Design and Verify CPS with a Constraint Satisfaction Problem (CSP) Approach

Alexandre Chapoutot

joint work with Julien Alexandre dit Sandretto and Olivier Mullier U2IS, ENSTA ParisTech, Palaiseau, France

> CPS Education Workshop July 17, 2017

A small cyber-physical system: closed-loop control

• Physics is usually defined by non-linear differential equations (with parameters)

$$\dot{\mathbf{x}} = f(\mathbf{x}(t), u(t), \mathbf{p}) \ , \qquad \qquad \mathbf{y}(t) = g(\mathbf{x}(t))$$

• Control may be a continuous-time PI algorithm

$$e(t) = r(t) - y(t) , \qquad u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau$$

What is designing a controller?

Find values for K_p and K_i such that a given specification is satisfied.

Specification of PID Controllers

PID controller: requirements based on closed-loop response

Note: such properties come from the asymptotic behavior of the closed-loop system.

Classical method to study/verify closed-loop systems

Numerical simulations but

- do not take into account that models are only an approximation;
- produce approximate results.
- and not adapted to deal with uncertainties

Synthesis and Verification methods for/of cyber-physical systems Some requirements

- Shall deal with discrete-time, continuous-time parts and their interactions
- Shall take into account uncertainties: model, data, resolution methods
- Shall consider temporal properties

Example of properties (coming from box-RRT 1)

- system stays in safe zone (∀t) or finishes in goal zone (∃t)
- system avoids obstacle $(\exists t)$

for different quantification's of initial state-space ($\forall x \text{ or } \exists x$), parameters, etc.

¹Pepy et al. Reliable robust path planning, Journal of AMCS, 2009

Set-based simulation

Definition

numerical simulation methods implemented with interval analysis methods

Goals

takes into account various uncertainties (bounded) or approximations to produce rigorous results

Example

A simple nonlinear dynamics of a car

$$\dot{v} = rac{-50.0 v - 0.4 v^2}{m}$$
 with $m \in [990, 1010]$ and $v(0) \in [10, 11]$

One Implementation DynIBEX: a combination of CSP solver (IBEX¹) with validated numerical integration methods based on Runge-Kutta

¹Gilles Chabert (EMN) et al. http://www.ibex-lib.org

Constraint Satisfaction Problems

Constraint Satisfaction Problems

Constraint Satisfaction Problems

Validated numerical integration

Differential constraint satisfaction problems

Some experiments

Basics of interval analysis

• Interval arithmetic (defined also for: sin, cos, etc.):

$$\begin{split} [\underline{x}, \overline{x}] + [\underline{y}, \overline{y}] = & [\underline{x} + \underline{y}, \overline{x} + \overline{y}] \\ [\underline{x}, \overline{x}] * [\underline{y}, \overline{y}] = & [\min\{\underline{x} * \underline{y}, \underline{x} * \overline{y}, \overline{x} * \underline{y}, \overline{x} * \overline{y}\}, \\ & \max\{\underline{x} * \underline{y}, \underline{x} * \overline{y}, \overline{x} * \overline{y}, \overline{x} * \underline{y}, \overline{x} * \overline{y}\} \end{split}$$

• Let an inclusion function $[f] : \mathbb{IR} \to \mathbb{IR}$ for $f : \mathbb{R} \to \mathbb{R}$ is defined as:

$$\{f(a) \mid \exists a \in [I]\} \subseteq [f]([I])$$

with $a \in \mathbb{R}$ and $I \in \mathbb{IR}$.

Example of inclusion function: Natural inclusion $[x] = [1, 2], \quad [y] = [-1, 3], \text{ and } f(x, y) = xy + x$ [f]([x], [y]) := [x] * [y] + [x]= [1, 2] * [-1, 3] + [1, 2] = [-2, 6] + [1, 2] = [-1, 8]

Numerical Constraint Satisfaction Problems

NCSP

A NCSP $(\mathcal{V}, \mathcal{D}, \mathcal{C})$ is defined as follows:

- $\mathcal{V} := \{v_1, \dots, v_n\}$ is a finite set of variables which can also be represented by the vector \mathbf{v} ;
- $\mathcal{D} := \{[v_1], \dots, [v_n]\}$ is a set of intervals such that $[v_i]$ contains all possible values of v_i . It can be represented by a box $[\mathbf{v}]$ gathering all $[v_i]$;
- $C := \{c_1, \ldots, c_m\}$ is a set of constraints of the form $c_i(\mathbf{v}) \equiv f_i(\mathbf{v}) = 0$ or $c_i(\mathbf{v}) \equiv g_i(\mathbf{v}) \leq 0$, with $f_i : \mathbb{R}^n \to \mathbb{R}$, $g_i : \mathbb{R}^n \to \mathbb{R}$ for $1 \leq i \leq m$. Note: Constraints C are interpreted as a conjunction of equalities and inequalities.

Remark: The solution of a NCSP is a valuation of \bm{v} ranging in $[\bm{v}]$ and satisfying the constraints $\mathcal{C}.$

Example

• $\mathcal{V} = \{x\}$ • $\mathcal{D}_x = \{[1, 10]\} \implies x \in [1, 1.09861]$ • $\mathcal{C} = \{x \exp(x) \leq 3\}$ Remark: if $[\mathbf{v}] = \emptyset$ then the problem is not satistafiable

Interval constraints and contractor

Interval constraint

Given a inclusion function [f], a box [z], we look for a box [x], s.t.

 $[f]([\mathbf{x}]) \subseteq [\mathbf{z}]$

Remark: if $[\mathbf{x}] = \emptyset$ then the problem is unsafisiable

A simple resolution algorithm

```
put [x] in a list X
while X is not empty
  take [x] in X
  if [f]([x]) is included in [z] then keep [x] in S as a solution
  else if width([x]) < tol then split [x], put [x1] and [x2] in X</pre>
```

Contractor

A contractor $\mathcal{C}_{[f],[z]}$ associated to constraint $[f]([\mathbf{x}]) \subseteq [\mathbf{z}]$ such that

• Reduction:

 $\mathcal{C}_{[f],[\textbf{z}]}\left([\textbf{x}]\right)\subseteq [\textbf{x}]$

• Soundness:

$$[f]([\mathbf{x}]) \cap [\mathbf{z}] = [f](\mathcal{C}_{[f],[\mathbf{z}]}([\mathbf{x}])) \cap [\mathbf{z}]$$

Note: several contractor algorithms exist, e.g., FwdBwd, 3BCID, etc.

Contractor: example FwdBwd

Example

- $\mathcal{V} = \{x, y, z\}$
- $\mathcal{D} = \{[1, 2], [-1, 3], [0, 1]\}$
- $C = \{x + y = z\}$

Forward evaluation

•
$$[z] = [z] \cap ([x] + [y])$$

as $[x] + [y] = [1, 2] + [-1, 3] = [0, 5] \Rightarrow [z] = [0, 1] \cap [0, 5]$ No improvement yet

Backward evaluation

•
$$[y] = [y] \cap ([z] - [x]) = [-1, 3] \cap [-2, 0] = [-1, 0]$$
 Refinement of $[y]$

• $[x] = [x] \cap ([z] - [y]) = [1, 2] \cap [0, 2] = [1, 2]$ No refinement of [x]

Remark: this process can be iterated until a fixpoint is reached

Remark: the order of constraints is important for a fast convergence

IBEX is also a parametric solver of constraints, an optimizer, etc.

Validated numerical integration

Validated numerical integration

Constraint Satisfaction Problems

Validated numerical integration

Differential constraint satisfaction problems

Some experiments

Initial Value Problem of Ordinary Differential Equations

Consider an IVP for ODE, over the time interval [0, T]

$$\dot{\mathbf{y}} = f(\mathbf{y})$$
 with $\mathbf{y}(0) = \mathbf{y}_0$

IVP has a unique solution $\mathbf{y}(t; \mathbf{y}_0)$ if $f : \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz in \mathbf{y} but for our purpose we suppose f smooth enough, *i.e.*, of class C^k

Goal of numerical integration

- Compute a sequence of time instants: $t_0 = 0 < t_1 < \cdots < t_n = T$
- Compute a sequence of values: $\mathbf{y}_0, \mathbf{y}_1, \dots, \mathbf{y}_n$ such that

$$\forall i \in [0, n], \quad \mathbf{y}_i \approx \mathbf{y}(t_i; \mathbf{y}_0)$$
.

Validated solution of IVP for ODE

Goal of validated numerical integration

- Compute a sequence of time instants: $t_0 = 0 < t_1 < \cdots < t_n = T$
- \bullet Compute a sequence of values: $[\textbf{y}_0], [\textbf{y}_1], \dots, [\textbf{y}_n]$ such that

$$\forall i \in [0, n], \quad [\mathbf{y}_i] \ni \mathbf{y}(t_i; \mathbf{y}_0)$$
.

State of the Art on Validated Numerical Integration

Taylor methods

They have been developed since 60's (Moore, Lohner, Makino and Berz, Corliss and Rhim, Neher *et al.*, Jackson and Nedialkov, etc.)

- prove the existence and uniqueness: high order interval Picard-Lindelöf
- works very well on various kinds of problems:
 - non stiff and moderately stiff linear and non-linear systems,
 - with thin uncertainties on initial conditions
 - with (a writing process) thin uncertainties on parameters
- very efficient with automatic differentiation techniques
- wrapping effect fighting: interval centered form and QR decomposition
- many software: AWA, COSY infinity, VNODE-LP, CAPD, etc.

Some extensions

- Taylor polynomial with Hermite-Obreskov (Jackson and Nedialkov)
- Taylor polynomial in Chebyshev basis (T. Dzetkulic)
- etc.

New validated methods, why?

Numerical solutions of IVP for ODEs are produced by

- Adams-Bashworth/Moulton methods
- BDF methods
- Runge-Kutta methods
- etc.

each of these methods is adapted to a particular class of ODEs

Runge-Kutta methods

- have **strong stability** properties for various kinds of problems (A-stable, L-stable, algebraic stability, etc.)
- may preserve quadratic algebraic invariant (symplectic methods)
- can produce **continuous output** (polynomial approximation of $\mathbf{y}(t; \mathbf{y}_0)$)

Can we benefit these properties in validated computations?

History on Interval Runge-Kutta methods

• Andrzej Marciniak et al. work on this topic since 1999

"The form of $\psi(t, y(t))$ is very complicated and cannot be written in a general form for an arbitrary p"

The implementation OOIRK is not freely available and limited number of methods.

- Hartmann and Petras, ICIAM 1999 No more information than an abstract of 5 lines.
- Bouissou and Martel, SCAN 2006 (only RK4 method) Implementation GRKLib is not available
- Bouissou, Chapoutot and Djoudi, NFM 2013 (any explicit RK) Implementation is not available
- Alexandre dit Sandretto and Chapoutot, 2016 (any explicit and implicit RK) implementation DynIBEX is open-source, combine with IBEX

Examples of Runge-Kutta methods

Single-step fixed step-size explicit Runge-Kutta method

e.g. explicit Trapzoidal method (or Heun's method)² is defined by:

Intuition

- $\dot{y} = t^2 + y^2$
- $y_0 = 0.46$

dotted line is the exact solution.

²example coming from "Geometric Numerical Integration", Hairer, Lubich and Wanner.

Runge-Kutta methods

s-stage Runge-Kutta methods are described by a Butcher tableau

c_1	a 11	a 12	• • •	a_{1s}			
÷	:	÷		÷		1	
C _s	a _{s1}	a _{s2}	•••	ass			L
	b 1	b ₂	•••	bs		i	i
	b_1'	b_2'		b'_s	(optional)		

which induces the following algorithm

$$\mathbf{k}_i = f\left(t_\ell + \frac{\mathbf{c}_i}{h_\ell}, \quad \mathbf{y}_\ell + h_\ell \sum_{j=1}^s \frac{\mathbf{a}_{ij}}{\mathbf{k}_j}\right), \qquad \mathbf{y}_{\ell+1} = \mathbf{y}_\ell + h_\ell \sum_{i=1}^s \frac{\mathbf{b}_i}{\mathbf{k}_i}\mathbf{k}_i$$

• **Explicit** method (ERK) if $a_{ij} = 0$ is $i \leq j$

• **Diagonal Implicit** method (DIRK) if $a_{ij} = 0$ is $i \leq j$ and at least one $a_{ii} \neq 0$

• Implicit method (IRK) otherwise

→ j

Validated Runge-Kutta methods

A validated algorithm

$$[\mathbf{y}_{\ell+1}] = [\mathsf{RK}](h, [\mathbf{y}_{\ell}]) + \mathsf{LTE}$$
 .

Challenges

- 1. Computing with sets of values (intervals) taking into account dependency problem and wrapping effect;
- 2. Bounding the approximation error of Runge-Kutta formula.

Our approach

- \bullet Problem 1 is solved using affine arithmetic (an extension of interval) replacing centered form and QR decomposition
- **Problem 2** is solved by bounding the **Local Truncation Error** (LTE) of Runge-Kutta methods based on **B-series** and **Order condition**.

Order condition states that a method of Runge-Kutta family is of order p iff

- the Taylor expansion of the exact solution
- and the Taylor expansion of the numerical methods
- have the same p + 1 first coefficients.

Simulation of an open loop system

A simple dynamics of a car

$$\dot{y} = \frac{-50.0y - 0.4y^2}{m}$$
 with $m \in [990, 1010]$

Simulation for 100 seconds with y(0) = 10

The last step is y(100) = [0.0591842, 0.0656237]

Validated numerical integration

Simulation of an open loop system

int main(){

const int n = 1; Variable y(n);

IntervalVector state(n); state[0] = 10.0;

// Dynamique d'une voiture avec incertitude sur sa masse

→ Function ydot(y, (-50.0 * y[0] - 0.4 * y[0] * y[0]) / Interval (990, 1010));
→ ivp_ode vdp = ivp_ode(ydot, 0.0, state);

ODE definition IVP definition -

// Integration numerique ensembliste
simulation simu = simulation(&vdp, 100, RK4, 1e-5);
simu.run_simulation();

• Parametric simulation engine

//For an export in order to plot
simu.export1d_yn("export-open-loop.txt", 0);

return 0;

Simulation of a closed-loop system

A simple dynamics of a car with a PI controller

$$\begin{pmatrix} \dot{y} \\ \dot{w} \end{pmatrix} = \begin{pmatrix} \frac{k_p(10.0-y)+k_iw-50.0y-0.4y^2}{m} \\ 10.0-y \end{pmatrix} \text{ with } m \in [990, 1010], k_p = 1440, k_i = 35$$

Simulation for 10 seconds with y(0) = w(0) = 0

The last step is y(10) = [9.83413, 9.83715]

Simulation of a closed-loop system

#include "ibex.h"

using namespace ibex;

int main(){

const int n = 2; Variable y(n);

```
\label{eq:linear} \begin{split} &IntervalVector \ \textbf{state}(n);\\ &state[0] = 0.0;\\ &state[1] = 0.0; \end{split}
```

```
// Integration numerique ensembliste
simulation simu = simulation(&vdp, 10.0, RK4, 1e-7);
simu.run_simulation();
```

```
simu.export1d_yn("export-closed-loop.txt", 0);
```

return 0;

Simulation of an hybrid closed-loop system

A simple dynamics of a car with a discrete PI controller

$$\dot{y} = \frac{u(k) - 50.0y - 0.4y^2}{m} \qquad \text{with} \quad m \in [990, 1010]$$
$$i(t_k) = i(t_{k-1}) + h(c - y(t_k)) \qquad \text{with} \quad h = 0.005$$
$$u(t_k) = k_p(c - y(t_k)) + k_i i(t_k) \qquad \text{with} \quad k_p = 1400, k_i = 35$$

Simulation for 3 seconds with y(0) = 0 and c = 10

Validated numerical integration

Simulation of an hybrid closed-loop system

#include "ibex.h"

using namespace ibex; using namespace std;

```
int main(){
    const int n = 2; Variable y(n);
    Affine2Vector state(n);
    state[0] = 0.0; state[1] = 0.0;

    double t = 0; const double sampling = 0.005;
    Affine2 integral(0.0);

    while (t < 3.0) {
        Affine2 goal(10.0);
        Affine2 error = goal - state[0];
        // Controleur Pl discret
        integral = integral + sampling * error;
        Affine2 u = 1400.0 * error + 35.0 * integral;
        state[1] = u;
        // Dynamique d'une voiture avec incertitude sur sa masse
    }
}
</pre>
```

Function ydot(y, Return((y[1] - 50.0 * y[0] - 0.4 * y[0] * y[0]) / Interval (990, 1010), Interval(0.0))); ivp_ode vdp = ivp_ode(ydot, 0.0, state);

```
// Integration numerique ensembliste
simulation simu = simulation(&vdp, sampling, RK4, 1e-6);
simu.run_simulation();
```

```
// Mise a jour du temps et des etats
state = simu.get_last(); t += sampling;
}
```

 Manual handling of discrete-time evolution

Differential constraint satisfaction problems

Constraint Satisfaction Problems

Validated numerical integration

Differential constraint satisfaction problems

Some experiments

Goal: Extension of CSP to deal with ODEs

Our goal: add differential constraints into CSP framework.

State of the Art on $\mathsf{CSP}+\mathsf{ODE}$

- J. Cruz in 2003 introduces ODE into CSP framework by adding a differential problems combined with NSCP
- A. Goldsztejn *et al.* in 2010 extended CSP with ODE by only using **solution operator** of ODE

This work pursues the work of Goldsztejn *et al.* by providing a free open-source implementation: **DynIBEX**

Main idea is to add some constraints on the results of validated numerical integration.

Quantified Constraint Satisfaction Differential Problems

 $S \equiv \dot{\mathbf{y}} = f(\mathbf{y}(t), \mathbf{p})$

QCSDP

Let S be a differential system and $t_{\mathsf{end}} \in \mathbb{R}_+$ the time limit. A QCSDP is a NCSP defined by

- a set of variables $\mathcal V$ including t, a vector $\mathbf y_0$, p We represent these variables by the vector $\mathbf v$;
- an initial domain \mathcal{D} containing at least $[0, t_{end}]$, \mathcal{Y}_0 , and \mathcal{P} ;
- a set of constraints $\mathcal{C}=\{c_1,\ldots,c_e\}$ composed of predicates over sets, that is, constraints of the form

$$c_i \equiv Q \mathbf{v} \in \mathcal{D}_i.f_i(\mathbf{v}) \diamond \mathcal{A}, \qquad \forall 1 \leqslant i \leqslant e$$

with $Q \in \{\exists, \forall\}, f_i : \wp(\mathbb{R}^{|\mathcal{V}|}) \to \wp(\mathbb{R}^q)$ stands for non-linear arithmetic expressions defined over variables **v** and solution of differential system *S*, $\mathbf{y}(t; \mathbf{y}_0, \mathbf{p}, \mathbf{u}) \equiv \mathbf{y}(\mathbf{v})$, $\diamond \in \{\subseteq, \cap_{\emptyset}\}$ and $\mathcal{A} \subseteq \mathbb{R}^q$ where q > 0.

Note: we follow the same approach that Goldsztejn et al.³

³Including ODE Based Constraints in the Standard CP Framework, CP10

Box-QCSDP as abstraction of QCSDP

Box-QCSDP

Let S be a differential system and $t_{\mathsf{end}} \in \mathbb{R}_+$ the time limit A Box-QCSDP is defined by

- a set of variables \mathcal{V} including *at least t*, a vector \mathbf{y}_0 , \mathbf{p} , \mathbf{u} We represent these variables by the vector \mathbf{v} ;
- an initial box [d] containing at least [0, t_{end}], [y₀], [u], and [p];
- a set of interval constraints $C = \{c_1, \ldots, c_e\}$ composed of predicates over sets, that is, constraints of the form

$$c_i \equiv Q \mathbf{v} \in [\mathbf{d}_i].[f_i](\mathbf{v}) \diamond lpha(\mathcal{A}), \qquad \forall 1 \leqslant i \leqslant e$$

with $Q \in \{\exists, \forall\}$, $[f_i] : \mathbb{IR}^{|\mathcal{V}|} \to \mathbb{IR}^q$ stands for non-linear arithmetic expressions defined over variables **v** and interval enclosure solution $[\mathbf{y}](t; \mathbf{y}_0, \mathbf{p}, \mathbf{u}) \equiv [\mathbf{y}](\mathbf{v}), \\ \diamond \in \{\subseteq, \cap_{\emptyset}\} \text{ and } \alpha \in \{\text{Hull}, \text{Int}\}$

A simple resolution algorithm

- 1. Solve ODE with validated numerical integration
- 2. Solve constraints using standard NSCP techniques

Box-QCSDP as abstraction of QCSDP

Abstraction using boxes is not so straightforward to preserve soundness, each possible constraints must be studied !

			$\alpha(\mathcal{A})$		
			$Int(\mathcal{A})$	$Hull(\mathcal{A})$	
	[g]	C	true	?	
		\supset	false	?	
		$\cap_{=\emptyset}$?	true	
		$\cap_{\neq \emptyset}$?	false	

Legend

- ?: no result implies guaranteed result on original formula
- true: abstract formula valid then the original one valid,

$$[g](\mathbf{v})\subset \mathsf{Int}(\mathcal{A})\Rightarrow g(\mathbf{v})\subset \mathcal{A}$$

• false: abstract formula not valid then the original one not valid,

$$\neg([g](\mathbf{v}) \cap_{\neq \emptyset} \operatorname{Hull}(\mathcal{A})) \Rightarrow \neg(g(\mathbf{v}) \cap_{\neq \emptyset} \mathcal{A})$$

DynIBEX: a Box-QCSDP solver with restrictions

Solving arbitrary quantified constraints is hard!

We focus on particular problems of robotics involving quantifiers

- Robust controller synthesis: $\exists u, \forall p, \forall y_0 + temporal constraints$
- \bullet Parameter synthesis: $\exists \textbf{p}, \, \forall \textbf{u}, \, \forall \textbf{y}_0 + temporal \ constraints$

• etc.

We also defined a set of temporal constraints useful to analyze/design robotic application.

Verbal property	QCSDP translation
Stay in ${\mathcal A}$	$orall t \in [0, \mathit{t}_{end}]$, $[\mathbf{y}](t, \mathbf{v}') \subseteq Int(\mathcal{A})$
In ${\cal A}$ at $ au$	$\exists t \in [0, t_{end}], [\mathbf{y}](t, \mathbf{v}') \subseteq Int(\mathcal{A})$
Has crossed $\mathcal{A}^{oldsymbol{st}}$	$\exists t \in [0, t_{end}], [\mathbf{y}](t, \mathbf{v}') \cap Hull(\mathcal{A}) \neq \emptyset$
Go out ${\mathcal A}$	$\exists t \in [0, t_{end}], [\mathbf{y}](t, \mathbf{v}') \cap Hull(\mathcal{A}) = \emptyset$
Has reached $\mathcal{A}^{oldsymbol{st}}$	$[\mathbf{y}](t_{end},\mathbf{v}')\capHull(\mathcal{A}) eq\emptyset$
Finished in ${\cal A}$	$[\textbf{y}](\textit{t}_{end}, \textbf{v}') \subseteq Int(\mathcal{A})$

*: shall be used in negative form

Simulation of a closed-loop system with safety

A simple dynamics of a car with a PI controller

$$\begin{pmatrix} \dot{y} \\ \dot{w} \end{pmatrix} = \begin{pmatrix} \frac{k_p(10.0-y)+k_iw-50.0y-0.4y^2}{m} \\ 10.0-y \end{pmatrix} \text{ with } m \in [990, 1010], k_p = 1440, k_i = 35$$

and a safety propriety

 $\forall t, y(t) \in [0, 11]$

Failure

 $y([0, 0.0066443]) \in [-0.00143723, 0.0966555]$

Simulation of a closed-loop system with safety property

```
#include "ibex.h"
```

using namespace ibex;

```
int main(){
 const int n = 2;
 Variable y(n);
 IntervalVector state(n);
 state[0] = 0.0; state[1] = 0.0;
 // Dynamique d'une voiture avec incertitude sur sa masse + PI
 Function ydot(y, Return ((1440.0 * (10.0 - y[0]) + 35.0 * y[1] - y[0] * (50.0 + 0.4 * y[0]))
                     / Interval (990, 1010),
                     10.0 - y[0]);
 ivp_ode vdp = ivp_ode(vdot, 0.0, state);
 simulation simu = simulation(\&vdp, 10.0, RK4, 1e-6);
 simu.run_simulation();
 // verification de surete
 IntervalVector safe(n);
 safe[0] = Interval(0.0, 11.0);
 bool flag = simu.stayed_in (safe);
 if (!flag) {
  std::cerr << "error safety violation" << std::endl:</pre>
 }
```

return 0;

Some experiments

Some experiments

Constraint Satisfaction Problems

Validated numerical integration

Differential constraint satisfaction problems

Some experiments

Experiment 1 – Tuning PI controller [SYNCOP'15]

A cruise control system two formulations:

• uncertain linear dynamics;

$$\dot{v} = \frac{u - bv}{m}$$

• uncertain non-linear dynamics

$$\dot{v} = \frac{u - bv - 0.5\rho C dA v^2}{m}$$

with

- *m* the mass of the vehicle
- *u* the control force defined by a PI controller
- bv is the rolling resistance
- $F_{drag} = 0.5\rho C dAv^2$ is the aerodynamic drag (ρ the air density, CdA the drag coefficient depending of the vehicle area)

Experiment 1 – Settings and algorithm

Embedding the PI Controller into the differential equations:

- $u = K_p(v_{set} v) + K_i \int (v_{set} v) ds$ with v_{set} the desired speed
- Transforming int_{err} = $\int (v_{set} v) ds$ into differential form

$$\frac{\inf_{err}}{dt} = v_{set} - v$$
$$\dot{v} = \frac{K_p(v_{set} - v) + K_i \inf_{err} - bv}{m}$$

Main steps of the algorithm

- Pick an interval values for K_p and K_i
- Simulate the closed-loop systems with K_p and K_i
 - if specification is not satisfied: bisect (up to minimal size) intervals and run simulation with smaller intervals
 - if specification is satisfied try other values of K_p and K_i

Experiment 1 – Paving results

Result of paving for both cases with

- $K_{\rho} \in [1, 4000]$ and $K_i \in [1, 120]$
- $v_{\rm set} = 10$, $t_{\rm end} = 15$, lpha = 2% and $\epsilon = 0.2$ and minimal size=1
- constraints: $y(t_{\textit{end}}) \in [r \alpha\%, r + \alpha\%]$ and $\dot{y}(t_{\textit{end}}) \in [-\epsilon, \epsilon]$

Non-linear case (CPU \approx 80 minutes)

Experiment 2 - Robust path planer

Enhancement of Box-RRT (Pepy et al.) with

- dedicated control law
- cost function to minimize distance (Box-RRT*)

 $\exists K > 0 \text{ and } \mathbf{u} \in \mathbb{U} \text{ such that} \\ \forall \mathbf{s}_0 \in \mathbb{S}_{\text{init}}, \ \forall \ \mathbf{s}(K\Delta t; \mathbf{s}_0) \in \mathbb{S}_{\text{goal}} \text{ and } \forall t \in [0, K\Delta t], \ \mathbf{s}(t; \mathbf{s}_0) \in \mathbb{S}_{\text{free}},$

Conclusion

DynIBEX is one **ingredient** of verification tools for cyber-physical systems. It can **handle uncertainties**, can **reason on sets of trajectories**.

Also applied on

- Controller synthesis of sampled switched systems [SNR'16]
- Parameter tuning in the design of mobile robots [MORSE'16]

Enhanced with

- methods to solve algebraic-differential equations [Reliable Computing'16]
- a contractor approach [SWIM'16]
- a Box-QCSDP framework [IRC'17]

Future work (a piece of)

- Pursue and improve cooperation with IBEX language
- Improve algorithm of validated numerical integration (e.g., sensitivity)
- SMT modulo ODE