valid then the original one not valid,

¬([g](v) ∩ 6=∅ Hull(A))⇒ ¬(g(v) ∩6=∅ A)

31 / 40

Differential constraint satisfaction problems

DynIBEX: a Box-QCSDP solver with restrictions

Solving arbitrary quantified constraints is hard!

We focus on particular problems of robotics involving quantifiers
Robust controller synthesis: ∃u, ∀p, ∀y0 + temporal constraints
Parameter synthesis: ∃p, ∀u, ∀y0 + temporal constraints
etc.

We also defined a set of temporal constraints useful to analyze/design robotic application.

Verbal property QCSDP translation
Stay in A ∀t ∈ [0, tend], [y](t, v′) ⊆ Int(A)
In A at τ ∃t ∈ [0, tend], [y](t, v′) ⊆ Int(A)

Has crossed A* ∃t ∈ [0, tend], [y](t, v′) ∩ Hull(A) 6= ∅
Go out A ∃t ∈ [0, tend], [y](t, v′) ∩ Hull(A) = ∅

Has reached A* [y](tend, v′) ∩ Hull(A) 6= ∅
Finished in A [y](tend, v′) ⊆ Int(A)

*: shall be used in negative form

32 / 40

Differential constraint satisfaction problems

Simulation of a closed-loop system with safety
A simple dynamics of a car with a PI controller(

ẏ
ẇ

)
=
(

kp (10.0−y)+ki w−50.0y−0.4y2

m
10.0− y

)
with m ∈ [990, 1010], kp = 1440, ki = 35

and a safety propriety
∀t, y(t) ∈ [0, 11]

Failure

y([0, 0.0066443]) ∈ [−0.00143723, 0.0966555]

33 / 40

Differential constraint satisfaction problems

Simulation of a closed-loop system with safety property
#include "ibex.h"

using namespace ibex;

int main(){
const int n = 2;
Variable y(n);

IntervalVector state(n);
state[0] = 0.0; state[1] = 0.0;

// Dynamique d’une voiture avec incertitude sur sa masse + PI
Function ydot(y, Return ((1440.0 * (10.0 - y[0]) + 35.0 * y[1] - y[0] * (50.0 + 0.4 * y[0]))

/ Interval (990, 1010),
10.0 - y[0]));

ivp ode vdp = ivp ode(ydot, 0.0, state);

simulation simu = simulation(&vdp, 10.0, RK4, 1e-6);
simu.run simulation();

// verification de surete
IntervalVector safe(n);
safe[0] = Interval(0.0, 11.0);
bool flag = simu.stayed in (safe);
if (!flag) {

std::cerr << "error safety violation" << std::endl;
}

return 0;
} 34 / 40

Some experiments

Some experiments

Constraint Satisfaction Problems

Validated numerical integration

Differential constraint satisfaction problems

Some experiments

35 / 40

Some experiments

Experiment 1 – Tuning PI controller [SYNCOP’15]

A cruise control system two formulations:
uncertain linear dynamics;

v̇ = u − bv
m

uncertain non-linear dynamics

v̇ = u − bv − 0.5ρCdAv 2

m
with

m the mass of the vehicle
u the control force defined by a PI controller
bv is the rolling resistance
Fdrag = 0.5ρCdAv 2 is the aerodynamic drag (ρ the air density, CdA the drag
coefficient depending of the vehicle area)

36 / 40

Some experiments

Experiment 1 – Settings and algorithm

Embedding the PI Controller into the differential equations:
u = Kp(vset − v) + Ki

∫
(vset − v)ds with vset the desired speed

Transforming interr =
∫

(vset − v)ds into differential form

interr

dt = vset − v

v̇ = Kp(vset − v) + Ki interr − bv
m

Main steps of the algorithm

Pick an interval values for Kp and Ki

Simulate the closed-loop systems with Kp and Ki
I if specification is not satisfied: bisect (up to minimal size) intervals and run

simulation with smaller intervals
I if specification is satisfied try other values of Kp and Ki

37 / 40

Some experiments

Experiment 1 – Paving results

Result of paving for both cases with
Kp ∈ [1, 4000] and Ki ∈ [1, 120]
vset = 10, tend = 15, α = 2% and ε = 0.2 and minimal size=1
constraints: y(tend) ∈ [r − α%, r + α%] and ẏ(tend) ∈ [−ε, ε]

Linear case (CPU ≈ 10 minutes) Non-linear case (CPU ≈ 80 minutes)

38 / 40

Some experiments

Experiment 2 – Robust path planer
Enhancement of Box-RRT (Pepy et al.) with

dedicated control law
cost function to minimize distance (Box-RRT*)

∃K > 0 and u ∈ U such that
∀s0 ∈ Sinit, ∀ s(K∆t; s0) ∈ Sgoal and ∀t ∈ [0,K∆t], s(t; s0) ∈ Sfree,

39 / 40

Some experiments

Conclusion
DynIBEX is one ingredient of verification tools for cyber-physical systems.
It can handle uncertainties, can reason on sets of trajectories.

Also applied on

Controller synthesis of sampled switched systems [SNR’16]
Parameter tuning in the design of mobile robots [MORSE’16]

Enhanced with
methods to solve algebraic-differential equations [Reliable Computing’16]
a contractor approach [SWIM’16]
a Box-QCSDP framework [IRC’17]

Future work (a piece of)

Pursue and improve cooperation with IBEX language
Improve algorithm of validated numerical integration (e.g., sensitivity)
SMT modulo ODE

40 / 40

	Constraint Satisfaction Problems
	Validated numerical integration
	Differential constraint satisfaction problems
	Some experiments

