

Exceptional service in the

national

interest

Extended Math Programming as a framework for CPS models and analysis

John D. Siirola and Carl D. Laird

Discrete Math & Optimization (1464) Center for Computing Research Sandia National Laboratories Albuquerque, NM USA

CPS Ed Workshop, Paris, France 17 July 2017

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2017-7362 C

Summary

- While not a "Grand Unifying Theory" model of CPS systems, Extended Math Programming is a useful paradigm for modeling and analyzing CPS systems
 - What do I mean by "Extended Math Programming"
 - Math programming
 - Analysis workflows
 - Model transformations
 - Extensions to Math Programming most relevant to CPS
 - Generalized Disjunctive Programming (GDP)
 - Dynamic systems (DAEs)
 - Stochastic programming
 - CPS Applications
 - Power grid operations and modeling
 - Computational approaches to Game Theory (for MTD)

Siirola and Laird

What is optimization?

What is optimization?

- Finding the best answer!
 - "What is the lowest spot on the earth?"
 "-39,944 ft"
- Finding the *inputs* that give me the best answer!
 - "Where is the lowest spot on the earth?"
 "Challenger Deep, Mariana Trench"
- Finding the valid inputs that give me the best answer!
 - "Where is the lowest dry spot on earth?"
 "The Dead Sea shoreline (-1391 ft)"

 $\arg\min_{x} f(x)$

$$arg \min_{x} f(x)$$

s.t. $g(x) \le 0$
 $h(x) = 0$

 $\min_{x} x$

Constrained Optimization Models

- Wandering around in the real world, looking for the lowest spot is expensive, time-consuming, and error-prone
- We would rather work with a *model* of the real world
 - Represent what we know about the problem in a usable form
 - Incorporate assumptions and simplifications
 - Be both tractable and valid
 - (although these are often contradictory goals)
- *Mathematical Programming* is a convenient modeling paradigm:

$$\arg\min_{x} f(x)$$

s.t. $g(a, x) \le 0$
 $h(a, x) = 0$

...but the details of *f*, *g*, and *h* dramatically impact the optimization algorithm!

Supports data agnostic modelling

The universe of "math programming"

Siirola and Laird

What's the problem with Math Programming?

$$\begin{split} \text{Minimize}: & \sum_{t} \sum_{g} \left(c_g P_{g0t} + c_g^{SU} v_{gt} + c_g^{SD} w_{gt} \right) \\ \text{S.t.} \quad \theta^{\min} \leq \theta_{nct} \leq \theta^{\max}, \quad \forall n, c, t \\ & \sum_{\forall k(n,.)} P_{kct} - \sum_{\forall k(.,n)} P_{kct} + \sum_{\forall g(n)} P_{g0t} = d_{nt}, \\ & \forall n, \quad c = 0, \text{ transmission contingency states } c, t \\ & \sum_{\forall k(n,.)} P_{kct} - \sum_{\forall k(.,n)} P_{kct} + \sum_{\forall g(n)} P_{gct} = d_{nt}, \\ & \forall n, \text{ generator contingency states } c, t \\ & P_{kc} N 1_{kc} z_{kt} \leq P_{kct} \leq P_{kc}^{\max} N 1_{kc} z_{kt}, \quad \forall k, c, t \\ & B_k(\theta_{nct} - \theta_{mct}) - P_{kct} + (2 - z_{kt} - N 1_{kc})M_k \geq 0, \quad \forall k, c, t \\ & B_k(\theta_{nct} - \theta_{mct}) - P_{kct} - (2 - z_{kt} - N 1_{kc})M_k \geq 0, \quad \forall k, c, t \\ & P_g^{\min} N 1_{gc} u_{gt} \leq P_{gct} \leq P_g^{\max} N 1_{gc} u_{gt}, \quad \forall g, c, t \\ & v_{g,t} - w_{g,t} = u_{g,t} - u_{g,t-1}, \quad \forall g, t \\ & \sum_{q=t-UT_g+1}^{t} v_{g,q} \leq u_{g,t}, \quad \forall g, t \in \{UT_g, \dots, T\} \\ & P_{g0t} - P_{g0,t-1} \leq R_g^+ u_{g,t-1} + R_g^{SU} v_{g,t}, \quad \forall g, t \\ & P_{g0,t-1} - P_{g0,t} \leq R_g^- u_{g,t} + R_g^{SD} w_{g,t}, \quad \forall g, t \\ & P_{g0,t} N 1_{gc} - P_{gct} \leq R_g^-, \quad \forall g, c, t \\ & P_{g0,t} N 1_{gc} - P_{gct} \leq R_g^-, \quad \forall g, c, t \\ & D_{g0,t} N 1_{gc} - P_{gct} \leq R_g^-, \quad \forall g, c, t \\ & 0 \leq v_{g,t} \leq 1, \quad \forall g, t \\ & 0 \leq w_{g,t} \leq 1, \quad \forall g, t \\ & 0 \leq w_{g,t} \leq 1, \quad \forall g, t \\ & u_{g,t} \in \{0,1\}, \quad \forall g, t \\ \end{split}$$

- The MP "toolbox"
 - +, -, ×, ÷
 - sin, cos, tan, etc.
 - y^x , e^x , $\log_{10}(x)$, $\ln(x)$
 - (functions in C²)

Hedman, et al., "Co-Optimization of Generation Unit Commitment and Transmission Switching With N-1 Reliability," *IEEE Trans Power Systems*, 25(2), pp.1052-1063, 2010

The previous slide is a real model...

- (In the US) Sequential markets (run by ISO/RTO):
 - "Unit commitment" (UC) / "Day-ahead Market" (DAM)
 - MIP run ~10 hours before the start of a day
 - Sets on/off state for all generator units hourly for 24 hours
 - "Reliability Unit Commitment" (RUC)
 - MIP run ~8 hours before the start of the day
 - Commits additional generators to meet spinning reserve and reliability (N-1 robustness) requirements
 - "Economic Dispatch" (ED) / "Security-constrained ED" (SCED)
 - "Real-time" markets: LP run hourly / every 5 minutes
 - Set generation levels, prices to meet realized demand
- Can switching lines on/off improve resilience / reduce cost?
- Problem scale
 - 100's 1000's of buses; 2-3x lines

The Challenge: MP is dense and subtle

 $u_{g,t} \in \{0,1\}, \quad \forall \, g,t \tag{16}$

Hedman, et al., "Co-Optimization of Generation Unit Commitment and Transmission Switching With N-1 Reliability," *IEEE Trans Power Systems*, 25(2), pp.1052-1063, 2010

The Challenge: MP is dense and subtle

Hedman, et al., "Co-Optimization of Generation Unit Commitment and Transmission Switching With N-1 Reliability," *IEEE Trans Power Systems*, 25(2), pp.1052-1063, 2010 Sandia

Sidebar: What do these have in common?

$$a = b + c$$

$$b \le M \cdot y$$

$$c \le M(1 - y)$$

$$x - 3 = c - b$$

$$b \ge 0$$

$$c \ge 0$$

$$y \in \{0,1\}$$

$$a = b + c$$

$$x - 3 = c - b$$

$$b \ge 0 \perp c \ge 0$$

$$a = \frac{2(x - 3)}{1 + e^{-\frac{x - 3}{h}}} - x + 3$$

Siirola and Laird

Sidebar: What do these have in common?

If we mean "a = abs(x - 3)", why don't we *write* that in our models???

Sandia

National

A new solution workflow

- Model Transformations: Projecting problems to problems
 - Project from one problem space to another
 - Standardize common reformulations or approximations
 - Enables "Extended Math Programming"^[1]
 - Develop new modeling constructs not supported by solvers
 - (Automatically) Convert these "unoptimizable" modeling constructs into equivalent optimizable forms

[1] - Ferris, et al. "An extended mathematical programming framework". *Computers & Chemical Engineering* 33(12) 2009.

- Ferris, et al. (2009)
 - Modeling framework (domain-specific language) built on GAMS
 - Adds support for "higher level" constructs
 - Complementarity conditions, Variational inequalities, Bilevel problems, Disjunctive programming
 - Constructs are annotated through a separate input file
 - Interfaces to specialized solvers or provides *automated reformulations* for standard solvers
- Alternatively, EMP concepts could be implemented through an *object-oriented* framework

Pyomo: optimization modeling in Python

Extended Math Programming for CPS

Sandia National Laboratories

- Key (CPS) modeling needs
 - Modularity and composability
 - Continuous and discrete (logic-based) models

- Continuous dynamics (physical systems)
- Stochastic models / uncertainty quantification

- EMP capabilities
 - Hierarchical model definitions
 - Complementarity conditions
 - Generalized Disjunctive Programming (GDP)
 - (Discretized) systems of differential-algebraic equations (DAE)
 - Stochastic programming / design under uncertainty

Block-oriented modeling

- "Blocks"
 - Collections of model components
 - Variable, Parameter, Set, Constraint, etc.
 - Blocks may be arbitrarily nested
- Why blocks?
 - Support reusable modeling components
 - Express distinctly modeled concepts as distinct objects
 - Manipulate modeled components as distinct entities
 - Explicitly expose model structure (e.g., for decomposition)
 - Enables transformations and component namespaces
- Prior art
 - Ubiquitous in the simulation community
 - Rare in Math Programming environments
 - *Notable exceptions:* ASCEND, JModelica.org

Structured modeling with blocks

Capture connected block structure, e.g., network flow

- Blocks interface through *connectors* (group of variables)
- Block implementation independent of network definition

<u>Domain</u>	<u>Node</u>	<u>Arc</u>	Connector Vars
Fluid flow	Mass balance	Pressure Drop	Pressure; Volumetric flow
AC Power flow	KCL	Active power transfer; Reactive power transfer	Phase angle; Active power flow; Reactive power flow

Generalized disjunctive programming

- Disjunctions: selectively enforce sets of constraints
 - Sequencing decisions:
 - Switching decisions:
 - Alternative selection:

- x ends before y or y ends before x
- a process unit is built or not
- selecting from a set of pricing policies
- Implementation: leverage Pyomo "blocks"
 - Disjunct:
 - Block of Pyomo components
 - (Variable, Parameter, Constraint, etc.)
 - Boolean (binary) indicator variable determines if block is enforced

 $\mathbf{V}_{i\in D_{k}} \begin{bmatrix} Y_{ik} \\ h_{ik}(x) \leq o \\ c_{k} = \gamma_{ik} \end{bmatrix}$ $\Omega(Y) = true$

- Disjunction:
 - Enforces logical OR/XOR across a set of Disjunct indicator variables
- Logic constraints on indicator variables

Simple Example: Task sequencing in Pyomo


```
def _NoCollision(model, disjunct, i, k, j, ik):
    lhs = model.t[i] + sum(model.tau[i,m] for m in model.STAGES if m<j)
    rhs = model.t[k] + sum(model.tau[k,m] for m in model.STAGES if m<j)
    if ik:
        disjunct.c = Constraint( expr= lhs + model.tau[i,j] <= rhs )
    else:
        disjunct s = Constraint( expr= nhs + model.tau[i,j] <= lhs )</pre>
```

disjunct.c = Constraint(expr= rhs + model.tau[k,j] <= lhs)
model.NoCollision = Disjunct(model.L, [0,1], rule=_NoCollision)</pre>

```
def _setSequence(model, i, k, j):
    return [ model.NoCollision[i,k,j,ik] for ik in [0,1] ]
model.setSequence = Disjunction(model.L, rule=_setSequence)
```

$$\begin{bmatrix} Y_{ik} \\ t_i + \sum_{\substack{m \in J(i) \\ m < j}} \tau_{im} + \tau_{ij} \leq t_k + \sum_{\substack{m \in J(k) \\ m < j}} \tau_{km} \end{bmatrix} \lor \begin{bmatrix} Y_{ki} \\ t_k + \sum_{\substack{m \in J(k) \\ m < j}} \tau_{km} + \tau_{kj} \leq t_i + \sum_{\substack{m \in J(i) \\ m < j}} \tau_{im} \end{bmatrix}$$
$$\forall j \in C_{ik}, \forall i, k \in I, i < k$$

Simple Example: Task sequencing in Pyomo

def _NoCollision(model, disjunct, i, k, j, ik):
 lhs = model.t[i] + sum(model.tau[i,m] for m in model.STAGES if m<j)
 rhs = model.t[k] + sum(model.tau[k,m] for m in model.STAGES if m<j)
 if ik:
 disjunct.c = Constraint(expr= lhs + model.tau[i,j] <= rhs)
 else:
 disjunct.c = Constraint(expr= rhs + model.tau[k,j] <= lhs)
model.NoCollision = Disjunct(model.L, [0,1], rule= NoCollision)</pre>

```
def _setSequence(model, i, k, j):
    return [ model.NoCollision[i,k,j,ik] for ik in [0,1] ]
model.setSequence = Disjunction(model.L, rule=_setSequence)
```


Solving disjunctive models

- Few solvers "understand" disjunctive models
 - Transform model into standard math program
 - Big-M relaxation:
 - Convert logic variables to binary
 - Split equality constraints in disjuncts into pairs of inequality constraints
 - Relax all constraints in the disjuncts with "appropriate" M values
 - Automatically calculate M values for linear expressions

pyomo solve --solver=cbc --transform=gdp.bigm jobshop.py jobshop.dat

- Convex hull relaxation (Balas, 1985; Lee and Grossmann, 2000)
 - Disaggregate variables in all disjuncts
 - Bound disaggregated variables with Big-M terms

pyomo solve --solver=cbc --transform=gdp.chull jobshop.py jobshop.dat

A transformation-centric view of *abs()*

Chaining transformations

$$\begin{aligned} f &= x^{+} + x^{-} & f = x^{+} + x^{-} \\ f &= abs(x) \Rightarrow & x = x^{+} - x^{-} \\ x^{+} &\ge 0 \perp x^{-} \ge 0 \end{aligned} \xrightarrow{\begin{array}{c} f &= x^{+} + x^{-} \\ x &= x^{+} - x^{-} \\ x^{+} &= 0 \end{array} \xrightarrow{\begin{array}{c} f &= x^{+} + x^{-} \\ x &= x^{+} - x^{-} \\ x^{-} &= 0 \end{array} \xrightarrow{\begin{array}{c} f &= x^{+} + x^{-} \\ x &= x^{+} - x^{-} \\ x^{-} &= 0 \end{array} \xrightarrow{\begin{array}{c} f &= x^{+} + x^{-} \\ x &= x^{+} - x^{-} \\ x^{-} &\le My \\ x^{-} &= 0 \end{array} \xrightarrow{\begin{array}{c} x^{-} &\le My \\ x^{-} &= 0 \end{array} \xrightarrow{\begin{array}{c} x^{-} &\le My \\ x^{-} &= 0 \end{array} \xrightarrow{\begin{array}{c} x^{-} &\le M(1-y) \\ x^{+} &\ge 0, x^{-} &\ge 0 \end{array} \xrightarrow{\begin{array}{c} x^{+} &\ge 0, x^{-} &\ge 0 \end{array}$$

model = ConcreteModel()
[...]
TransformFactory("abs.complements").apply_to(model)
TransformFactory("mpec.disjunctive").apply_to(model)
TransformFactory("gdp.bigm").apply_to(model)

Siirola and Laird

Extensions to dynamic systems

- Optimization of dynamic systems is *hard*.
 - In OR, think "multi-stage" problems
 - In "engineered systems", think differential equations
 - High fidelity *simulation* is difficult and expensive (e.g., HPC)
 - How to optimize?
 - Simulation-based optimization (single shooting)
 - Multiple shooting methods
 - Discretization (collocation methods)
 - Common theme: significant effort to rework formulation
 - Time: first ~6 months of a grad student's research
 - Error prone: many ways to make subtle mistakes
 - Inflexible: formulation specific to selected solution approach

Dynamic systems through EMP

- Model dynamical systems in a natural form
 - Systems of Differential Algebraic Equations (DAE)
 - Extend the Pyomo component model
 - ContinuousSet: A virtual set over which you can take a derivative
 - DerivativeVar: The derivative of a Var with respect to a ContinuousSet

Optimization under uncertainty

- We see increasing demand for optimization under uncertainty
 - Recognition that decisions must explicitly incorporate risk
 - Many approaches: surrogates, sampling, robust optimization
 - We focus on stochastic programming
 - Capture problem uncertainty as a set of possible scenarios
 - Solve to select a single answer that optimizes across all scenarios
 - Naturally leverages a transformation-based approach

Optimization under uncertainty

- We see increasing demand for optimization under uncertainty
 - Recognition that decisions must explicitly incorporate risk
 - Many approaches: surrogates, sampling, robust optimization
 - We focus on stochastic programming
 - Capture problem uncertainty as a set of possible scenarios
 - Solve to select a single answer that optimizes across all scenarios
 - Naturally leverages a transformation-based approach

What if the problem is too difficult?

- Implement *meta algotithms* (via problem decomposition)!
 - Stage-wise (e.g., Benders decomposition [Benders, 1962])
 - Master problem (1st stage), independent (2nd stage) subproblems
 - Master problem grows with cuts from subproblems
 - Scenario-based (e.g., Progressive Hedging [Rockafellar & Wets, 1991])
 - "No" master problem
 - Iteratively converge NAC by penalizing deviation from consensus

Siirola and Laird

Selected applications

- Reliability Unit Commitment with Transmission Switching
 - Enhance the resiliency of the electric transmission system by ensuring the system can survive the loss of any single asset (generator or nonradial transmission line)
- Evaluate cyber-motivated game theoretic models
 - Compute optimal defender strategies for notional adversarial models

Returning to RUC + Transmission Switching

Minimize : $\sum_{t} \sum_{g} \left(c_g P_{g0t} + c_g^{SU} v_{gt} + c_g^{SD} w_{gt} \right)$ S.t. $\theta^{\min} \leq \theta_{nct} \leq \theta^{\max}, \quad \forall n, c, t$ $\sum_{\substack{\forall k(n,.) \\ \forall n, c = 0, \text{ transmission contingency states } c, t}} P_{kct} + \sum_{\substack{\forall g(n) \\ \forall g(n)}} P_{g0t} = d_{nt},$ $\sum_{\forall k(n,.)} \overline{P_{kct} - \sum_{\forall k(.,n)} P_{kct} + \sum_{\forall g(n)} P_{gct} = d_{nt},}$ $\forall n$, generator contingency states c, t $P_{kc}^{\min} N1_{kc} z_{kt} \le P_{kct} \le P_{kc}^{\max} N1_{kc} z_{kt}, \quad \forall \ k, c, t$ $B_k(\theta_{nct} - \theta_{mct}) - P_{kct} + (2 - z_{kt} - N\mathbf{1}_{kc})M_k \ge 0, \quad \forall k, c, t$ $B_k(\theta_{nct} - \theta_{mct}) - P_{kct} - (2 - z_{kt} - N\mathbf{1}_{kc})M_k \le 0, \quad \forall k, c, t$ $P_q^{\min} \mathbf{N1_{gc}} u_{gt} \le P_{gct} \le P_q^{\max} \mathbf{N1_{gc}} u_{gt}, \quad \forall \ g, c, t$ $v_{g,t} - w_{g,t} = u_{g,t} - u_{g,t-1}, \quad \forall \ \overline{g,t}$ $\sum_{q=t-UT_g+1}^{\cdot} v_{g,q} \le u_{g,t}, \quad \forall \, g, t \in \{UT_g, \dots, T\}$ $\sum_{q=t-DT_g+1}^{\circ} w_{g,q} \le 1 - u_{g,t}, \forall g, t \in \{DT_g, \dots, T\}$ $|P_{q0t} - P_{q0,t-1} \le R_a^+ u_{q,t-1} + R_a^{SU} v_{q,t}, \quad \forall g, t$ $|P_{g0,t-1} - P_{g0,t} \le R_q^- u_{g,t} + R_q^{SD} w_{g,t}, \quad \forall \, g, t$ $P_{act} - P_{a0,t} \le R_a^+, \quad \forall g, c, t$ $\frac{P_{g0,t}N1_{gc} - P_{gct} \le R_g^-, \quad \forall \, g, c, t}{0 \le v_{g,t} \le 1, \quad \forall \, g, t}$ $0 \leq w_{a,t} \leq 1, \quad \forall \, g, t$

 $u_{g,t} \in \{0,1\}, \quad \forall \, g, t$

Hedman, et al., "Co-Optimization of Generation Unit Commitment and Transmission Switching With N-1 Reliability," *IEEE Trans Power Systems*, 25(2), pp.1052-1063, 2010

Siirola and Laird

Siirola and Laird

Sandia National

Laboratories

Explicitly expose disjunctive decisions

Transmission switching:

$$\begin{bmatrix} z_{kct} \\ P_{kct} = B_k(\theta_{k1} - \theta_{k2}) \end{bmatrix} \lor \begin{bmatrix} \neg z_{kct} \\ P_{kct} = 0 \end{bmatrix}$$

Generation

$$\begin{bmatrix} u_{gt} \\ C_{gt} = P_{gt}C_{g} \\ R_{g}^{+} \ge P_{gt} - P_{gt-1} \\ R_{g}^{-} \ge P_{gt-1} - P_{gt} \end{bmatrix} \lor \begin{bmatrix} v_{kt} \\ C_{gt} = P_{gt}C_{g} + C_{g}^{SU} \\ R_{g}^{SU} \ge P_{gt} - P_{gt-1} \end{bmatrix} \lor \begin{bmatrix} \neg (u_{kt} \mid v_{kt}) \\ C_{gt} = C_{g}^{SD}u_{kt-1} \\ R_{g}^{SD} \ge P_{gt-1} - P_{gt} \\ P_{gt} = 0 \end{bmatrix}$$

Embed within a structured model

Optimal Solution of RTS-96

- From Hedman, et al. 2010
 - N-1 UC solution:
 3,245,997
 - N-1 UC w/ Switching: 3,125,185 (2 pass UC+switching heuristic)

	Rows	Columns	Binaries
Raw model	5,118,760	1,501,177	5,184
After presolve	2,634,851	1,062,290	4,476

Restructured problem (complete N-1 UC w/ switching):

	Rows	Columns	Binaries
Raw model	21,232,224	13,129,692	3,796,830
After presolve	2,471,714	1,249,976	187,194

- Solution (1e-4 gap): 2,990,004 (60,000 sec)
- Automated Big-M relaxation (including automatic M calculation)
- Default solver settings

Modeling Attacker-Defender Games

- Capture high-level aspects of real system defense
- Simplest example: FlipIt, "stealthy takeover"
 - Two players: attacker and defender
 - One contested resource. Defender holds at start
 - A player can move at a cost
 - Takes resource (tie to defender)
 - Neither player ever knows who owns the resource
 - Strategy: when to move? Timeline is infinite.
 - Utility = (time in control) cost (can be weighted)
 - Many results in the original paper

Exploring Alternatives to Simulation –vs– Analytical Distances

Analysis continuum

Simulation	Stochastic Programming	Analytical
Increasing Flexibility,	Expressiveness	Increasing Generality

Challenges:

- Analytical: optimal response over continuous (infinite) parameters
 - May require restrictive / unrealistic assumptions (e.g., periodic moves)
- Simulation: enumerate (subset of) parameters and collect statistics
 - Search by full enumeration frequently computationally intractable
- Opportunity:
 - Leverage numerical optimization to gain prescriptive insights while preserving much of the flexibility of simulation

Stochastic Programming

- Key idea in stochastic programming:
 - approximate uncertainty by sampling outcomes
- Approximate attacker's strategy space by sampling possible random success-time outcomes
 - Attack scenarios
 - More scenarios gives a better approximation
- Optimize to determine the defender's single best strategy against ALL scenarios
 - Non-anticipative (only one solution for all attacks)
- Extensive form is a mixed-integer program (MIP)
- Can express more easily as a disjunctive program (DP)
 - Convert DP to MIP

Cases

For each scenario s and time t, only 3 possible cases:

Attacker takes over (defender doesn't move)

$$a_{st} = 1$$
 and $d_t = 0$ and $\rho_{st} = 0$

Defender takes over

$$d_t = 1$$
 and $\rho_{st} = 1$

Nothing changes

$$a_{st} = 0$$
 and $d_t = 0$ and $\rho_{st} = \rho_{s,t-1}$

- Where
 - a_{st} : Attacker moves at time t in attack scenario s
 - *d_t*: Defender moves at time *t*
 - $\rho_{st} = \begin{cases}
 1 & \text{if defender controls resource at time } t \\
 0 & \text{if attacker controls resource at time } t
 \end{cases}$

FlipIt Disjunctive Program

$$\begin{array}{ll} \max & |T|^{-1}|S|^{-1} \sum_{s \in S, t \in T} \rho_{s,t} - c_{take} \sum_{t \in T} d_t \\ \\ s.t. & \begin{bmatrix} Y_{1,s,t} \\ a_{s,t} = 0 \\ d_t = 0 \\ \rho_{s,t} = \rho_{s,t-1} \end{bmatrix} \bigvee \begin{bmatrix} Y_{2,s,t} \\ a_{s,t} = 1 \\ d_t = 0 \\ \rho_{s,t} = 0 \end{bmatrix} \bigvee \begin{bmatrix} Y_{3,s,t} \\ d_t = 1 \\ \rho_{s,t} = 1 \end{bmatrix} \\ \\ \forall s \in S, \{t | t \in T, t > 0\} \\ \forall s \in S, \{t | t \in T, t > 0\} \\ \forall s \in S, \{t | t \in T, t > 0\} \\ \rho_{s,0} = 1 \\ \rho_{s,0} = 1 \\ \phi_{s,0} = 1 \\ \phi_{s,t} \in \{0,1\} \\ \gamma_{i,s,t} \in \{0,1\} \\ \forall i \in \{1,2,3\}, s \in S, t \in T \end{bmatrix} \\ \end{array}$$

- Pick a case for each scenario at each time
- The Pyomo modeling language lets you write it about this way

Siirola and Laird

 Pyomo can (FlipIt) (automatically) translate to a model form like this

where

minimize

$$\begin{cases} \sum_{t \in T, s \in S} (\rho_{st} - c_{\text{move}} d_t) \\ y_{st}^{(a)} \le a_{st} & \forall t \in T, s \in S \\ y_{st}^{(a)} + y_{st}^{(d)} \ge a_{st} & \forall t \in T, s \in S \\ d_t \le \sum_{s \in S} y_{st}^{(a)} & \forall t \in T \\ \rho_{st} \le 1 - y_{st}^{(a)} & \forall t \in T, s \in S \\ y_{st}^{(d)} = d_t & \forall t \in T, s \in S \\ \rho_{st} \ge y_{st}^{(d)} & \forall t \in T, s \in S \\ a_{st} - d_t \le 1 - y_{st}^{(z)} & \forall t \in T, s \in S \\ a_{st} - d_t \ge y_{st}^{(z)} - 1 & \forall t \in T, s \in S \\ \rho_{s0} = 1 & \forall s \in S \\ \rho_{st} - \rho_s, t - 1 \le 1 - y_{st}^{(z)} & \forall t \in T, s \in S \\ \rho_{st} - \rho_s, t - 1 \ge y_{st}^{(z)} - 1 & \forall t \in T, s \in S \\ p_{st} - \rho_s, t - 1 \ge y_{st}^{(z)} - 1 & \forall t \in T, s \in S \\ p_{st} - \rho_s, t - 1 \ge y_{st}^{(z)} - 1 & \forall t \in T, s \in S \\ p_{st} - \rho_s, t - 1 \ge y_{st}^{(z)} - 1 & \forall t \in T, s \in S \\ p_{st} + y_{st}^{(a)} + y_{st}^{(d)} = 1 & \forall t \in T \end{cases}$$

Siirola and Laird

Families of Best-Response Curves

- Even a modest time horizon (64) and number of scenarios (32) approximates infinite game
 - Varying defender move cost and benefit of holding resource.
 - Attacker Blue
 - Defender Red

Summary

- While not a "Grand Unifying Theory" model of CPS systems, Extended Math Programming is a useful paradigm for modeling and analyzing CPS systems
 - What do I mean by "Extended Math Programming"
 - Math programming
 - Analysis workflows
 - Model transformations
 - Extensions to Math Programming most relevant to CPS
 - Generalized Disjunctive Programming (GDP)
 - Dynamic systems (DAEs)
 - Stochastic programming
 - Bilevel optimization
 - CPS Applications
 - Power grid operations and modeling
 - Computational approaches to Game Theory (for MTD)

EMP is not a panacea

- Extended Math Programming is a useful framework for consistently expressing CPS; *however*,
 - The ability to express the problem does not guarantee a solution
 - e.g., a minor extension to FlipIt yields a game (PLADD) that is resistant to direct solution by stochastic programming
 - Problems can scale beyond abilities of current solvers
 - LP: > 1e8; MIP: > 1e7; NLP: > 1e6; MINLP > 1e3?
 - But algorithms are advancing
 - At least as fast as computing [Amundson 1988, Bixby 2012]
 - Decomposition, formulation engineering, specialized solvers
- The formalism, expressiveness, and rigor has pedagogical value.
 - *Could* form the basis of a GUT for classroom settings
 - *Extensible* to new CPS-specific modeling constructs
- Center for Computing Research
- Rich algorithm research space

Thank you!

- For more information...
- **Project homepages**
 - http://www.pyomo.org
 - http://software.sandia.gov/pyomo
- User mailing lists
 - pyomo-forum@googlegroups.com
- "The Book"
 - Second Edition now available!

For more information		UMENTATION / BLOG	
Project homepages	A second	F optimization	Flexible modeling of problems in Python >
 http://software.sandia.gov/pyomo 	What Is Pyomo?	Installation	Docs
User mailing listspyomo-forum@googlegroups.com	Pyomo is a python-based, open-source optimization modeling language with a diverse set of optimization capabilities. Read More	The easiest way to install Pyono is to use pip. Pyono also mode access to optimization s Read more Latest: Pyono 4.0	Documentation of core Pyamo modeline completion is evolution Springer Optimization and Its Applications 67 William E. Hart Carl D. Laird Jean-Paul Watson David L. Woodruff
	Acknowledgments The Pyomo project would not be where it is without the generous contributions of numerous people and organizations. Read More	Getting Help The Pyome Forum is an resource for users to ask and get help from other	Gabriel A. Hackebeil Bethany L. Nicholson John D. Siirola Pyomo ——
"The Book"			Optimization
 Second Edition now available! 	Community Pyono Forum Report a Bug Request a New Feature Related Projects	Developers Pyomo Tiac Sto Jenking Test Ste Developers and Contributor Licensing	Modeling in Python
			Second Edition
Mathematical Programming Computation pa	pers		
 Pyomo: Modeling and Solving Mathematical Program 	ns in Python (Vol.	3, No. 3, 2 <mark>011</mark>)

PySP: Modeling and Solving Stochastic Programs in Python (Vol. 4, No. 2, 2012)

