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 While not a “Grand Unifying Theory” model of CPS systems, 
Extended Math Programming is a useful paradigm for 
modeling and analyzing CPS systems
 What do I mean by “Extended Math Programming”

 Math programming

 Analysis workflows

 Model transformations

 Extensions to Math Programming most relevant to CPS

 Generalized Disjunctive Programming (GDP)

 Dynamic systems (DAEs)

 Stochastic programming

 CPS Applications

 Power grid operations and modeling

 Computational approaches to Game Theory (for MTD)

Summary
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What is optimization?
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What is optimization?

 Finding the best answer!
 “What is the lowest spot on the earth?”

“-39,944 ft”

 Finding the inputs that give me the best 
answer!
 “Where is the lowest spot on the earth?”

“Challenger Deep, Mariana Trench”

 Finding the valid inputs that give me the 
best answer!
 “Where is the lowest dry spot on earth?”

“The Dead Sea shoreline  (-1391 ft)”
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 Wandering around in the real world, looking for the lowest spot is 
expensive, time-consuming, and error-prone

 We would rather work with a model of the real world

 Represent what we know about the problem in a usable form

 Incorporate assumptions and simplifications

 Be both tractable and valid

 (although these are often contradictory goals)

 Mathematical Programming is a convenient modeling paradigm:

 Supports data agnostic modelling

Constrained Optimization Models
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dramatically impact the 

optimization algorithm!
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The universe of “math programming”
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If 𝒇 𝒙 , 𝒈 𝒂, 𝒙 , 𝒉(𝒂, 𝒙) are…

Linear Nonlinear

Continuous LP
[linear programming]

NLP
[nonlinear programming]

Discrete IP
[integer programming]

Continuous + 
Discrete

MIP
[mixed integer (linear)
programming]

MINLP
[mixed integer nonlinear 
programming]

If
 𝒙
is
…

Operations Research

Physical systems

- dynamic systems

- process models

- uncertainty quantification

Systems design

Discrete operations

Cyber-physical systems



 The MP “toolbox”
 +, −, ×, ÷

 sin, cos, tan, etc.

 𝑦𝑥, 𝑒𝑥, log10 𝑥 , ln(𝑥)

 (functions  in 𝐶2)

What’s the problem with Math Programming?

Hedman, et al., "Co-Optimization of Generation Unit Commitment and Transmission 

Switching With N-1 Reliability," IEEE Trans Power Systems, 25(2), pp.1052-1063, 2010
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The previous slide is a real model…

 (In the US) Sequential markets (run by ISO/RTO):

 “Unit commitment” (UC) / “Day-ahead Market” (DAM)

 MIP run ~10 hours before the start of a day

 Sets on/off state for all generator units hourly for 24 hours

 “Reliability Unit Commitment” (RUC)

 MIP run ~8 hours before the start of the day

 Commits additional generators to meet spinning reserve and reliability 
(N-1 robustness) requirements

 “Economic Dispatch” (ED) / “Security-constrained ED” (SCED)

 “Real-time” markets: LP run hourly / every 5 minutes 

 Set generation levels, prices to meet realized demand

 Can switching lines on/off improve resilience / reduce cost?

 Problem scale
 100’s – 1000’s of buses;  2-3x lines
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The Challenge:  MP is dense and subtle

Hedman, et al., "Co-Optimization of Generation Unit Commitment and Transmission 

Switching With N-1 Reliability," IEEE Trans Power Systems, 25(2), pp.1052-1063, 2010
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The Challenge:  MP is dense and subtle

Hedman, et al., "Co-Optimization of Generation Unit Commitment and Transmission 

Switching With N-1 Reliability," IEEE Trans Power Systems, 25(2), pp.1052-1063, 2010

To a first approximation:

- DCOPF

- Economic dispatch

- Unit commitment

- Transmission switching

- N-1 contingency

Siirola and Laird
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Sidebar: What do these have in common?

𝑎 = 𝑏 + 𝑐
𝑏 ≤ 𝑀 ⋅ 𝑦

𝑐 ≤ 𝑀 1 − 𝑦
𝑥 − 3 = 𝑐 − 𝑏

𝑏 ≥ 0
𝑐 ≥ 0

𝑦 ∈ 0,1

𝑎 = (𝑥 − 3)2+𝜖

𝑎 =
2(𝑥 − 3)

1 + 𝑒−
𝑥−3
ℎ

− 𝑥 + 3

𝑎 ≥ 𝑥 − 3
𝑎 ≥ 3 − 𝑥

𝑎 = 𝑏 + 𝑐
𝑥 − 3 = 𝑐 − 𝑏
𝑏 ≥ 0 ⊥ 𝑐 ≥ 0
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𝑎 = 𝑎𝑏𝑠(𝑥 − 3)

If we mean “𝑎 = 𝑎𝑏𝑠(𝑥 − 3)”, 
why don’t we write that in our models???
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A new solution workflow

 Model Transformations: Projecting problems to problems
 Project from one problem space to another

 Standardize common reformulations or approximations

 Enables “Extended Math Programming”[1]

 Develop new modeling constructs not supported by solvers

 (Automatically) Convert these “unoptimizable” modeling constructs into 
equivalent optimizable forms

+Model Data Compile Problem

Solve

Transform
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[1] - Ferris, et al. “An extended mathematical programming framework”.

Computers & Chemical Engineering 33(12) 2009.



 Ferris, et al. (2009)
 Modeling framework (domain-specific language) built on GAMS

 Adds support for “higher level” constructs

 Complementarity conditions, Variational inequalities, Bilevel problems, 
Disjunctive programming

 Constructs are annotated through a separate input file

 Interfaces to specialized solvers or provides automated reformulations 
for standard solvers

 Alternatively, EMP concepts could be implemented through 
an object-oriented framework

Extended Math Programming
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Pyomo: optimization modeling in Python
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Solver Interfaces

GLPK

CPLEX

Gurobi

Xpress

CBC

BARON

OpenOpt

Ipopt

KNITRO

Bonmin

AMPL Solver Library

Core Modeling 

Objects NEOS

Couenne

Meta-Solvers
• Generalized Benders

• Progressive Hedging

• Linear bilevel

• Linear MPEC

Modeling Extensions
• Disjunctive programming

• Stochastic programming

• Bilevel programming

• Differential equations

• Equilibrium constraints

Core Optimization 

Objects

Model 

Transformations

DAKOTA



Extended Math Programming for CPS

 Key (CPS) modeling needs
 Modularity and composability

 Continuous and discrete 
(logic-based) models

 Continuous dynamics 
(physical systems)

 Stochastic models / 
uncertainty quantification

 EMP capabilities
 Hierarchical model definitions

 Complementarity conditions

 Generalized Disjunctive 
Programming (GDP)

 (Discretized) systems of 
differential-algebraic 
equations (DAE)

 Stochastic programming / 
design under uncertainty
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Block-oriented modeling

 “Blocks”
 Collections of model components

 Variable, Parameter, Set, Constraint, etc.

 Blocks may be arbitrarily nested

 Why blocks?
 Support reusable modeling components

 Express distinctly modeled concepts as distinct objects

 Manipulate modeled components as distinct entities

 Explicitly expose model structure (e.g., for decomposition)

 Enables transformations and component namespaces

 Prior art
 Ubiquitous in the simulation community

 Rare in Math Programming environments

 Notable exceptions: ASCEND, JModelica.org
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 Capture connected block structure, e.g., network flow

 Blocks interface through connectors (group of variables)

 Block implementation independent of network definition

Domain Node Arc Connector Vars

Fluid flow Mass balance Pressure Drop Pressure;

Volumetric flow

AC Power flow KCL Active power transfer;

Reactive power transfer

Phase angle;

Active power flow;

Reactive power flow

Structured modeling with blocks

Node

Arc

Node

Node Node

Node

Node

Siirola and Laird 27



Generalized disjunctive programming

 Disjunctions: selectively enforce sets of constraints
 Sequencing decisions: x ends before y or y ends before x

 Switching decisions: a process unit is built or not

 Alternative selection: selecting from a set of pricing policies

 Implementation: leverage Pyomo “blocks”
 Disjunct: 

 Block of Pyomo components 

– (Variable, Parameter, Constraint, etc.)

 Boolean (binary) indicator variable determines 
if block is enforced

 Disjunction:

 Enforces logical OR/XOR across a set of Disjunct indicator variables

 Logic constraints on indicator variables
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Simple Example: Task sequencing in Pyomo

def _NoCollision(model, disjunct, i, k, j, ik):

lhs = model.t[i] + sum(model.tau[i,m] for m in model.STAGES if m<j)

rhs = model.t[k] + sum(model.tau[k,m] for m in model.STAGES if m<j)

if ik:

disjunct.c = Constraint( expr= lhs + model.tau[i,j] <= rhs )

else:

disjunct.c = Constraint( expr= rhs + model.tau[k,j] <= lhs )

model.NoCollision = Disjunct( model.L, [0,1], rule=_NoCollision )

def _setSequence(model, i, k, j):

return [ model.NoCollision[i,k,j,ik] for ik in [0,1] ]

model.setSequence = Disjunction(model.L, rule=_setSequence)
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Solving disjunctive models

 Few solvers “understand” disjunctive models
 Transform model into standard math program

 Big-M relaxation:

 Convert logic variables to binary

 Split equality constraints in disjuncts into pairs of inequality constraints

 Relax all constraints in the disjuncts with “appropriate” M values

– Automatically calculate M values for linear expressions

 Convex hull relaxation (Balas, 1985; Lee and Grossmann, 2000)

 Disaggregate variables in all disjuncts

 Bound disaggregated variables with Big-M terms

pyomo solve --solver=cbc --transform=gdp.bigm jobshop.py jobshop.dat

pyomo solve --solver=cbc --transform=gdp.chull jobshop.py jobshop.dat
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model = ConcreteModel()

# […]

TransformFactory(“abs.complements”).apply_to(model)

TransformFactory(“mpec.disjunctive”).apply_to(model)

TransformFactory(“gdp.bigm”).apply_to(model)

 Chaining transformations

A transformation-centric view of abs()

32Siirola and Laird
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 Optimization of dynamic systems is hard.
 In OR, think “multi-stage” problems

 In “engineered systems”, think differential equations

 High fidelity simulation is difficult  and expensive (e.g., HPC)

 How to optimize?

– Simulation-based optimization (single shooting)

– Multiple shooting methods

– Discretization (collocation methods)

 Common theme: significant effort to rework formulation

– Time: first ~6 months of a grad student’s research

– Error prone: many ways to make subtle mistakes

– Inflexible: formulation specific to selected solution approach

Extensions to dynamic systems
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 Model dynamical systems in a natural form
 Systems of Differential Algebraic Equations (DAE)

 Extend the Pyomo component model

 ContinuousSet:  A virtual set over which you can take a derivative

 DerivativeVar:  The derivative of a Var with respect to a ContinuousSet

Dynamic systems through EMP
D

A
E

 m
o
d
el

m

n

n

tu

ty

tx

pttutytxg

pttutytxftx

tutytx













)(

)(

)(

),),(),(),((0

),),(),(),(()(

))(),(),((min



Siirola and Laird 34

Domain 
splitting

Discretization NLP

Multiple 
Shooting

Single 
Shooting

Integration



 We see increasing demand for optimization under uncertainty
 Recognition that decisions must explicitly incorporate risk

 Many approaches: surrogates, sampling, robust optimization

 We focus on stochastic programming

 Capture problem uncertainty as a set of possible scenarios

 Solve to select a single answer that optimizes across all scenarios

 Naturally leverages a transformation-based approach

Optimization under uncertainty

35
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Sample

Uncertainty
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 Implement meta algotithms (via problem decomposition)!
 Stage-wise (e.g., Benders decomposition [Benders, 1962])

 Master problem (1st stage), independent (2nd stage) subproblems

 Master problem grows with cuts from subproblems

 Scenario-based (e.g., Progressive Hedging  [Rockafellar & Wets, 1991])

 “No” master problem

 Iteratively converge NAC by penalizing deviation from consensus

What if the problem is too difficult?

…
…

…

…

t = 0 t = 1 t = 2 t = 0 t = 1 t = 2

… … …

… … …

… … …

… … …

optimize

optimize

optimize

optimize

optimize

optimize

optimize

optimize

optimize

Progressive Hedging
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 Reliability Unit Commitment with Transmission Switching
 Enhance the resiliency of the electric transmission system by ensuring 

the system can survive the loss of any single asset (generator or non-
radial transmission line)

 Evaluate cyber-motivated game theoretic models
 Compute optimal defender strategies for notional adversarial models

Selected applications
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Returning to RUC + Transmission Switching

Hedman, et al., "Co-Optimization of Generation Unit Commitment and Transmission 

Switching With N-1 Reliability," IEEE Trans Power Systems, 25(2), pp.1052-1063, 2010

To a first approximation:

- DCOPF

- Economic dispatch

- Unit commitment

- Transmission switching

- N-1 contingency
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(Nonobvious) Inherent structure

contingencies

N-1 Economic Dispatch

nominal case

Unit Commitment

EDOPFSwitching Key feature: 

Layered (nested) 

model complexity
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This still doesn’t quite tell the whole story

Switched

OPF
Switched
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 Transmission switching:

 Generation

Explicitly expose disjunctive decisions
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Embed within a structured model

~~

~

~
Switchable Transmission LineNetwork Model

Bus model

Switchable Generator

Current Balance 
(KCL)

Transmission Line 
Power Flow Model

V

Start-Up
Model

)

Ramp Limits (

V Generation 
Model

V
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Optimal Solution of RTS-96

 From Hedman, et al. 2010
 N-1 UC solution: 3,245,997

 N-1 UC w/ Switching: 3,125,185  (2 pass UC+switching heuristic)

 Restructured problem (complete N-1 UC w/ switching):

 Solution (1e-4 gap): 2,990,004   (60,000 sec)

 Automated Big-M relaxation (including automatic M calculation)

 Default solver settings

Rows Columns Binaries

Raw model 21,232,224 13,129,692 3,796,830

After presolve 2,471,714 1,249,976 187,194 

Rows Columns Binaries

Raw model 5,118,760 1,501,177 5,184

After presolve 2,634,851 1,062,290 4,476
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 Capture high-level aspects of real system defense

 Simplest example: FlipIt, “stealthy takeover”
 Two players: attacker and defender

 One contested resource.  Defender holds at start

 A player can move at a cost

 Takes resource (tie to defender)

 Neither player ever knows who owns the resource

 Strategy: when to move?  Timeline is infinite.

 Utility = (time in control) – cost    (can be weighted)

 Many results in the original paper

Modeling Attacker-Defender Games

45

Marten van Dijk, Ari Juels, and Alina Oprea. FlipIt: The Game of 

“Stealthy Takeover”. Journal of Cryptology, 26(4):655–713, 2013. 
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 Analysis continuum

 Challenges:
 Analytical: optimal response over continuous (infinite) parameters

 May require restrictive / unrealistic assumptions (e.g., periodic moves)

 Simulation: enumerate (subset of) parameters and collect statistics
 Search by full enumeration frequently computationally intractable

 Opportunity:
 Leverage numerical optimization to gain prescriptive insights while 

preserving much of the flexibility of simulation

Exploring Alternatives to Simulation –vs– Analytical

46

Increasing Flexibility, Expressiveness Increasing Generality

Simulation Stochastic Programming Analytical
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 Key idea in stochastic programming: 
 approximate uncertainty by sampling outcomes

 Approximate attacker’s strategy space by sampling possible 
random success-time outcomes 
 Attack scenarios

 More scenarios gives a better approximation

 Optimize to determine the defender’s single best strategy 
against ALL scenarios
 Non-anticipative (only one solution for all attacks)

 Extensive form is a mixed-integer program (MIP)

 Can express more easily as a disjunctive program (DP)
 Convert DP to MIP

Stochastic Programming
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For each scenario s and time t, only 3 possible cases:

 Attacker takes over (defender doesn’t move)

 Defender takes over

 Nothing changes

 Where
 𝑎𝑠𝑡:   Attacker moves at time 𝑡 in attack scenario 𝑠

 𝑑𝑡:    Defender moves at time 𝑡

 𝜌𝑠𝑡 = ቊ
1 if defender controls resource at time 𝑡
0 if attacker controls resource at time 𝑡

Cases
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FlipIt Disjunctive Program

49

 Pick a case for each scenario at each time
 The Pyomo modeling language lets you write it about this way
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Equivalent MIP

50

 Pyomo can 
(automatically)  
translate to a 
model form like 
this
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Families of Best-Response Curves 

51

 Even a modest time horizon (64) and number of scenarios (32) 
approximates infinite game

• Varying 

defender 

move cost 

and benefit 

of holding 

resource.

• Attacker 

Blue

• Defender 

Red
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 While not a “Grand Unifying Theory” model of CPS systems, 
Extended Math Programming is a useful paradigm for 
modeling and analyzing CPS systems
 What do I mean by “Extended Math Programming”

 Math programming

 Analysis workflows

 Model transformations

 Extensions to Math Programming most relevant to CPS

 Generalized Disjunctive Programming (GDP)

 Dynamic systems (DAEs)

 Stochastic programming

 Bilevel optimization

 CPS Applications

 Power grid operations and modeling

 Computational approaches to Game Theory (for MTD)

Summary
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 Extended Math Programming is a useful framework for 
consistently expressing CPS; however,
 The ability to express the problem does not guarantee a solution

 e.g., a minor extension to FlipIt yields a game (PLADD) that is resistant to 
direct solution by stochastic programming

 Problems can scale beyond abilities of current solvers

 LP: > 1e8;  MIP: > 1e7;  NLP: > 1e6;  MINLP > 1e3?

 But algorithms are advancing

– At least as fast as computing  [Amundson 1988, Bixby 2012]

– Decomposition, formulation engineering, specialized solvers

 The formalism, expressiveness, and rigor has pedagogical 
value.
 Could form the basis of a GUT for classroom settings

 Extensible to new CPS-specific modeling constructs

 Rich algorithm research space

EMP is not a panacea
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 For more information…

 Project homepages

 http://www.pyomo.org

 http://software.sandia.gov/pyomo

 User mailing lists

 pyomo-forum@googlegroups.com

 “The Book”
 Second Edition now available!

 Mathematical Programming Computation papers
 Pyomo: Modeling and Solving Mathematical Programs in Python (Vol. 3, No. 3, 2011)

 PySP: Modeling and Solving Stochastic Programs in Python (Vol. 4, No. 2, 2012)

Thank you!
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