
Accelerators	for	
Cyber-Physical	Systems

Sam	Green,	İhsan	Çiçek and	Çetin Kaya	Koç
University	of	California,	Santa	Barbara



Introduction



Capabilities	desired	in	CPS?

• Interact	with	physical	world
• Networked
• Potentially	low-power
• Resistant	to	environment
• Perform	safety-critical	tasks
• Cryptographically	secure
• Autonomous
• Inexpensive	



Benefits	from	Moore’s	Law	are	over

• Since	about	1970,	could	safely	assume	the	number	of	transistors/$	
would	exponentially increase	every	2	years
• What	can	be	done	today	for	$X	will	be	doable	in	2	years	for	$X/2	
dollars

• Accelerators	(aka	ASICs)	existed	during	this	time,	but	
CPU/µcontroller/DSP-based	approaches	dominated
• No	longer	the	case…



[http://www.economist.com/node/21693710/sites/all/modules/custom/ec_essay]



Other	methods to	increase	performance/$?

• Approximate	computing	

• Analog	computing

• Neuromorphic	computing



Approximate	Computing

• Selective	approximation	can	bring
disproportionate	gains	in	efficiency
• 5%	accuracy	loss	gives	
• 50x	less	energy	for	k-means	clustering	
• 26x	less	energy	for	neural	network	
evaluation

[S.	Mittal.	A	Survey	of	Techniques	for	Approximate	Computing.	ACM	Comput.	Surv.,	vol.	48,	no.	4,	p.	62:1–62:33,	Mar.	2016.]
[https://upload.wikimedia.org/wikipedia/commons/b/b7/3-bit_resolution_analog_comparison.png]



Analog	Computing	

• Physical	world	is	a	computational	device
• E.g.	Use	KVL	and	KCL	to	approximate

activation	function	for	analog	neuron
• 4X	speedup,	20X	less	energy,	2.4%	higher

error	across	benchmarks	vs.	approximate
digital	neuron

[St.	Amant et	al.	General-purpose	Code	Acceleration	with	Limited-precision	Analog	Computation.	ISCA,	2014]



Neuromorphic	Computing

• Non-von	Neumann,	neuro-bio	inspired	
architectures

• Community	sees	biological	circuits	as	the	
ultimate	in	efficiency

[https://upload.wikimedia.org/wikipedia/commons/4/4a/Action_potential.svg]



Accelerators	for	Deep	Learning	Inference

[A.	Krizhevsky et	al.	ImageNet	Classification	with	Deep	Convolutional	Neural	Networks.	NIPS	25,	2012,	pp.	1097–1105.]



Motivation	for	deep	learning	accelerators

• Edge	computing	applications
• CPS,	IoT,	Mobile
• Power	&	compute	is	restriction

• Datacenter	applications
• In	2013,	U.S.	datacenters	consumed	the	equivalent	output	of	34	large	coal-
fired	power	plants

[https://www.nrdc.org/experts/pierre-delforge/new-study-americas-data-centers-consuming-and-wasting-growing-amounts-energy]



[https://www.slideshare.net/JenAman/large-scale-deep-learning-with-tensorflow]



Google’s	Tensor	Processing	Unit

• General	purpose	deep	neural	network	accelerator
• LSTM
• MLP
• CNN

• 15X	– 30X	faster	than	Nvidia K80	GPU
• Performance/Watt	30X	– 80X

[Jouppi et	al.	In-Datacenter	Performance	Analysis	of	a	Tensor	Processing	Unit.	ISCA,	2017.]



Google’s	Tensor	Processing	Unit

• Uses	8-bits	of	precision
• Systolic	Array	– 256-element	
multiply-accumulate	operation	
moves	through	matrix	as	a	
diagonal	wave	front

[Jouppi et	al.	In-Datacenter	Performance	Analysis	of	a	Tensor	Processing	Unit.	ISCA,	2017.]



Example	of	Wave	Front	(2	neurons	w/3	weights)	

[https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu]
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Deep	Neural	Network	Optimizations

[M.	Shafiee et	al.	StochasticNet:	Forming	Deep	Neural	Networks	via	Stochastic	Connectivity.	2015]



Traditional	DNN	evaluation	is	expensive

• DNNs	perform	many	multiply-accumulate	(MAC)	followed	by	
non-linear	function	evaluation
• Expensive	floating-point	MAC	traditionally	used



[V.	Sze	et	al.	Efficient	Processing	of	Deep	Neural	Networks:	A	Tutorial	and	Survey.	ISCA,	2017.]

MACs	used	in	popular	network	architectures



Recent	DNN	inference optimizations

• Community	focused	on	inference	because	learning	the	parameters	is	
much	more	complicated
• Quantization	(16,	8,	4,	2	bits	per	value)
• Weight	binarization
• Input	and	weight	binarization
• Pruning/compression



Terminology

• Forward	propagation	=	forward	pass	=	evaluation	=	inference	=	
running	the	network
• DNN	is	a	non-linear	function	approximator	ŷ	=	f(𝒙)

• Backpropagation	algorithm
• f(𝒙) is	a	differentiable	multivariate	function
• Gradient	descent	is	used	to	locate	local	minima.	Requires	forward	
propagation,	repeated	application	of	chain-rule,	and	book	keeping



Example:	BinaryConnect Algorithm

• 2015	– One	of	first	efforts	to	apply	approximate	computing	to	DNN
• Applies	only	to	forward	pass
• Eliminates	all	multiplication
• Still	requires	F.P.	addition	and	F.P.	activation

[M.Courbariaux et	al.	BinaryConnect:	Training	Deep	Neural	Networks	with	binary	weights	during	propagations.	2015.]

b ∈ ℝ
1



Example:	BinaryConnect Algorithm

Intuition: Temporarily	binarize	weights	during	forward	propagation,	
keep	track	of	full-precision	weights	during	backpropagation.
Data: Full-precision	weight	𝑤4 ∈ 	ℝ
Result:	Binarized	weight	𝑤45 ∈ −1,1
if	𝑤4 < 0 then
𝑤45 = −1

else
𝑤45 = 1



Example:	BinaryConnect Algorithm
Data: (inputs,	targets),	previous	parameters	𝑤:;< (weights)	and	𝑏:;< (biases),	and	
learning	rate	η
Result:	Updated	(full-precision)	parameters	𝑤: and	𝑏:
1.	Forward	propagation

𝑤5 = binarize	(𝑤:;<)
For	𝑘 = 1 to	𝐿,	compute	𝑎B knowing	𝑎B;<,	𝑤5 and	𝑏:;<

2.	Backward	propagation
Initialize	output	layer’s	activations	gradient	 CD

CEF

For	𝑘 = 𝐿 to	2,	compute	 CD
CEGHI

	knowing	 CD
CEG

and	𝑤𝑏

3.	Parameter	update

Compute	 CD
CJ5

and	 CD
C5KHI

	

𝑤: = 	𝑤:;< − η
CD
CJ5

	 and				𝑏: = 	𝑏:;< 	− η
CD

C5KHI



BinaryConnect Toy	Example

𝑦" = 𝜎(𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏)

Task:	Learn	to	predict	class	(blue	or	red)
using	binary	weights:

(𝑥1)

(𝑥
2)



BinaryConnect Toy	Example
BinaryConnect approaches	<10%	of	full-precision	method



Hardware	Implementations	of
Deep	Neural	Networks



A	framework	approach	to	HW	DNNs
• Quantization	is	attractive	for	efficiency	reasons
• How	much	quantization	will	problem	tolerate?

• Optimal	DNN	architecture	discovery	is	compute-intensive
• Experiment	with	different	DNN	architectures	(MLP,	LSTM,	CNN)	

• Performance	requirements	needed	ahead	of	implementation	
• Min.	inference/sec,	max	clock	speed,	power	budget,	area	
constraints

• Custom	software	is	required	to	build	synthesizable	HDL
• Based	on	the	DNN	architecture	and	performance	requirements

• Once	we	have	the	HDL	code,	the	rest	is	standard	vendor	HW	flow



A	framework	approach	to	HW	DNNs
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Opportunities	for	research	and	education

• Analog	computing	still	has	many	contributions

• Need	research	on	failure	modes	of	DNNs



Historical	applications	of	analog	computing
• Power	engineering: Network	simulation,	power	plant	development
• Automation: Closed	loop	control,	servo	systems
• Process	control:Mixing	tanks,	evaporators,	distillation	columns
• Transport	systems: Steering	systems,	traffic-flow	simulation,	ship	
simulation
• Aeronautical	engineering: Rotor	blades,	guidance	and	control
• Rocketry: Rocket	motor	simulation,	craft	maneuvers,	craft	simulation

[B.	Ulmann.	Analog	Computing.	2013]

Potential	for	hybrid	systems	with	digital	and	analog	components



Model	interpretation	research

• Aim	is	to	understand	why	a	model	makes	the	decision
• Example:	a	doctor	would	not	blindly	operate	because	of	model	
prediction

• Example:	“Why	did	the	car	swerve	at	this	moment	in	time?”

[Ribeiro	et	al.	“’Why	Should	I	Trust	You?’	Explaining	the	Predictions	of	Any	Classifier”,	KDD2016]





Questions?


