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Introduction



Capabilities desired in CPS?

* Interact with physical world
* Networked

* Potentially low-power

* Resistant to environment

e Perform safety-critical tasks
* Cryptographically secure

* Autonomous

* Inexpensive



Benefits from Moore’s Law are over

* Since about 1970, could safely assume the number of transistors/S
would exponentially increase every 2 years
* What can be done today for SX will be doable in 2 years for $X/2
dollars
* Accelerators (aka ASICs) existed during this time, but
CPU/ucontroller/DSP-based approaches dominated
* No longer the case...



I Stuttering

| Chipintroduction
® Transistors per chip, ‘000 ® Clock speed (max), MHz ® Thermal design power*, w

dates, selected

Transistors bought per $, m

Pentium 4 Xeon Core 2 Duo

20 : Log scale
15 Pentium III 107
10 Pentium II
O
5 Pentium ® ® 5
I | | | | I | 0 10
200204 06 08 10 12 15 486
8086 386
10°
4004
10

107
| L L L L T 117 "V 1T 1T T L L L] rr T 1 v 7 T 17T 1 IR I R B (R A A B | |

1970 75 80 85 90 95 2000 05 10 15

Sources: Intel; press reports; Bob Colwell; Linley Group; IB Consulting; The Economist *Maximum safe power consumption

[http://www.economist.com/node/21693710/sites/all/modules/custom/ec_essay]



Other methods to increase performance/S?

* Approximate computing
* Analog computing

* Neuromorphic computing



Approximate Computing

 Selective approximation can bring
disproportionate gains in efficiency
* 5% accuracy loss gives
* 50x less energy for k-means clustering
» 26x less energy for neural network
evaluation

[S. Mittal. A Survey of Techniques for Approximate Computing. ACM Comput. Surv., vol. 48, no. 4, p. 62:1-62:33, Mar. 2016.]
[https://upload.wikimedia.org/wikipedia/commons/b/b7/3-bit_resolution_analog_comparison.png]




Analog Computing

* Physical world is a computational device

 E.g. Use KVL and KCL to approximate
activation function for analog neuron

 4X speedup, 20X less energy, 2.4% higher
error across benchmarks vs. approximate
digital neuron

[St. Amant et al. General-purpose Code Acceleration with Limited-precision Analog Computation. ISCA, 2014]



Neuromorphic Computing

potential
+40
* Non-von Neumann, neuro-bio inspired S
: E
architectures v 0
 Community sees biological circuits as the <
ultimate in efficiency cc|Threshoia /. Fails
- initiations
A Resting state

_70 T---
Stimulus Refractory
period

0 1 2 3 4 5
Time (ms)

[https://upload.wikimedia.org/wikipedia/commons/4/4a/Action_potential.svg]



Accelerators for Deep Learning Inference
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[A. Krizhevsky et al. ImageNet Classification with Deep Convolutional Neural Networks. NIPS 25, 2012, pp. 1097-1105.]



Motivation for deep learning accelerators

* Edge computing applications
* CPS, loT, Mobile
* Power & compute is restriction

e Datacenter applications
* In 2013, U.S. datacenters consumed the equivalent output of 34 large coal-
fired power plants

[https://www.nrdc.org/experts/pierre-delforge/new-study-americas-data-centers-consuming-and-wasting-growing-amounts-energy]



Growing Use of Deep Learning at Google
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[https://www.slideshare.net/JenAman/large-scale-deep-learning-with-tensorflow]

Across many

products/areas:
Android
Apps
drug discovery
Gmail
Image understanding
Maps
Natural language
understanding
Photos
Robotics research
Speech
Translation
YouTube
... many others ...



Google’s Tensor Processing Unit

* General purpose deep neural network accelerator
* LSTM
e MLP
* CNN

e 15X — 30X faster than Nvidia K80 GPU
* Performance/Watt 30X — 80X

[Jouppi et al. In-Datacenter Performance Analysis of a Tensor Processing Unit. ISCA, 2017.]



Google’s Tensor Processing Unit
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[Jouppi et al. In-Datacenter Performance Analysis of a Tensor Processing Unit. ISCA, 2017.]



Example of Wave Front (2 neurons w/3 weights)
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[https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu]
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Example of Wave Front (2 neurons w/3 weights)
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Example of Wave Front (2 neurons w/3 weights)
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Example of Wave Front (2 neurons w/3 weights
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Deep Neural Network Optimizations
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[M. Shafiee et al. StochasticNet: Forming Deep Neural Networks via Stochastic Connectivity. 2015]



Traditional DNN evaluation is expensive

* DNNs perform many multiply-accumulate (MAC) followed by
non-linear function evaluation

* Expensive floating-point MAC traditionally used




MACs used in popular network architectures

Metrics LeNet AlexNet Overfeat VGG GooglLeNet ResNet
5 fast 16 vl 50
Top-5 errorI n/a 16.4 14.2 7.4 6.7 53
Top-5 error (single crop)Jr n/a 19.8 17.0 8.8 10.7 7.0
Input Size 2828 227 %227 231x231 224 x224 224 %224 224 x224
# of CONV Layers 2 5 5 13 57 53
Depth in # of CONV Layers 2 5 5 13 21 49
Filter Sizes 5 3,5,11 3,5,11 3 1,3,5,7 1,3,7
# of Channels 1, 20 3-256 3-1024 3-512 3-832 3-2048
# of Filters 20, 50 96-384 96-1024 64-512 16-384 64-2048
Stride 1 1,4 1,4 1 1,2 1,2
Weights 2.6k 2.3M 16M 14.7M 6.0M 23.5M
MACs 283k 666M 2.67G 15.3G 1.43G 3.86G
# of FC Layers 2 3 3 3 1 1
Filter Sizes 1.4 1,6 1,6,12 1,7 | |
# of Channels 50, 500 256-4096 1024-4096 512-4096 1024 2048
# of Filters 10, 500 | 1000-4096 | 1000-4096 | 1000-4096 1000 1000
Weights 58k 58.6M 130M 124M IM 2M
MACs 58k 58.6M 124M 130M IM 2M
Total Weights 60k 61M 146M 138M ™ 25.5M
Total MACs 341k 724M 2.8G 15.5G 1.43G 3.9G

[V. Sze et al. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. ISCA, 2017.]




Recent DNN inference optimizations

 Community focused on inference because learning the parameters is
much more complicated
* Quantization (16, 8, 4, 2 bits per value)
* Weight binarization
* Input and weight binarization
* Pruning/compression



Terminology

* Forward propagation = forward pass = evaluation = inference =
running the network

* DNN is a non-linear function approximator y = f(x)

* Backpropagation algorithm
 f(x) is a differentiable multivariate function

* Gradient descent is used to locate local minima. Requires forward
propagation, repeated application of chain-rule, and book keeping



Example: BinaryConnect Algorithm

e 2015 — One of first efforts to apply approximate computing to DNN

* Applies only to forward pass

* Eliminates all multiplication
* Still requires F.P. addition and F.P. activation

[M.Courbariaux et al. BinaryConnect: Training Deep Neural Networks with binary weights during propagations. 2015.]



Example: BinaryConnect Algorithm

Intuition: Temporarily binarize weights during forward propagation,
keep track of full-precision weights during backpropagation.

Data: Full-precision weight w; € R
Result: Binarized weight w;;, € {—1,1}

if w; < 0 then
Wi = —1
else

Wib=1



Example: BinaryConnect Algorithm

Data: (inputs, targets), previous parameters w;_; (weights) and b;_; (biases), and
learning rate n

Result: Updated (full-precision) parameters w; and b;
1. Forward propagation

wyp, = binarize (Wy_1)

For k = 1to L, compute a; knowing a;_1, wp and b;_4
2. Backward propagation

T ) N : OE
Initialize output layer’s activations gradient P
L

: OE
knowing — and w,

For k = L to 2, compute Gar_ S

3. Parameter update

OE and OE
ow abt_l

OE OE
and by = by_1 — 7
Obt—q

Compute
b

W = Wi _Tlaw
b



BinaryConnect Toy Example

Two informative features, one cluster per class

Task: Learn to predict class (blue or red)

:5 3 using binary weights:
S y =oa(xw,; + x,w, + b)
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BinaryConnect Toy Example

BinaryConnect approaches <10% of full-precision method
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Hardware Implementations of
Deep Neural Networks



A framework approach to HW DNNs

* Quantization is attractive for efficiency reasons

* How much quantization will problem tolerate?
* Optimal DNN architecture discovery is compute-intensive

* Experiment with different DNN architectures (MLP, LSTM, CNN)
* Performance requirements needed ahead of implementation

* Min. inference/sec, max clock speed, power budget, area

constraints

e Custom software is required to build synthesizable HDL

* Based on the DNN architecture and performance requirements
* Once we have the HDL code, the rest is standard vendor HW flow



A framework approach to HW DNNs

Simulation and Training

Neural Hardware
Network Design
Parameters Parameters

Neural Network Generator
FPGA Vendor Framework
FPGA Hardware




Accelerators for
Cyber-Physical Systems



Opportunities for research and education

* Analog computing still has many contributions

* Need research on failure modes of DNNs



Historical applications of analog computing

* Power engineering: Network simulation, power plant development

* Automation: Closed loop control, servo systems

* Process control: Mixing tanks, evaporators, distillation columns

* Transport systems: Steering systems, traffic-flow simulation, ship
simulation

* Aeronautical engineering: Rotor blades, guidance and control

* Rocketry: Rocket motor simulation, craft maneuvers, craft simulation

Potential for hybrid systems with digital and analog components

[B. Ulmann. Analog Computing. 2013]



Model interpretation research

* Aim is to understand why a model makes the decision
* Example: a doctor would not blindly operate because of model

prediction
/ sneeze | U Explainer | sneeze |
— weight (LIME)
\ headache | headache |
no fatigue no fatigue
age "r"’
Model Data and Prediction Explanation Human makes decision

* Example: “Why did the car swerve at this moment in time?”

[Ribeiro et al. ““Why Should | Trust You?’ Explaining the Predictions of Any Classifier”, KDD2016]



Cyber-Physical

/ Security

Analog Rese&arch Digital
Computing Education Computing

\ Hybrid

Computing



Questions?



