
Reinforcement	Learning	for	
CPS	Safety	Engineering

Sam	Green,	Çetin Kaya	Koç,	Jieliang Luo
University	of	California,	Santa	Barbara



Motivations



Safety-critical	duties	desired	by	CPS?

• Autonomous	vehicle	control:	UAV,	passenger	vehicles,	delivery	trucks
• Automatically	responding	to,	or	preventing,	damage
• Industrial	robot	control	for	use	around	humans
• Large	process	automation
• E.g.,	optimization	of	factory



Reinforcement	Learning



Georgia	Tech,	https://www.youtube.com/watch?v=f2at-cqaJMM



Deepmind,	https://arxiv.org/abs/1707.02286



Machine	Learning

Supervised Unsupervised Reinforcement



Introduction	to	RL

• A	computational	approach	to	learning	from	interaction
• Established	in	the	1980s
• Objective	is	to	take	actions	to	maximize	a	reward	(or	minimize	a	cost)
• Seen	as	a	path	toward	Artificial	General	Intelligence

• RL	is	at	the	intersection	between	
• Psychology
• Control	Theory
• Computer	Science/AI

• Resurgence	with	advent	of	deep	learning	methods



[Mnih,	et	al.	Asynchronous	Methods	for	Deep	Reinforcement	Learning,	2016]

Advances	in	RL	since	2015

2015
2015
2015
2015
2015
2016
2016
2016



Terminology

• Agent – The	thing	we	are	learning	to	control
• Environment – All	the	factors	affecting	the	agent
• Action – Performed	by	agent	in	an	attempt	to	affect	change	on	the	
environment
• Reward – Returned	by	the	environment	to	the	agent	after	the	agent	
makes	an	action.	Used	to	help	the	agent	learn.
• AKA	the	negative	cost



[R.	Sutton,	and	A.	Barto.	Reinforcement	Learning:	An	Introduction.	2016]



Markov	Decision	Process

• What	RL	solves
• Environments	where	agent’s	decisions	are	only	dependent	on	present
• An	object	in	flight
• Self-driving	car
• Manufacturing	process
• Robot	control

• It’s	not	that	the	past	doesn’t	matter,	but	the	laws	of	physics	
guarantee	certain	things,	e.g.	momentum
• Methods	also	exist	to	solve	approximate	MDP



Example:	Student	Markov	Chain

[http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/MDP.pdf]

Start	here	at	the	beginning
of	each	episode



RL	for	CPS	Safety	Engineering

• Interdisciplinary	natures	makes	RL	interesting	for	CPS	engineering
• AI,	ML	(Math,	Statistics)
• Mechanics	design	and	simulation	(ME,	Physics,	CS)
• Programming	and	implementation	(CS,	EE)



Mountain	Car	Example



• Agent	is	an	underpowered	car	with	3	actions:
• Backward,	Neutral,	Forward

• Reward	:=	-1	per	timestep
• Implicit	goal	:=	Reach	the	flag
as	fast	as	possible

• State	:=	x-pos and	velocity

Canonical	example:	Mountain	Car

[R.	Sutton,	and	A.	Barto.	Reinforcement	Learning:	An	Introduction.	2016]



Model-Free	Control	via	Policy-Based	RL
• A	simple	physics	model	determines	the	behavior	of	car
• Captures	position	of	the	car	on	the	hill
• Captures	effect	of	limited	engine	power

• Using	a	physics	model	simplifies	approach
• Use	an	efficient	traditional	controller

• But	in	many	scenarios	the	model	is	not	available	or	too	complex
• Amazon	package	delivery	drone

• Solve	mountain	car	using	sophisticated	method	as	toy	example
• Directly	train	a	neural	network-based	policy





RL	Terminology	and	Notation

• 𝑆𝑡 – State	of	the	environment	at	time	𝑡
• x-axis	position	and	velocity

• 𝐴𝑡 – Action	taken	by	agent	at	time	𝑡
• Backward,	Neutral,	Forward

• 𝜋 – The	policy	function;	returns	the	next	action	to	take.	Stochastic	in	this	
example
• 𝜃	– A	parameter	vector	for	the	policy;	i.e.	the	weights	learned	in	a	neural	
network

Putting	everything	together:
𝐴'()~	𝜋𝜃 𝐴𝑡,	𝑆𝑡 = 𝑃(𝐴𝑡|𝑆𝑡, 𝜃)



The	policy	𝜋𝜃
• 𝜋𝜃 is	often	approximated
• Deep	neural	networks	are	power	for	approximation
• We	will	use	gradient	ascent	to	optimize	the	DNN



The	policy	function	𝜋𝜃,	approximated	by	NN

• State	information	at	time	𝑡:
• Position	and	Velocity

• Action	options	at	time	𝑡:
• Forward	acceleration
• Neutral
• Backward	acceleration

Position
Velocity

Input Output

𝜋𝜃
Prob(F)
Prob(N)
Prob(B)



Reward	function
• At	every	time	step	take	an	action
• Forward,	neutral,	backward
• Each	action	has	a	reward	of	-1	
• Train	agent	to	reach	the	flag	in	minimum
time	steps



Example:	Markov	Reward	Process

[http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/MDP.pdf]

Start	here	at	the	beginning
of	each	episode



How	to	train	the	NN?

• Small	networks	can	be	effectively	trained	with
genetic	algorithms
• Genetic	algorithms	work	poorly	with	large	
networks	(parameter	space	is	too	large)
• Gradient-ascent	optimization	works
with	large	parameter	space Position

Velocity

Prob(F)
Prob(N)
Prob(B)

𝜋𝜃



Monte-Carlo	Policy	Gradient	(REINFORCE)

• Find	DNN	parameter	vector	𝜃 such	that	𝜋𝜃 maximizes	the	reward
• For	every	episode,	until	flag	is	reached
• Get	state	information	(position	&	velocity)	from	environment
• Feed	NN	with	state	information
• NN	will	output	a	probability	for	(F)orward,	(N)eutral,	and	(B)ackward
• Randomly	select	action	F,	N,	and	B	(using	the	above	probabilities)
• Store	the	state	information	and	action	taken

• Once	flag	is	reached
• Assign	the	most	reward	to	the	last	action	…	least	reward	to	the	first	action
• Update	𝜃 s.t. actions	made	at	the	end	are	more	probable

[http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html]



Monte-Carlo	Policy	Gradient

• Method	leverages	methods	created	for	supervised	learning
• Inputs	≔ the	state	information	(position,	velocity)
• Predictions	:=	forward,	neutral,	or	backward	action	taken
• Labels	(“ground	truth”)	:=	After	the	episode	was	over,	assign	most	value	to	
the	last	actions.	Assign	least	value	to	the	first	actions

• Run	many	episodes,	after	each	episode	finishes	(flag	is	reached)	
strengthen	the	network	such	that	the	last	moves	become	more	
probable

[http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html]



Gradient-ascent

• Gradient	algorithms	find	a	
local	extremum
• At	end	of	each	episode,	adjust	each
parameter	in	𝜃 s.t. actions	made	near
the	end	are	strengthened
• How	much	and	in	which	direction	to
move	each	parameter	is	determined
by	the	backpropagation	method

𝜃1
𝜃2

Episode	Rewards





Caveats

• Deep	RL	is	usually	slow	to	learn

• Transferring	knowledge	from	one	problem	to	another	is	difficult

• Reward	function	can	be	complex



Safety	and	Security	Considerations





Safety	and	Security	Considerations

• DNNs	are	black-box	models
• Possible	to	give	an	input	which	causes	DNN	to	provide	wild	output

• Efforts	to	mitigate	this	limitation
• E.g.	Constrained	Policy	Optimization



Constrained	Policy	Optimization

• School-book	RL	specifies	only	the	reward	function
• Problem:	when	an	agent	is	learning,	it	may	try	anything
• Potentially	unsafe	when	training	is	in	physical	environment

• Constraints	can	be	added	to	the	
objective	function

[Achiam et	al.	“Constrained	Policy	Optimization”,	2017]



Current	Efforts



Developing	RL	for	Quadcopter	Control
• Good	case	study	for	complex	autonomous	CPS
• Collision	avoidance
• Target	tracking
• Package	delivery

• Using	open	source
firmware	and	
hardware



Using	Microsoft	AirSim for	1st-order	learning

[S.	Shah	et	al.	AirSim:	High-Fidelity	Visual	and	Physical	Simulation	for	Autonomous	Vehicles.	2017.]



Conclusions

• RL	is	a	generalizable	method	to	tackle	many	CPS	decision	making	
problems
• High-capacity	models	can	make	sophisticated	decisions

• Good	approach	for	CPS	education,	because	of	interdisciplinary	nature

• Open	problems	when	using	black-box	functions	for	safety	applications



Questions?


