Reinforcement Learning for CPS Safety Engineering

Sam Green, Çetin Kaya Koç, Jieliang Luo University of California, Santa Barbara

Motivations

Safety-critical duties desired by CPS?

- Autonomous vehicle control: UAV, passenger vehicles, delivery trucks
- Automatically responding to, or preventing, damage
- Industrial robot control for use around humans
- Large process automation
 - E.g., optimization of factory

Reinforcement Learning

Georgia Tech, <u>https://www.youtube.com/watch?v=f2at-cqaJMM</u>

Deepmind, https://arxiv.org/abs/1707.02286

Introduction to RL

- A computational approach to learning from interaction
 - Established in the 1980s
 - Objective is to take actions to maximize a reward (or minimize a cost)
 - Seen as a path toward Artificial General Intelligence
- RL is at the intersection between
 - Psychology
 - Control Theory
 - Computer Science/Al
- Resurgence with advent of deep learning methods

Advances in RL since 2015

	Method	Training Time	Mean	Median
2015	DQN	8 days on GPU	121.9%	47.5%
2015	Gorila	4 days, 100 machines	215.2%	71.3%
2015	D-DQN	8 days on GPU	332.9%	110.9%
2015	Dueling D-DQN	8 days on GPU	343.8%	117.1%
2015	Prioritized DQN	8 days on GPU	463.6%	127.6%
2016	A3C, FF	1 day on CPU	344.1%	68.2%
2016	A3C, FF	4 days on CPU	496.8%	116.6%
2016	A3C, LSTM	4 days on CPU	623.0%	112.6%

Table 1. Mean and median human-normalized scores on 57 Atari games using the human starts evaluation metric.

Terminology

- *Agent* The thing we are learning to control
- *Environment* All the factors affecting the agent
- Action Performed by agent in an attempt to affect change on the environment
- *Reward* Returned by the environment to the agent after the agent makes an action. Used to help the agent learn.
 - AKA the negative *cost*

Markov Decision Process

- What RL solves
- Environments where agent's decisions are only dependent on present
 - An object in flight
 - Self-driving car
 - Manufacturing process
 - Robot control
- It's not that the past doesn't matter, but the laws of physics guarantee certain things, e.g. momentum
- Methods also exist to solve approximate MDP

Example: Student Markov Chain

[http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/MDP.pdf]

RL for CPS Safety Engineering

- Interdisciplinary natures makes RL interesting for CPS engineering
 - AI, ML (Math, Statistics)
 - Mechanics design and simulation (ME, Physics, CS)
 - Programming and implementation (CS, EE)

Mountain Car Example

Canonical example: Mountain Car

- Agent is an underpowered car with 3 actions:
 - Backward, Neutral, Forward
- Reward := -1 per timestep
 - Implicit goal := Reach the flag as fast as possible
- State := x-pos and velocity

Model-Free Control via Policy-Based RL

- A simple physics model determines the behavior of car
 - Captures position of the car on the hill
 - Captures effect of limited engine power
- Using a physics model simplifies approach
 - Use an efficient traditional controller
- But in many scenarios the model is not available or too complex
 - Amazon package delivery drone
- Solve mountain car using sophisticated method as toy example
 - Directly train a neural network-based policy

RL Terminology and Notation

- S_t State of the environment at time t
 - x-axis position and velocity
- A_t Action taken by agent at time t
 - Backward, Neutral, Forward
- π The policy function; returns the next action to take. Stochastic in this example
- θ A parameter vector for the policy; i.e. the weights learned in a neural network

Putting everything together: $A_{t+1} \sim \pi_{\theta}(A_t, S_t) = P(A_t | S_t, \theta)$

The policy $\pi_{ heta}$

- π_{θ} is often approximated
- Deep neural networks are power for approximation
- We will use gradient ascent to optimize the DNN

The policy function π_{θ} , approximated by NN

- State information at time *t*:
 - Position and Velocity
- Action options at time *t*:
 - Forward acceleration
 - Neutral
 - Backward acceleration

Reward function

- At every time step take an action
 - Forward, neutral, backward
 - Each action has a reward of -1
 - Train agent to reach the flag in minimum time steps

Example: Markov Reward Process

[[]http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/MDP.pdf]

How to train the NN?

- Small networks can be effectively trained with genetic algorithms
- Genetic algorithms work poorly with large networks (parameter space is too large)
- Gradient-ascent optimization works with large parameter space

Monte-Carlo Policy Gradient (REINFORCE)

- Find DNN parameter vector θ such that π_{θ} maximizes the reward
- For every episode, until flag is reached
 - Get state information (position & velocity) from environment
 - Feed NN with state information
 - NN will output a probability for (F)orward, (N)eutral, and (B)ackward
 - Randomly select action F, N, and B (using the above probabilities)
 - Store the state information and action taken
- Once flag is reached
 - Assign the most reward to the last action ... least reward to the first action
 - Update θ s.t. actions made at the end are more probable

Monte-Carlo Policy Gradient

- Method leverages methods created for supervised learning
 - Inputs := the state information (position, velocity)
 - Predictions := forward, neutral, or backward action taken
 - Labels ("ground truth") := After the episode was over, assign most value to the last actions. Assign least value to the first actions
- Run many episodes, after each episode finishes (flag is reached) strengthen the network such that the last moves become more probable

Gradient-ascent

- Gradient algorithms find a local extremum
- At end of each episode, adjust each parameter in θ s.t. actions made near the end are strengthened
- How much and in which direction to move each parameter is determined by the backpropagation method

Episode Rewards

- Deep RL is usually slow to learn
- Transferring knowledge from one problem to another is difficult
- Reward function can be complex

Safety and Security Considerations

Safety and Security Considerations

- DNNs are black-box models
 - Possible to give an input which causes DNN to provide wild output
- Efforts to mitigate this limitation
 - E.g. Constrained Policy Optimization

Constrained Policy Optimization

- School-book RL specifies only the reward function
 - Problem: when an agent is learning, it may try anything
 - Potentially unsafe when training is in physical environment
- Constraints can be added to the objective function

Current Efforts

Developing RL for Quadcopter Control

- Good case study for complex autonomous CPS
 - Collision avoidance
 - Target tracking
 - Package delivery
- Using open source firmware and hardware

Using Microsoft AirSim for 1st-order learning

Conclusions

- RL is a generalizable method to tackle many CPS decision making problems
 - High-capacity models can make sophisticated decisions
- Good approach for CPS education, because of interdisciplinary nature
- Open problems when using black-box functions for safety applications

Questions?