
Chapter 2
The Basic Theory

2.1 Weierstrass Equations

For most situations in this book, an elliptic curve E is the graph of an
equation of the form

y2 = x3 + Ax + B,

where A and B are constants. This will be referred to as the Weierstrass
equation for an elliptic curve. We will need to specify what set A, B, x, and
y belong to. Usually, they will be taken to be elements of a field, for example,
the real numbers R, the complex numbers C, the rational numbers Q, one of
the finite fields Fp (= Zp) for a prime p, or one of the finite fields Fq, where
q = pk with k ≥ 1. In fact, for almost all of this book, the reader who is
not familiar with fields may assume that a field means one of the fields just
listed. If K is a field with A,B ∈ K, then we say that E is defined over
K. Throughout this book, E and K will implicitly be assumed to denote an
elliptic curve and a field over which E is defined.

If we want to consider points with coordinates in some field L ⊇ K, we
write E(L). By definition, this set always contains the point ∞ defined later
in this section:

E(L) = {∞} ∪ {
(x, y) ∈ L × L | y2 = x3 + Ax + B

}
.

It is not possible to draw meaningful pictures of elliptic curves over most
fields. However, for intuition, it is useful to think in terms of graphs over the
real numbers. These have two basic forms, depicted in Figure 2.1.

The cubic y2 = x3 − x in the first case has three distinct real roots. In the
second case, the cubic y2 = x3 + x has only one real root.

What happens if there is a multiple root? We don’t allow this. Namely, we
assume that

4A3 + 27B2 �= 0.

If the roots of the cubic are r1, r2, r3, then it can be shown that the discrimi-
nant of the cubic is

((r1 − r2)(r1 − r3)(r2 − r3))
2 = −(4A3 + 27B2).

9
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10 CHAPTER 2 THE BASIC THEORY

(a) y2 = x3 − x (b) y2 = x3 + x

Figure 2.1

Therefore, the roots of the cubic must be distinct. However, the case where the
roots are not distinct is still interesting and will be discussed in Section 2.10.

In order to have a little more flexibility, we also allow somewhat more
general equations of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, (2.1)

where a1, . . . , a6 are constants. This more general form (we’ll call it the gen-
eralized Weierstrass equation) is useful when working with fields of char-
acteristic 2 and characteristic 3. If the characteristic of the field is not 2, then
we can divide by 2 and complete the square:(

y +
a1x

2
+

a3

2

)2

= x3 +
(

a2 +
a2
1

4

)
x2 +

(
a4 +

a1a3

2

)
x +

(
a2
3

4
+ a6

)
,

which can be written as

y2
1 = x3 + a′

2x
2 + a′

4x + a′
6,

with y1 = y + a1x/2 + a3/2 and with some constants a′
2, a

′
4, a

′
6. If the charac-

teristic is also not 3, then we can let x1 = x + a′
2/3 and obtain

y2
1 = x3

1 + Ax1 + B,

for some constants A,B.
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SECTION 2.1 WEIERSTRASS EQUATIONS 11

In most of this book, we will develop the theory using the Weierstrass
equation, occasionally pointing out what modifications need to be made in
characteristics 2 and 3. In Section 2.8, we discuss the case of characteristic 2 in
more detail, since the formulas for the (nongeneralized) Weierstrass equation
do not apply. In contrast, these formulas are correct in characteristic 3 for
curves of the form y2 = x3 + Ax + B, but there are curves that are not of
this form. The general case for characteristic 3 can be obtained by using the
present methods to treat curves of the form y2 = x3 + Cx2 + Ax + B.

Finally, suppose we start with an equation

cy2 = dx3 + ax + b

with c, d �= 0. Multiply both sides of the equation by c3d2 to obtain

(c2dy)2 = (cdx)3 + (ac2d)(cdx) + (bc3d2).

The change of variables

y1 = c2dy, x1 = cdx

yields an equation in Weierstrass form.
Later in this chapter, we will meet other types of equations that can be

transformed into Weierstrass equations for elliptic curves. These will be useful
in certain contexts.

For technical reasons, it is useful to add a point at infinity to an elliptic
curve. In Section 2.3, this concept will be made rigorous. However, it is
easiest to regard it as a point (∞,∞), usually denoted simply by ∞, sitting
at the top of the y-axis. For computational purposes, it will be a formal
symbol satisfying certain computational rules. For example, a line is said to
pass through ∞ exactly when this line is vertical (i.e., x =constant). The
point ∞ might seem a little unnatural, but we will see that including it has
very useful consequences.

We now make one more convention regarding ∞. It not only is at the top of
the y-axis, it is also at the bottom of the y-axis. Namely, we think of the ends
of the y-axis as wrapping around and meeting (perhaps somewhere in the back
behind the page) in the point ∞. This might seem a little strange. However,
if we are working with a field other than the real numbers, for example, a
finite field, then there might not be any meaningful ordering of the elements
and therefore distinguishing a top and a bottom of the y-axis might not make
sense. In fact, in this situation, the ends of the y-axis do not have meaning
until we introduce projective coordinates in Section 2.3. This is why it is best
to regard ∞ as a formal symbol satisfying certain properties. Also, we have
arranged that two vertical lines meet at ∞. By symmetry, if they meet at the
top of the y-axis, they should also meet at the bottom. But two lines should
intersect in only one point, so the “top ∞” and the “bottom ∞” need to be
the same. In any case, this will be a useful property of ∞.
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12 CHAPTER 2 THE BASIC THEORY

2.2 The Group Law

As we saw in Chapter 1, we could start with two points, or even one point,
on an elliptic curve, and produce another point. We now examine this process
in more detail.

P1

P2

P3

P3’

Figure 2.2

Adding Points on an Elliptic Curve

Start with two points

P1 = (x1, y1), P2 = (x2, y2)

on an elliptic curve E given by the equation y2 = x3 + Ax + B. Define a new
point P3 as follows. Draw the line L through P1 and P2. We’ll see below that
L intersects E in a third point P ′

3. Reflect P ′
3 across the x-axis (i.e., change

the sign of the y-coordinate) to obtain P3. We define

P1 + P2 = P3.

Examples below will show that this is not the same as adding coordinates of
the points. It might be better to denote this operation by P1 +E P2, but we
opt for the simpler notation since we will never be adding points by adding
coordinates.

Assume first that P1 �= P2 and that neither point is ∞. Draw the line L
through P1 and P2. Its slope is

m =
y2 − y1

x2 − x1
.
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SECTION 2.2 THE GROUP LAW 13

If x1 = x2, then L is vertical. We’ll treat this case later, so let’s assume that
x1 �= x2. The equation of L is then

y = m(x − x1) + y1.

To find the intersection with E, substitute to get

(m(x − x1) + y1)
2 = x3 + Ax + B.

This can be rearranged to the form

0 = x3 − m2x2 + · · · .

The three roots of this cubic correspond to the three points of intersection of
L with E. Generally, solving a cubic is not easy, but in the present case we
already know two of the roots, namely x1 and x2, since P1 and P2 are points
on both L and E. Therefore, we could factor the cubic to obtain the third
value of x. But there is an easier way. As in Chapter 1, if we have a cubic
polynomial x3 + ax2 + bx + c with roots r, s, t, then

x3 + ax2 + bx + c = (x − r)(x − s)(x − t) = x3 − (r + s + t)x2 + · · · .

Therefore,
r + s + t = −a.

If we know two roots r, s, then we can recover the third as t = −a − r − s.
In our case, we obtain

x = m2 − x1 − x2

and
y = m(x − x1) + y1.

Now, reflect across the x-axis to obtain the point P3 = (x3, y3):

x3 = m2 − x1 − x2, y3 = m(x1 − x3) − y1.

In the case that x1 = x2 but y1 �= y2, the line through P1 and P2 is a vertical
line, which therefore intersects E in ∞. Reflecting ∞ across the x-axis yields
the same point ∞ (this is why we put ∞ at both the top and the bottom of
the y-axis). Therefore, in this case P1 + P2 = ∞.

Now consider the case where P1 = P2 = (x1, y1). When two points on
a curve are very close to each other, the line through them approximates a
tangent line. Therefore, when the two points coincide, we take the line L
through them to be the tangent line. Implicit differentiation allows us to find
the slope m of L:

2y
dy

dx
= 3x2 + A, so m =

dy

dx
=

3x2
1 + A

2y1
.
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14 CHAPTER 2 THE BASIC THEORY

If y1 = 0 then the line is vertical and we set P1+P2 = ∞, as before. (Technical
point: if y1 = 0, then the numerator 3x2

1+A �= 0. See Exercise 2.5.) Therefore,
assume that y1 �= 0. The equation of L is

y = m(x − x1) + y1,

as before. We obtain the cubic equation

0 = x3 − m2x2 + · · · .

This time, we know only one root, namely x1, but it is a double root since L
is tangent to E at P1. Therefore, proceeding as before, we obtain

x3 = m2 − 2x1, y3 = m(x1 − x3) − y1.

Finally, suppose P2 = ∞. The line through P1 and ∞ is a vertical line
that intersects E in the point P ′

1 that is the reflection of P1 across the x-axis.
When we reflect P ′

1 across the x-axis to get P3 = P1 + P2, we are back at P1.
Therefore

P1 + ∞ = P1

for all points P1 on E. Of course, we extend this to include ∞ + ∞ = ∞.
Let’s summarize the above discussion:

GROUP LAW
LetE bean ellipticcurvedefined by y2 = x3 +Ax+B.LetP1 = (x1, y1) and
P2 = (x2, y2) bepointson E with P1, P2 �= ∞.DefineP1 +P2 = P3 = (x3, y3)
asfollows:

1. Ifx1 �= x2,then

x3 = m2 − x1 − x2, y3 = m(x1 − x3) − y1, wherem =
y2 − y1

x2 − x1
.

2. Ifx1 = x2 buty1 �= y2,then P1 + P2 = ∞.

3. IfP1 = P2 and y1 �= 0,then

x3 = m2 − 2x1, y3 = m(x1 − x3) − y1, wherem =
3x2

1 + A

2y1
.

4. IfP1 = P2 and y1 = 0,then P1 + P2 = ∞.

M oreover,define
P + ∞ = P

forallpointsP on E.
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SECTION 2.2 THE GROUP LAW 15

Note that when P1 and P2 have coordinates in a field L that contains A and
B, then P1 + P2 also has coordinates in L. Therefore E(L) is closed under
the above addition of points.

This addition of points might seem a little unnatural. Later (in Chapters 9
and 11), we’ll interpret it as corresponding to some very natural operations,
but, for the present, let’s show that it has some nice properties.

THEOREM 2.1
Theaddition ofpointson an ellipticcurveE satisfiesthefollowingproperties:

1. (com m utativity)P1 + P2 = P2 + P1 forallP1, P2 on E.

2. (existence ofidentity)P + ∞ = P forallpointsP on E.

3. (existenceofinverses)Given P on E,thereexistsP ′ on E withP +P ′ =
∞.ThispointP ′ willusually be denoted −P.

4. (associativity) (P1 + P2) + P3 = P1 + (P2 + P3) forallP1, P2, P3 on E.

In otherwords,the pointson E form an additive abelian group with∞ asthe
identity elem ent.

PROOF The commutativity is obvious, either from the formulas or from
the fact that the line through P1 and P2 is the same as the line through P2

and P1. The identity property of ∞ holds by definition. For inverses, let P ′

be the reflection of P across the x-axis. Then P + P ′ = ∞.
Finally, we need to prove associativity. This is by far the most subtle and

nonobvious property of the addition of points on E. It is possible to define
many laws of composition satisfying (1), (2), (3) for points on E, either simpler
or more complicated than the one being considered. But it is very unlikely
that such a law will be associative. In fact, it is rather surprising that the
law of composition that we have defined is associative. After all, we start
with two points P1 and P2 and perform a certain procedure to obtain a third
point P1 + P2. Then we repeat the procedure with P1 + P2 and P3 to obtain
(P1 + P2) + P3. If we instead start by adding P2 and P3, then computing
P1 + (P2 + P3), there seems to be no obvious reason that this should give the
same point as the other computation.

The associative law can be verified by calculation with the formulas. There
are several cases, depending on whether or not P1 = P2, and whether or not
P3 = (P1 + P2), etc., and this makes the proof rather messy. However, we
prefer a different approach, which we give in Section 2.4.

Warning: For the Weierstrass equation, if P = (x, y), then −P = (x,−y).
For the generalized Weierstrass equation (2.1), this is no longer the case. If
P = (x, y) is on the curve described by (2.1), then (see Exercise 2.9)

−P = (x, −a1x − a3 − y).
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16 CHAPTER 2 THE BASIC THEORY

Example 2.1
The calculations of Chapter 1 can now be interpreted as adding points on

elliptic curves. On the curve

y2 =
x(x + 1)(2x + 1)

6
,

we have

(0, 0) + (1, 1) = (
1
2
,−1

2
), (

1
2
,−1

2
) + (1, 1) = (24,−70).

On the curve
y2 = x3 − 25x,

we have

2(−4, 6) = (−4, 6) + (−4, 6) =
(

1681
144

, −62279
1728

)
.

We also have

(0, 0) + (−5, 0) = (5, 0), 2(0, 0) = 2(−5, 0) = 2(5, 0) = ∞.

The fact that the points on an elliptic curve form an abelian group is be-
hind most of the interesting properties and applications. The question arises:
what can we say about the groups of points that we obtain? Here are some
examples.

1. An elliptic curve over a finite field has only finitely many points with
coordinates in that finite field. Therefore, we obtain a finite abelian
group in this case. Properties of such groups, and applications to cryp-
tography, will be discussed in later chapters.

2. If E is an elliptic curve defined over Q, then E(Q) is a finitely generated
abelian group. This is the Mordell-Weil theorem, which we prove in
Chapter 8. Such a group is isomorphic to Zr ⊕ F for some r ≥ 0
and some finite group F . The integer r is called the rank of E(Q).
Determining r is fairly difficult in general. It is not known whether r
can be arbitrarily large. At present, there are elliptic curves known with
rank at least 28. The finite group F is easy to compute using the Lutz-
Nagell theorem of Chapter 8. Moreover, a deep theorem of Mazur says
that there are only finitely many possibilities for F , as E ranges over all
elliptic curves defined over Q.

3. An elliptic curve over the complex numbers C is isomorphic to a torus.
This will be proved in Chapter 9. The usual way to obtain a torus is as
C/L, where L is a lattice in C. The usual addition of complex numbers
induces a group law on C/L that corresponds to the group law on the
elliptic curve under the isomorphism between the torus and the elliptic
curve.
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SECTION 2.2 THE GROUP LAW 17

Figure 2.3

An Elliptic Curve over C

4. If E is defined over R, then E(R) is isomorphic to the unit circle S1

or to S1 ⊕ Z2. The first case corresponds to the case where the cubic
polynomial x3 +Ax+B has only one real root (think of the ends of the
graph in Figure 2.1(b) as being hitched together at the point ∞ to get a
loop). The second case corresponds to the case where the cubic has three
real roots. The closed loop in Figure 2.1(a) is the set S1⊕{1}, while the
open-ended loop can be closed up using ∞ to obtain the set S1 ⊕ {0}.
If we have an elliptic curve E defined over R, then we can consider its
complex points E(C). These form a torus, as in (3) above. The real
points E(R) are obtained by intersecting the torus with a plane. If the
plane passes through the hole in the middle, we obtain a curve as in
Figure 2.1(a). If it does not pass through the hole, we obtain a curve as
in Figure 2.1(b) (see Section 9.3).

If P is a point on an elliptic curve and k is a positive integer, then kP
denotes P + P + · · · + P (with k summands). If k < 0, then kP = (−P ) +
(−P )+ · · · (−P ), with |k| summands. To compute kP for a large integer k, it
is inefficient to add P to itself repeatedly. It is much faster to use successive
doubling. For example, to compute 19P , we compute

2P, 4P = 2P+2P, 8P = 4P+4P, 16P = 8P+8P, 19P = 16P+2P+P.

This method allows us to compute kP for very large k, say of several hundred
digits, very quickly. The only difficulty is that the size of the coordinates of
the points increases very rapidly if we are working over the rational numbers
(see Theorem 8.18). However, when we are working over a finite field, for
example Fp, this is not a problem because we can continually reduce mod p
and thus keep the numbers involved relatively small. Note that the associative
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18 CHAPTER 2 THE BASIC THEORY

law allows us to make these computations without worrying about what order
we use to combine the summands.

The method of successive doubling can be stated in general as follows:

INTEGER TIMES A POINT
Let k be a positive integer and letP be a pointon an elliptic curve. The
following procedure com putes kP.

1. Startwith a = k, B = ∞, C = P.

2. Ifa iseven,leta = a/2,and letB = B, C = 2C.

3. Ifa isodd,leta = a − 1,and letB = B + C, C = C.

4. Ifa �= 0,go to step 2.

5. OutputB.

The outputB is kP (see Exercise 2.8).

On the other hand, if we are working over a large finite field and are given
points P and kP , it is very difficult to determine the value of k. This is called
the discrete logarithm problem for elliptic curves and is the basis for the
cryptographic applications that will be discussed in Chapter 6.

2.3 Projective Space and the Point at Infinity

We all know that parallel lines meet at infinity. Projective space allows us
to make sense out of this statement and also to interpret the point at infinity
on an elliptic curve.

Let K be a field. Two-dimensional projective space P2
K over K is given by

equivalence classes of triples (x, y, z) with x, y, z ∈ K and at least one of x, y, z
nonzero. Two triples (x1, y1, z1) and (x2, y2, z2) are said to be equivalent if
there exists a nonzero element λ ∈ K such that

(x1, y1, z1) = (λx2, λy2, λz2).

We write (x1, y1, z1) ∼ (x2, y2, z2). The equivalence class of a triple only
depends on the ratios of x to y to z. Therefore, the equivalence class of
(x, y, z) is denoted (x : y : z).

If (x : y : z) is a point with z �= 0, then (x : y : z) = (x/z : y/z : 1). These
are the “finite” points in P2

K . However, if z = 0 then dividing by z should
be thought of as giving ∞ in either the x or y coordinate, and therefore the
points (x : y : 0) are called the “points at infinity” in P2

K . The point at
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SECTION 2.3 PROJECTIVE SPACE AND THE POINT AT INFINITY 19

infinity on an elliptic curve will soon be identified with one of these points at
infinity in P2

K .
The two-dimensional affine plane over K is often denoted

A2
K = {(x, y) ∈ K × K}.

We have an inclusion
A2

K ↪→ P2
K

given by
(x, y) �→ (x : y : 1).

In this way, the affine plane is identified with the finite points in P2
K . Adding

the points at infinity to obtain P2
K can be viewed as a way of “compactifying”

the plane (see Exercise 2.10).
A polynomial is homogeneous of degree n if it is a sum of terms of the

form axiyjzk with a ∈ K and i + j + k = n. For example, F (x, y, z) =
2x3 − 5xyz + 7yz2 is homogeneous of degree 3. If a polynomial F is homoge-
neous of degree n then F (λx, λy, λz) = λnF (x, y, z) for all λ ∈ K. It follows
that if F is homogeneous of some degree, and (x1, y1, z1) ∼ (x2, y2, z2), then
F (x1, y1, z1) = 0 if and only if F (x2, y2, z2) = 0. Therefore, a zero of F in P2

K

does not depend on the choice of representative for the equivalence class, so
the set of zeros of F in P2

K is well defined.
If F (x, y, z) is an arbitrary polynomial in x, y, z, then we cannot talk about

a point in P2
K where F (x, y, z) = 0 since this depends on the representative

(x, y, z) of the equivalence class. For example, let F (x, y, z) = x2 + 2y − 3z.
Then F (1, 1, 1) = 0, so we might be tempted to say that F vanishes at (1 : 1 :
1). But F (2, 2, 2) = 2 and (1 : 1 : 1) = (2 : 2 : 2). To avoid this problem, we
need to work with homogeneous polynomials.

If f(x, y) is a polynomial in x and y, then we can make it homogeneous by
inserting appropriate powers of z. For example, if f(x, y) = y2−x3−Ax−B,
then we obtain the homogeneous polynomial F (x, y, z) = y2z − x3 − Axz2 −
Bz3. If F is homogeneous of degree n then

F (x, y, z) = znf(
x

z
,
y

z
)

and
f(x, y) = F (x, y, 1).

We can now see what it means for two parallel lines to meet at infinity. Let

y = mx + b1, y = mx + b2

be two nonvertical parallel lines with b1 �= b2. They have the homogeneous
forms

y = mx + b1z, y = mx + b2z.
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20 CHAPTER 2 THE BASIC THEORY

(The preceding discussion considered only equations of the form f(x, y) = 0
and F (x, y, z) = 0; however, there is nothing wrong with rearranging these
equations to the form “homogeneous of degree n = homogeneous of degree
n.”) When we solve the simultaneous equations to find their intersection, we
obtain

z = 0 and y = mx.

Since we cannot have all of x, y, z being 0, we must have x �= 0. Therefore, we
can rescale by dividing by x and find that the intersection of the two lines is

(x : mx : 0) = (1 : m : 0).

Similarly, if x = c1 and x = c2 are two vertical lines, they intersect in the
point (0 : 1 : 0). This is one of the points at infinity in P2

K .
Now let’s look at the elliptic curve E given by y2 = x3 + Ax + B. Its

homogeneous form is y2z = x3 + Axz2 + Bz3. The points (x, y) on the
original curve correspond to the points (x : y : 1) in the projective version. To
see what points on E lie at infinity, set z = 0 and obtain 0 = x3. Therefore
x = 0, and y can be any nonzero number (recall that (0 : 0 : 0) is not allowed).
Rescale by y to find that (0 : y : 0) = (0 : 1 : 0) is the only point at infinity on
E. As we saw above, (0 : 1 : 0) lies on every vertical line, so every vertical line
intersects E at this point at infinity. Moreover, since (0 : 1 : 0) = (0 : −1 : 0),
the “top” and the “bottom” of the y-axis are the same.

There are situations where using projective coordinates speeds up compu-
tations on elliptic curves (see Section 2.6). However, in this book we almost
always work in affine (nonprojective) coordinates and treat the point at infin-
ity as a special case when needed. An exception is the proof of associativity
of the group law given in Section 2.4, where it will be convenient to have the
point at infinity treated like any other point (x : y : z).

2.4 Proof of Associativity

In this section, we prove the associativity of addition of points on an elliptic
curve. The reader who is willing to believe this result may skip this section
without missing anything that is needed in the rest of the book. However,
as corollaries of the proof, we will obtain two results, namely the theorems of
Pappus and Pascal, that are not about elliptic curves but which are interesting
in their own right.

The basic idea is the following. Start with an elliptic curve E and points
P,Q,R on E. To compute − ((P + Q) + R) we need to form the lines �1 =
PQ, m2 = ∞, P + Q, and �3 = R,P + Q, and see where they intersect E.
To compute − ((P + (Q + R)) we need to form the lines m1 = QR, �2 =
∞, Q + R, and m3 = P,Q + R. It is easy to see that the points Pij = �i ∩mj
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SECTION 2.4 PROOF OF ASSOCIATIVITY 21

lie on E, except possibly for P33. We show in Theorem 2.6 that having the
eight points Pij �= P33 on E forces P33 to be on E. Since �3 intersects E at
the points R,P + Q,− ((P + Q) + R), we must have − ((P + Q) + R) = P33.
Similarly, − (P + (Q + R)) = P33, so

− ((P + Q) + R) = − (P + (Q + R)) ,

which implies the desired associativity.
There are three main technicalities that must be treated. First, some of

the points Pij could be at infinity, so we need to use projective coordinates.
Second, a line could be tangent to E, which means that two Pij could be
equal. Therefore, we need a careful definition of the order to which a line
intersects a curve. Third, two of the lines could be equal. Dealing with these
technicalities takes up most of our attention during the proof.

First, we need to discuss lines in P2
K . The standard way to describe a line

is by a linear equation: ax + by + cz = 0. Sometimes it is useful to give a
parametric description:

x = a1u + b1v

y = a2u + b2v (2.2)
z = a3u + b3v

where u, v run through K, and at least one of u, v is nonzero. For example, if
a �= 0, the line

ax + by + cz = 0

can be described by

x = −(b/a)u − (c/a)v, y = u, z = v.

Suppose all the vectors (ai, bi) are multiples of each other, say (ai, bi) =
λi(a1, b1). Then (x, y, z) = x(1, λ2, λ3) for all u, v such that x �= 0. So we get
a point, rather than a line, in projective space. Therefore, we need a condition
on the coefficients a1, . . . , b3 that ensure that we actually get a line. It is not
hard to see that we must require the matrix⎛⎝a1 b1

a2 b2

a3 b3

⎞⎠
to have rank 2 (cf. Exercise 2.12).

If (u1, v1) = λ(u2, v2) for some λ ∈ K×, then (u1, v1) and (u2, v2) yield
equivalent triples (x, y, z). Therefore, we can regard (u, v) as running through
points (u : v) in 1-dimensional projective space P1

K . Consequently, a line
corresponds to a copy of the projective line P1

K embedded in the projective
plane.
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We need to quantify the order to which a line intersects a curve at a point.
The following gets us started.

LEMMA 2.2
LetG(u, v) be a nonzero hom ogeneous polynom ialand let (u0 : v0) ∈ P1

K.
Then thereexistsan integerk ≥ 0 and a polynom ialH(u, v) withH(u0, v0) �=
0 such that

G(u, v) = (v0u − u0v)kH(u, v).

PROOF Suppose v0 �= 0. Let m be the degree of G. Let g(u) = G(u, v0).
By factoring out as large a power of u − u0 as possible, we can write g(u) =
(u − u0)kh(u) for some k and for some polynomial h of degree m − k with
h(u0) �= 0. Let H(u, v) = (vm−k/vm

0 )h(uv0/v), so H(u, v) is homogeneous of
degree m − k. Then

G(u, v) =
(

v

v0

)m

g
(uv0

v

)
=

vm−k

vm
0

(v0u − u0v)k
h
(uv0

v

)
=(v0u − u0v)kH(u, v),

as desired.
If v0 = 0, then u0 �= 0. Reversing the roles of u and v yields the proof in

this case.

Let f(x, y) = 0 (where f is a polynomial) describe a curve C in the affine
plane and let

x = a1t + b1, y = a2t + b2

be a line L written in terms of the parameter t. Let

f̃(t) = f(a1t + b1, a2t + b2).

Then L intersects C when t = t0 if f̃(t0) = 0. If (t − t0)2 divides f̃(t),
then L is tangent to C (if the point corresponding to t0 is nonsingular. See
Lemma 2.5). More generally, we say that L intersects C to order n at the
point (x, y) corresponding to t = t0 if (t− t0)n is the highest power of (t− t0)
that divides f̃(t).

The homogeneous version of the above is the following. Let F (x, y, z) be a
homogeneous polynomial, so F = 0 describes a curve C in P2

K . Let L be a
line given parametrically by (2.2) and let

F̃ (u, v) = F (a1u + b1v, a2u + b2v, a3u + b3v).

We say that L intersects C to order n at the point P = (x0 : y0 : z0)
corresponding to (u : v) = (u0 : v0) if (v0u − u0v)n is the highest power of
(v0u − u0v) dividing F̃ (u, v). We denote this by

ordL,P (F ) = n.
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If F̃ is identically 0, then we let ordL,P (F ) = ∞. It is not hard to show that
ordL,P (F ) is independent of the choice of parameterization of the line L. Note
that v = v0 = 1 corresponds to the nonhomogeneous situation above, and the
definitions coincide (at least when z �= 0). The advantage of the homogeneous
formulation is that it allows us to treat the points at infinity along with the
finite points in a uniform manner.

LEMMA 2.3
Let L1 and L2 be lines intersecting in a point P, and, for i = 1, 2, let

Li(x, y, z) be a linear polynom ialdefining Li. Then ordL1,P (L2) = 1 unless
L1(x, y, z) = αL2(x, y, z) for som e constantα,in which case ordL1,P (L2) =
∞.

PROOF When we substitute the parameterization for L1 into L2(x, y, z),
we obtain L̃2, which is a linear expression in u, v. Let P correspond to (u0 :
v0). Since L̃2(u0, v0) = 0, it follows that L̃2(u, v) = β(v0u − u0v) for some
constant β. If β �= 0, then ordL1,P (L2) = 1. If β = 0, then all points on
L1 lie on L2. Since two points in P2

K determine a line, and L1 has at least
three points (P1

K always contains the points (1 : 0), (0 : 1), (1 : 1)), it follows
that L1 and L2 are the same line. Therefore L1(x, y, z) is proportional to
L2(x, y, z).

Usually, a line that intersects a curve to order at least 2 is tangent to the
curve. However, consider the curve C defined by

F (x, y, z) = y2z − x3 = 0.

Let
x = au, y = bu, z = v

be a line through the point P = (0 : 0 : 1). Note that P corresponds to
(u : v) = (0 : 1). We have F̃ (u, v) = u2(b2v − a3u), so every line through P
intersects C to order at least 2. The line with b = 0, which is the best choice
for the tangent at P , intersects C to order 3. The affine part of C is the curve
y2 = x3, which is pictured in Figure 2.7. The point (0, 0) is a singularity of
the curve, which is why the intersections at P have higher orders than might
be expected. This is a situation we usually want to avoid.

DEFINITION 2.4 A curveC in P2
K defined byF (x, y, z) = 0 issaid to be

nonsingular ata pointP ifatleastone ofthe partialderivativesFx, Fy, Fz

isnonzero atP.

For example, consider an elliptic curve defined by F (x, y, z) = y2z − x3 −
Axz2 − Bz3 = 0, and assume the characteristic of our field K is not 2 or 3.
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We have

Fx = −3x2 − Az2, Fy = 2yz, Fz = y2 − 2Axz − 3Bz2.

Suppose P = (x : y : z) is a singular point. If z = 0, then Fx = 0 implies
x = 0 and Fz = 0 implies y = 0, so P = (0 : 0 : 0), which is impossible.
Therefore z �= 0, so we may take z = 1 (and therefore ignore it). If Fy = 0,
then y = 0. Since (x : y : 1) lies on the curve, x must satisfy x3 +Ax+B = 0.
If Fx = −(3x2 + A) = 0, then x is a root of a polynomial and a root of its
derivative, hence a double root. Since we assumed that the cubic polynomial
has no multiple roots, we have a contradiction. Therefore an elliptic curve has
no singular points. Note that this is true even if we are considering points with
coordinates in K (= algebraic closure of K). In general, by a nonsingular
curve we mean a curve with no singular points in K.

If we allow the cubic polynomial to have a multiple root x, then it is easy to
see that the curve has a singularity at (x : 0 : 1). This case will be discussed
in Section 2.10.

If P is a nonsingular point of a curve F (x, y, z) = 0, then the tangent line
at P is

Fx(P )x + Fy(P )y + Fz(P )z = 0.

For example, if F (x, y, z) = y2z − x3 − Axz2 − Bz3 = 0, then the tangent
line at (x0 : y0 : z0) is

(−3x2
0 − Az2

0)x + 2y0z0y + (y2
0 − 2Ax0z0 − 3Bz2

0)z = 0.

If we set z0 = z = 1, then we obtain

(−3x2
0 − A)x + 2y0y + (y2

0 − 2Ax0 − 3B) = 0.

Using the fact that y2
0 = x3

0 + Ax0 + B, we can rewrite this as

(−3x2
0 − A)(x − x0) + 2y0(y − y0) = 0.

This is the tangent line in affine coordinates that we used in obtaining the
formulas for adding a point to itself on an elliptic curve. Now let’s look at
the point at infinity on this curve. We have (x0 : y0 : z0) = (0 : 1 : 0). The
tangent line is given by 0x + 0y + z = 0, which is the “line at infinity” in P2

K .
It intersects the elliptic curve only in the point (0 : 1 : 0). This corresponds
to the fact that ∞ + ∞ = ∞ on an elliptic curve.

LEMMA 2.5
LetF (x, y, z) = 0 define a curve C. IfP is a nonsingular pointofC,then
there isexactly one line in P2

K thatintersectsC to orderatleast2,and itis
the tangentto C atP.

PROOF Let L be a line intersecting C to order k ≥ 1. Parameterize L
by (2.2) and substitute into F . This yields F̃ (u, v). Let (u0 : v0) correspond
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to P . Then F̃ = (v0u − u0v)kH(u, v) for some H(u, v) with H(u0, v0) �= 0.
Therefore,

F̃u(u, v) = kv0(v0u − u0v)k−1H(u, v) + (v0u − u0v)kHu(u, v)

and

F̃v(u, v) = −ku0(v0u − u0v)k−1H(u, v) + (v0u − u0v)kHv(u, v).

It follows that k ≥ 2 if and only if F̃u(u0, v0) = F̃v(u0, v0) = 0.
Suppose k ≥ 2. The chain rule yields

F̃u = a1Fx + a2Fy + a3Fz = 0, F̃v = b1Fx + b2Fy + b3Fz = 0 (2.3)

at P . Recall that since the parameterization (2.2) yields a line, the vectors
(a1, a2, a3) and (b1, b2, b3) must be linearly independent.

Suppose L′ is another line that intersects C to order at least 2. Then we
obtain another set of equations

a′
1Fx + a′

2Fy + a′
3Fz = 0, b′1Fx + b′2Fy + b′3Fz = 0

at P .
If the vectors a′ = (a′

1, a
′
2, a

′
3) and b′ = (b′1, b

′
2, b

′
3) span the same plane in

K3 as a = (a1, a2, a3) and b = (b1, b2, b3), then

a′ = αa + βb, b′ = γa + δb

for some invertible matrix
(

α β
γ δ

)
. Therefore,

ua′ + vb′ = (uα + vγ)a + (uβ + vδ)b = u1a + v1b

for a new choice of parameters u1, v1. This means that L and L′ are the same
line.

If L and L′ are different lines, then a,b and a′,b′ span different planes, so
the vectors a,b,a′,b′ must span all of K3. Since (Fx, Fy, Fz) has dot product
0 with these vectors, it must be the 0 vector. This means that P is a singular
point, contrary to our assumption.

Finally, we need to show that the tangent line intersects the curve to order
at least 2. Suppose, for example, that Fx �= 0 at P . The cases where Fy �= 0
and Fz �= 0 are similar. The tangent line can be given the parameterization

x = −(Fy/Fx)u − (Fz/Fx)v, y = u, z = v,

so
a1 = −Fy/Fx, b1 = −Fz/Fx, a2 = 1, b2 = 0, a3 = 0, b3 = 1

in the notation of (2.2). Substitute into (2.3) to obtain

F̃u = (−Fy/Fx)Fx + Fy = 0, F̃v = (−Fz/Fx)Fx + Fz = 0.
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By the discussion at the beginning of the proof, this means that the tangent
line intersects the curve to order k ≥ 2.

The associativity of elliptic curve addition will follow easily from the next
result. The proof can be simplified if the points Pij are assumed to be distinct.
The cases where points are equal correspond to situations where tangent lines
are used in the definition of the group law. Correspondingly, this is where
it is more difficult to verify the associativity by direct calculation with the
formulas for the group law.

THEOREM 2.6
LetC(x, y, z) be a hom ogeneouscubic polynom ial,and letC be the curve in
P2

K described by C(x, y, z) = 0. Let�1, �2, �3 and m1,m2,m3 be lines in P2
K

such that �i �= mj for alli, j. LetPij be the pointofintersection of�i and
mj. Suppose Pij isa nonsingular pointon the curve C for all(i, j) �= (3, 3).
In addition, we require that if, for som e i, there are k ≥ 2 of the points
Pi1, Pi2, Pi3 equalto the sam e point,then �i intersectsC to order atleastk
atthis point. Also,if,for som e j,there are k ≥ 2 ofthe pointsP1j , P2j , P3j

equalto the sam e point,then mj intersectsC to orderatleastk atthispoint.
Then P33 also lieson the curve C.

PROOF Express �1 in the parametric form (2.2). Then C(x, y, z) becomes
C̃(u, v). The line �1 passes through P11, P12, P13. Let (u1 : v1), (u2 : v2), (u3 :
v3) be the parameters on �1 for these points. Since these points lie on C, we
have C̃(ui, vi) = 0 for i = 1, 2, 3.

Let mj have equation mj(x, y, z) = ajx + bjy + cjz = 0. Substituting
the parameterization for �1 yields m̃j(u, v). Since Pij lies on mj , we have
m̃j(uj , vj) = 0 for j = 1, 2, 3. Since �1 �= mj and since the zeros of m̃j yield the
intersections of �1 and mj , the function m̃j(u, v) vanishes only at P1j , so the
linear form m̃j is nonzero. Therefore, the product m̃1(u, v)m̃2(u, v)m̃3(u, v)
is a nonzero cubic homogeneous polynomial. We need to relate this product
to C̃.

LEMMA 2.7
LetR(u, v) and S(u, v) be hom ogeneouspolynom ialsofdegree 3,with S(u, v)
notidentically 0,and suppose there are three points (ui : vi), i = 1, 2, 3,at
which R and S vanish. M oreover,ifk ofthese points are equalto the sam e
point,we require thatR and S vanish to order atleastk atthis point(that
is,(viu − uiv)k dividesR and S). Then there isa constantα ∈ K such that
R = αS.

PROOF First, observe that a nonzero cubic homogeneous polynomial
S(u, v) can have at most 3 zeros (u : v) in P1

K (counting multiplicities).
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This can be proved as follows. Factor off the highest possible power of v, say
vk. Then S(u, v) vanishes to order k at (1 : 0), and S(u, v) = vkS0(u, v) with
S0(1, 0) �= 0. Since S0(u, 1) is a polynomial of degree 3 − k, the polynomial
S0(u, 1) can have at most 3 − k zeros, counting multiplicities (it has exactly
3 − k if K is algebraically closed). All points (u : v) �= (1 : 0) can be written
in the form (u : 1), so S0(u, v) has at most 3− k zeros. Therefore, S(u, v) has
at most k + (3 − k) = 3 zeros in P1

K .
It follows easily that the condition that S(u, v) vanish to order at least k

could be replaced by the condition that S(u, v) vanish to order exactly k.
However, it is easier to check “at least” than “exactly.” Since we are allowing
the possibility that R(u, v) is identically 0, this remark does not apply to R.

Let (u0, : v0) be any point in P1
K not equal to any of the (ui : vi). (Technical

point: If K has only two elements, then P1
K has only three elements. In this

case, enlarge K to GF (4). The α we obtain is forced to be in K since it is the
ratio of a coefficient of R and a coefficient of S, both of which are in K.) Since
S can have at most three zeros, S(u0, v0) �= 0. Let α = R(u0, v0)/S(u0, v0).
Then R(u, v) − αS(u, v) is a cubic homogeneous polynomial that vanishes at
the four points (ui : vi), i = 0, 1, 2, 3. Therefore R − αS must be identically
zero.

Returning to the proof of the theorem, we note that C̃ and m̃1m̃2m̃3 vanish
at the points (ui : vi), i = 1, 2, 3. Moreover, if k of the points P1j are the
same point, then k of the linear functions vanish at this point, so the product
m̃1(u, v)m̃2(u, v)m̃3(u, v) vanishes to order at least k. By assumption, C̃
vanishes to order at least k in this situation. By the lemma, there exists a
constant α such that

C̃ = αm̃1m̃2m̃3.

Let
C1(x, y, z) = C(x, y, z) − αm1(x, y, z)m2(x, y, z)m3(x, y, z).

The line �1 can be described by a linear equation �1(x, y, z) = ax+by+cz =
0. At least one coefficient is nonzero, so let’s assume a �= 0. The other cases
are similar. The parameterization of the line �1 can be taken to be

x = −(b/a)u − (c/a)v, y = u, z = v. (2.4)

Then C̃1(u, v) = C1(−(b/a)u− (c/a)v, u, v). Write C1(x, y, z) as a polynomial
in x with polynomials in y, z as coefficients. Writing

xn = (1/an) ((ax + by + cz) − (by + cz))n = (1/an) ((ax + by + cz)n + · · · ) ,

we can rearrange C1(x, y, z) to be a polynomial in ax + by + cz whose coeffi-
cients are polynomials in y, z:

C1(x, y, z) = a3(y, z)(ax + by + cz)3 + · · · + a0(y, z). (2.5)
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Substituting (2.4) into (2.5) yields

0 = C̃1(u, v) = a0(u, v),

since ax+by+cz vanishes identically when x, y, z are written in terms of u, v.
Therefore a0(y, z) = a0(u, v) is the zero polynomial. It follows from (2.5) that
C1(x, y, z) is a multiple of �1(x, y, z) = ax + by + cz.

Similarly, there exists a constant β such that C(x, y, z) − β�1�2�3 is a mul-
tiple of m1.

Let

D(x, y, z) = C − αm1m2m3 − β�1�2�3.

Then D(x, y, z) is a multiple of �1 and a multiple of m1.

LEMMA 2.8
D(x, y, z) isa m ultiple of�1(x, y, z)m1(x, y, z).

PROOF Write D = m1D1. We need to show that �1 divides D1. We
could quote some result about unique factorization, but instead we proceed
as follows. Parameterize the line �1 via (2.4) (again, we are considering the
case a �= 0). Substituting this into the relation D = m1D1 yields D̃ = m̃1D̃1.
Since �1 divides D, we have D̃ = 0. Since m1 �= �1, we have m̃1 �= 0. Therefore
D̃1(u, v) is the zero polynomial. As above, this implies that D1(x, y, z) is a
multiple of �1, as desired.

By the lemma,
D(x, y, z) = �1m1�,

where �(x, y, z) is linear. By assumption, C = 0 at P22, P23, P32. Also, �1�2�3
and m1m2m3 vanish at these points. Therefore, D(x, y, z) vanishes at these
points. Our goal is to show that D is identically 0.

LEMMA 2.9
�(P22) = �(P23) = �(P32) = 0.

PROOF First suppose that P13 �= P23. If �1(P23) = 0, then P23 is on
the line �1 and also on �2 and m3 by definition. Therefore, P23 equals the
intersection P13 of �1 and m3. Since P23 and P13 are for the moment assumed
to be distinct, this is a contradiction. Therefore �1(P23) �= 0. Since D(P23) =
0, it follows that m1(P23)�(P23) = 0.

Suppose now that P13 = P23. Then, by the assumption in the theo-
rem, m3 is tangent to C at P23, so ordm3,P23(C) ≥ 2. Since P13 = P23

and P23 lies on m3, we have ordm3,P23(�1) = ordm3,P23(�2) = 1. There-
fore, ordm3,P23(α�1�2�3) ≥ 2. Also, ordm3,P23(βm1m2m3) = ∞. Therefore,
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ordm3,P23(D) ≥ 2, since D is a sum of terms, each of which vanishes to order
at least 2. But ordm3,P23(�1) = 1, so we have

ordm3,P23(m1�) = ordm3,P23(D) − ordm3,P23(�1) ≥ 1.

Therefore m1(P23)�(P23) = 0.
In both cases, we have m1(P23)�(P23) = 0.
If m1(P23) �= 0, then �(P23) = 0, as desired.
If m1(P23) = 0, then P23 lies on m1, and also on �2 and m3, by definition.

Therefore, P23 = P21, since �2 and m1 intersect in a unique point. By as-
sumption, �2 is therefore tangent to C at P23. Therefore, ord�2,P23(C) ≥ 2.
As above, ord�2,P23(D) ≥ 2, so

ord�2,P23(�1�) ≥ 1.

If in this case we have �1(P23) = 0, then P23 lies on �1, �2,m3. Therefore
P13 = P23. By assumption, the line m3 is tangent to C at P23. Since P23 is a
nonsingular point of C, Lemma 2.5 says that �2 = m3, contrary to hypothesis.
Therefore, �1(P23) �= 0, so �(P23) = 0.

Similarly, �(P22) = �(P32) = 0.

If �(x, y, z) is identically 0, then D is identically 0. Therefore, assume that
�(x, y, z) is not zero and hence it defines a line �.

First suppose that P23, P22, P32 are distinct. Then � and �2 are lines through
P23 and P22. Therefore � = �2. Similarly, � = m2. Therefore �2 = m2,
contradiction.

Now suppose that P32 = P22. Then m2 is tangent to C at P22. As before,

ordm2,P22(�1m1�) ≥ 2.

We want to show that this forces � to be the same line as m2.
If m1(P22) = 0, then P22 lies on m1,m2, �2. Therefore, P21 = P22. This

means that �2 is tangent to C at P22. By Lemma 2.5, �2 = m2, contradiction.
Therefore, m1(P22) �= 0.

If �1(P22) �= 0, then ordm2,P22(�) ≥ 2. This means that � is the same line as
m2.

If �1(P22) = 0, then P22 = P32 lies on �1, �2, �3,m2, so P12 = P22 =
P32. Therefore ordm2,P22(C) ≥ 3. By the reasoning above, we now have
ordm2,P22(�1m1�) ≥ 3. Since we have proved that m1(P22) �= 0, we have
ordm2,P22(�) ≥ 2. This means that � is the same line as m2.

So now we have proved, under the assumption that P32 = P22, that � is the
same line as m2. By Lemma 2.9, P23 lies on �, and therefore on m2. It also
lies on �2 and m3. Therefore, P22 = P23. This means that �2 is tangent to C
at P22. Since P32 = P22 means that m2 is also tangent to C at P22, we have
�2 = m2, contradiction. Therefore, P32 �= P22 (under the assumption that
� �= 0).
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Similarly, P23 �= P22.
Finally, suppose P23 = P32. Then P23 lies on �2, �3,m2,m3. This forces

P22 = P32, which we have just shown is impossible.
Therefore, all possibilities lead to contradictions. It follows that �(x, y, z)

must be identically 0. Therefore D = 0, so

C = α�1�2�3 + βm1m2m3.

Since �3 and m3 vanish at P33, we have C(P33) = 0, as desired. This completes
the proof of Theorem 2.6.

REMARK 2.10 Note that we proved the stronger result that

C = α�1�2�3 + βm1m2m3

for some constants α, β. Since there are 10 coefficients in an arbitrary ho-
mogeneous cubic polynomial in three variables and we have required that C
vanish at eight points (when the Pij are distinct), it is not surprising that the
set of possible polynomials is a two-parameter family. When the Pij are not
distinct, the tangency conditions add enough restrictions that we still obtain
a two-parameter family.

We can now prove the associativity of addition for an elliptic curve. Let
P,Q,R be points on E. Define the lines

�1 = PQ, �2 = ∞, Q + R, �3 = R,P + Q

m1 = QR, m2 = ∞, P + Q, m3 = P,Q + R.

We have the following intersections:

�1 �2 �3

m1 Q −(Q + R) R
m2 −(P + Q) ∞ P + Q
m3 P Q + R X

Assume for the moment that the hypotheses of the theorem are satisfied.
Then all the points in the table, including X, lie on E. The line �3 has three
points of intersection with E, namely R,P + Q, and X. By the definition of
addition, X = −((P + Q) + R). Similarly, m3 intersects C in 3 points, which
means that X = −(P +(Q+R)). Therefore, after reflecting across the x-axis,
we obtain (P + Q) + R = P + (Q + R), as desired.

It remains to verify the hypotheses of the theorem, namely that the orders
of intersection are correct and that the lines �i are distinct from the lines mj .

First we want to dispense with cases where ∞ occurs. The problem is that
we treated ∞ as a special case in the definition of the group law. However,
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as pointed out earlier, the tangent line at ∞ intersects the curve only at ∞
(and intersects to order 3 at ∞). It follows that if two of the entries in a row
or column of the above table of intersections are equal to ∞, then so is the
third, and the line intersects the curve to order 3. Therefore, this hypothesis
is satisfied.

It is also possible to treat directly the cases where some of the intersection
points P,Q,R,±(P + Q),±(Q + R) are ∞. In the cases where at least one of
P,Q,R is ∞, associativity is trivial.

If P + Q = ∞, then (P + Q) + R = ∞ + R = R. On the other hand,
the sum Q + R is computed by first drawing the line L through Q and R,
which intersects E in −(Q + R). Since P + Q = ∞, the reflection of Q across
the x-axis is P . Therefore, the reflection L′ of L passes through P , −R, and
Q + R. The sum P + (Q + R) is found by drawing the line through P and
Q+R, which is L′. We have just observed that the third point of intersection
of L′ with E is −R. Reflecting yields P +(Q+R) = R, so associativity holds
in this case.

Similarly, associativity holds when Q + R = ∞.
Finally, we need to consider what happens if some line �i equals some line

mj , since then Theorem 2.6 does not apply.
First, observe that if P,Q,R are collinear, then associativity is easily verified

directly.
Second, suppose that P,Q,Q + R are collinear. Then P + (Q + R) = −Q.

Also, P + Q = −(Q + R), so (P + Q) + R = −(Q + R) + R. The second
equation of the following shows that associativity holds in this case.

LEMMA 2.11
LetP1, P2 be points on an elliptic curve. Then (P1 + P2) − P2 = P1 and
−(P1 + P2) + P2 = −P1.

PROOF The two relations are reflections of each other, so it suffices to
prove the second one. The line L through P1 and P2 intersects the elliptic
curve in −(P1 + P2). Regarding L as the line through −(P1 + P2) and P2

yields −(P1 + P2) + P2 = −P1, as claimed.

Suppose that �i = mj for some i, j. We consider the various cases. By the
above discussion, we may assume that all points in the table of intersections
are finite, except for ∞ and possibly X. Note that each �i and each mj meets
E in three points (counting multiplicity), one of which is Pij . If the two lines
coincide, then the other two points must coincide in some order.

1. �1 = m1: Then P,Q,R are collinear, and associativity follows.

2. �1 = m2: In this case, P,Q,∞ are collinear, so P +Q = ∞; associativity
follows by the direct calculation made above.
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3. �2 = m1: Similar to the previous case.

4. �1 = m3: Then P,Q,Q+R are collinear; associativity was proved above.

5. �3 = m1: Similar to the previous case.

6. �2 = m2: Then P + Q must be ±(Q + R). If P + Q = Q + R, then
commutativity plus the above lemma yields

P = (P + Q) − Q = (Q + R) − Q = R.

Therefore,

(P +Q)+R = R+(P +Q) = P +(P +Q) = P +(R+Q) = P +(Q+R).

If P + Q = −(Q + R), then

(P + Q) + R = −(Q + R) + R = −Q

and
P + (Q + R) = P − (P + Q) = −Q,

so associativity holds.

7. �2 = m3: In this case, the line m3 through P and (Q + R) intersects E
in ∞, so P = −(Q + R). Since −(Q + R), Q, R are collinear, we have
that P,Q,R are collinear and associativity holds.

8. �3 = m2: Similar to the previous case.

9. �3 = m3: Since �3 cannot intersect E in 4 points (counting multiplici-
ties), it is easy to see that P = R or P = P + Q or Q + R = P + Q or
Q + R = R. The case P = R was treated in the case �2 = m2. Assume
P = P + Q. Adding −P and applying Lemma 2.11 yields ∞ = Q, in
which case associativity immediately follows. The case Q + R = R is
similar. If Q + R = P + Q, then adding −Q and applying Lemma 2.11
yields P = R, which we have already treated.

If �i �= mj for all i, j, then the hypotheses of the theorem are satisfied, so
the addition is associative, as proved above. This completes the proof of the
associativity of elliptic curve addition.

REMARK 2.12 Note that for most of the proof, we did not use the
Weierstrass equation for the elliptic curve. In fact, any nonsingular cubic
curve would suffice. The identity O for the group law needs to be a point
whose tangent line intersects to order 3. Three points sum to 0 if they lie
on a straight line. Negation of a point P is accomplished by taking the line
through O and P . The third point of intersection is then −P . Associativity
of this group law follows just as in the Weierstrass case.
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2.4.1 The Theorems of Pappus and Pascal

Theorem 2.6 has two other nice applications outside the realm of elliptic
curves.

THEOREM 2.13 (Pascal’s Theorem)
LetABCDEF be a hexagon inscribed in a conic section (ellipse,parabola,
or hyperbola),where A,B,C,D,E, F are distinctpoints in the a ne plane.
LetX betheintersection ofAB andDE,letY betheintersection ofBC and
EF,and letZ be the intersection ofCD and FA.Then X,Y, Z are collinear
(see Figure 2.4).

Figure 2.4

Pascal’s Theorem

REMARK 2.14 (1) A conic is given by an equation q(x, y) = ax2 + bxy +
cy2+dx+ey+f = 0 with at least one of a, b, c nonzero. Usually, it is assumed
that b2−4ac �= 0; otherwise, the conic degenerates into a product of two linear
factors, and the graph is the union of two lines. The present theorem holds
even in this case, as long as the points A,C,E lie on one of the lines, B,D,F
lie on the other, and none is the intersection of the two lines.

(2) Possibly AB and DE are parallel, for example. Then X is an infinite
point in P2

K .
(3) Note that X,Y, Z will always be distinct. This is easily seen as follows:

First observe that X,Y, Z cannot lie on the conic since a line can intersect
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the conic in at most two points; the points A,B,C,D,E, F are assumed to
be distinct and therefore exhaust all possible intersections. If X = Y , then
AB and BC meet in both B and Y , and therefore the lines are equal. But
this means that A = C, contradiction. Similarly, X �= Z and Y �= Z.

PROOF Define the following lines:

�1 = EF, �2 = AB, �3 = CD, m1 = BC, m2 = DE, m3 = FA.

We have the following table of intersections:

�1 �2 �3

m1 Y B C
m2 E X D
m3 F A Z

Let q(x, y) = 0 be the affine equation of the conic. In order to apply The-
orem 2.6, we change q(x, y) to its homogeneous form Q(x, y, z). Let �(x, y, z)
be a linear form giving the line through X and Y . Then

C(x, y, z) = Q(x, y, z)�(x, y, z)

is a homogeneous cubic polynomial. The curve C = 0 contains all of the
points in the table, with the possible exception of Z. It is easily checked that
the only singular points of C are the points of intersection of Q = 0 and
� = 0, and the intersection of the two lines comprising Q = 0 in the case
of a degenerate conic. Since none of these points occur among the points
we are considering, the hypotheses of Theorem 2.6 are satisfied. Therefore,
C(Z) = 0. Since Q(Z) �= 0, we must have �(Z) = 0, so Z lies on the line
through X and Y . Therefore, X, Y , Z are collinear. This completes the proof
of Pascal’s theorem.

COROLLARY 2.15 (Pappus’s Theorem)

Let� and m be two distinctlinesin the plane.LetA,B,C be distinctpoints
of � and letA′, B′, C ′ be distinct points ofm. Assum e that none ofthese
points is the intersection of� and m. LetX be the intersection ofAB′ and
A′B,letY be the intersection ofB′C and BC ′,and letZ be the intersection
ofCA′ and C ′A.Then X,Y, Z are collinear (see Figure 2.5).

PROOF This is the case of a degenerate conic in Theorem 2.13. The
“hexagon” is AB′CA′BC ′.
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A
B

C

A’ B’
C’

Figure 2.5

Pappus’s Theorem

2.5 Other Equations for Elliptic Curves

In this book, we are mainly using the Weierstrass equation for an elliptic
curve. However, elliptic curves arise in various other guises, and it is worth-
while to discuss these briefly.

2.5.1 Legendre Equation

This is a variant on the Weierstrass equation. Its advantage is that it
allows us to express all elliptic curves over an algebraically closed field (of
characteristic not 2) in terms of one parameter.

PROPOSITION 2.16

LetK be a field ofcharacteristic not2 and let

y2 = x3 + ax2 + bx + c = (x − e1)(x − e2)(x − e3)

be an elliptic curveE overK with e1, e2, e3 ∈ K.Let

x1 = (e2 − e1)−1(x − e1), y1 = (e2 − e1)−3/2y, λ =
e3 − e1

e2 − e1
.

Then λ �= 0, 1 and

y2
1 = x1(x1 − 1)(x1 − λ).

PROOF This is a straightforward calculation.
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The parameter λ for E is not unique. In fact, each of

{λ,
1
λ

, 1 − λ,
1

1 − λ
,

λ

λ − 1
,
λ − 1

λ
}

yields a Legendre equation for E. They correspond to the six permutations
of the roots e1, e2, e3. It can be shown that these are the only values of
λ corresponding to E, so the map λ �→ E is six-to-one, except where λ =
−1, 1/2, 2, or λ2 − λ + 1 = 0 (in these situations, the above set collapses; see
Exercise 2.13).

2.5.2 Cubic Equations

It is possible to start with a cubic equation C(x, y) = 0, over a field K of
characteristic not 2 or 3, that has a point with x, y ∈ K and find an invertible
change of variables that transforms the equation to Weierstrass form (although
possibly 4A3 + 27B2 = 0). The procedure is fairly complicated (see [25], [28],
or [84]), so we restrict our attention to a specific example.

Consider the cubic Fermat equation

x3 + y3 + z3 = 0.

The fact that this equation has no rational solutions with xyz �= 0 was conjec-
tured by the Arabs in the 900s and represents a special case of Fermat’s Last
Theorem, which asserts that the sum of two nonzero nth powers of integers
cannot be a nonzero nth power when n ≥ 3. The first proof in the case n = 3
was probably due to Fermat. We’ll discuss some of the ideas for the proof in
the general case in Chapter 15.

Suppose that x3 + y3 + z3 = 0 and xyz �= 0. Since x3 + y3 = (x + y)(x2 −
xy + y2), we must have x + y �= 0. Write

x

z
= u + v,

y

z
= u − v.

Then (u + v)3 + (u − v)3 + 1 = 0, so 2u3 + 6uv2 + 1 = 0. Divide by u3 (since
x + y �= 0, we have u �= 0) and rearrange to obtain

6(v/u)2 = −(1/u)3 − 2.

Let
x1 =

−6
u

= −12
z

x + y
, y1 =

36v

u
= 36

x − y

x + y
.

Then
y2
1 = x3

1 − 432.

It can be shown (this is somewhat nontrivial) that the only rational solutions
to this equation are (x1, y1) = (12,±36), and ∞. The case y1 = 36 yields
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x − y = x + y, so y = 0. Similarly, y1 = −36 yields x = 0. The point with
(x1, y1) = ∞ corresponds to x = −y, which means that z = 0. Therefore,
there are no solutions to x3 + y3 + z3 = 0 when xyz �= 0.

2.5.3 Quartic Equations

Occasionally, we will meet curves defined by equations of the form

v2 = au4 + bu3 + cu2 + du + e, (2.6)

with a �= 0. If we have a point (p, q) lying on the curve with p, q ∈ K, then
the equation (when it is nonsingular) can be transformed into a Weierstrass
equation by an invertible change of variables that uses rational functions with
coefficients in the field K. Note that an elliptic curve E defined over a field K
always has a point in E(K), namely ∞ (whose projective coordinates (0 : 1 : 0)
certainly lie in K). Therefore, if we are going to transform a curve C into
Weierstrass form in such a way that all coefficients of the rational functions
describing the transformation lie in K, then we need to start with a point on
C that has coordinates in K.

There are curves of the form (2.6) that do not have points with coordinates
in K. This phenomenon will be discussed in more detail in Chapter 8.

Suppose we have a curve defined by an equation (2.6) and suppose we have
a point (p, q) lying on the curve. By changing u to u + p, we may assume
p = 0, so the point has the form (0, q).

First, suppose q = 0. If d = 0, then the curve has a singularity at (u, v) =
(0, 0). Therefore, assume d �= 0. Then

(
v

u2
)2 = d(

1
u

)3 + c(
1
u

)2 + b(
1
u

) + a.

This can be easily transformed into a Weierstrass equation in d/u and dv/u2.
The harder case is when q �= 0. We have the following result.

THEOREM 2.17
LetK be a field ofcharacteristic not2.Considerthe equation

v2 = au4 + bu3 + cu2 + du + q2

with a, b, c, d, q ∈ K.Let

x =
2q(v + q) + du

u2
, y =

4q2(v + q) + 2q(du + cu2) − (d2u2/2q)
u3

.

Define

a1 = d/q, a2 = c − (d2/4q2), a3 = 2qb, a4 = −4q2a, a6 = a2a4.
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Then
y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6.

The inverse transform ation is

u =
2q(x + c) − (d2/2q)

y
, v = −q +

u(ux − d)
2q

.

The point (u, v) = (0, q) corresponds to the point (x, y) = ∞ and (u, v) =
(0,−q) correspondsto (x, y) = (−a2, a1a2 − a3).

PROOF Most of the proof is a “straightforward” calculation that we omit.
For the image of the point (0,−q), see [28].

Example 2.2
Consider the equation

v2 = u4 + 1. (2.7)

Then a = 1, b = c = d = 0, and q = 1. If

x =
2(v + 1)

u2
, y =

4(v + 1)
u3

,

then we obtain the elliptic curve E given by

y2 = x3 − 4x.

The inverse transformation is

u = 2x/y, v = −1 + (2x3/y2).

The point (u, v) = (0, 1) corresponds to ∞ on E, and (u, v) = (0,−1) corre-
sponds to (0, 0). We will show in Chapter 8 that

E(Q) = {∞, (0, 0), (2, 0), (−2, 0)}.
These correspond to (u, v) = (0, 1), (0,−1), and points at infinity. Therefore,
the only finite rational points on the quartic curve are (u, v) = (0,±1). It is
easy to deduce from this that the only integer solutions to

a4 + b4 = c2

satisfy ab = 0. This yields Fermat’s Last Theorem for exponent 4. We will
discuss this in more detail in Chapter 8.

It is worth considering briefly the situation at infinity in u, v. If we make
the equation (2.7) homogeneous, we obtain

F (u, v, w) = v2w2 − u4 − w4 = 0.
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The points at infinity have w = 0. To find them, we set w = 0 and get 0 = u4,
which means u = 0. We thus find only the point (u : v : w) = (0 : 1 : 0). But
we have two points, namely (2, 0) and (−2, 0) in the corresponding Weierstrass
model. The problem is that (u : v : w) = (0 : 1 : 0) is a singular point in the
quartic model. At this point we have

Fu = Fv = Fw = 0.

What is happening is that the curve intersects itself at the point (u : v :
w) = (0 : 1 : 0). One branch of the curve is v = +u2

√
1 + (1/u)4 and the

other is v = −u2
√

1 + (1/u)4. For simplicity, let’s work with real or complex
numbers. If we substitute the second of these expressions into x = 2(v+1)/u2

and take the limit as u → ∞, we obtain

x =
2(v + 1)

u2
=

2(1 − u2
√

1 + (1/u)4)
u2

→ −2.

If we use the other branch, we find x → +2. So the transformation that
changes the quartic equation into the Weierstrass equation has pulled apart
the two branches (the technical term is “resolved the singularities”) at the
singular point.

2.5.4 Intersection of Two Quadratic Surfaces

The intersection of two quadratic surfaces in three-dimensional space, along
with a point on this intersection, is usually an elliptic curve. Rather than work
in full generality, we’ll consider pairs of equations of the form

au2 + bv2 = e, cu2 + dw2 = f,

where a, b, c, d, e, f are nonzero elements of a field K of characteristic not 2.
Each separate equation may be regarded as a surface in uvw-space, and they
intersect in a curve. We’ll show that if we have a point P in the intersection,
then we can transform this curve into an elliptic curve in Weierstrass form.

Before analyzing the intersection of these two surfaces, let’s consider the
first equation by itself. It can be regarded as giving a curve C in the uv-
plane. Let P = (u0, v0) be a point on C. Let L be the line through P with
slope m:

u = u0 + t, v = v0 + mt.

We want to find the other point where L intersects C. See Figure 2.6.
Substitute into the equation for C and use the fact that au2

0 + bv2
0 = e to

obtain
a(2u0t + t2) + b(2v0mt + m2t2) = 0.
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C

�u0,v0�

L

�u,v�

Figure 2.6

Since t = 0 corresponds to (u0, v0), we factor out t and obtain

t = −2au0 + 2bv0m

a + bm2
.

Therefore,

u = u0 − 2au0 + 2bv0m

a + bm2
, v = v0 − 2amu0 + 2bv0m

2

a + bm2
.

We make the convention that m = ∞ yields (u0,−v0), which is what we get
if we are working with real numbers and let m → ∞. Also, possibly the
denominator a+bm2 vanishes, in which case we get points “at infinity” in the
uv-projective plane (see Exercise 2.14).

Note that if (u, v) is any point on C with coordinates in K, then the slope
m of the line through (u, v) and P is in K (or is infinite). We have there-
fore obtained a bijection, modulo a few technicalities, between values of m
(including ∞) and points on C (including points at infinity). The main point
is that we have obtained a parameterization of the points on C. A similar
procedure works for any conic section containing a point with coordinates in
K.

Which value of m corresponds to the original point (u0, v0)? Let m be the
slope of the tangent line at (u0, v0). The second point of intersection of the
tangent line with the curve is again the point (u0, v0), so this slope is the
desired value of m. The value m = 0 yields the point (−u0, v0). This can be
seen from the formulas, or from the fact that the line through (−u0, v0) and
(u0, v0) has slope 0.

We now want to intersect C, regarded as a “cylinder” in uvw-space, with
the surface cu2 + dw2 = f . Substitute the expression just obtained for u to
obtain

dw2 = f − c

(
u0 − 2au0 + 2bv0m

a + bm2

)2

.
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This may be rewritten as

d(w(a + bm2))2 = (a + bm2)2f − c(bu0m
2 − 2bv0m − au0)2

= (b2f − cb2u2
0)m

4 + · · · .

This may now be changed to Weierstrass form by the procedure given ear-
lier. Note that the leading coefficient b2f − cb2u2

0 equals b2dw2
0. If w0 = 0,

then fourth degree polynomial becomes a cubic polynomial, so the equation
just obtained is easily put into Weierstrass form. The leading term of this
cubic polynomial vanishes if and only if v0 = 0. But in this case, the point
(u0, v0, w0) = (u0, 0, 0) is a singular point of the uvw curve – a situation that
we should avoid (see Exercise 2.15).

The procedure for changing “square = degree four polynomial” into Weier-
strass form requires a point satisfying this equation. We could let m be the
slope of the tangent line at (u0, v0), which corresponds to the point (u0, v0).
The formula of Theorem 2.17 then requires that we shift the value of m to
obtain m = 0. Instead, it’s easier to use m = 0 directly, since this value
corresponds to (−u0, v0), as pointed out above.

Example 2.3
Consider the intersection

u2 + v2 = 2, u2 + 4w2 = 5.

Let (u0, v0, w0) = (1, 1, 1). First, we parameterize the solutions to u2+v2 = 2.
Let u = 1 + t, v = 1 + mt. This yields

(1 + t)2 + (1 + mt)2 = 2,

which yields t(2 + 2m) + t2(1 + m2) = 0. Discarding the solution t = 0, we
obtain t = −(2 + 2m)/(1 + m2), hence

u = 1 − 2 + 2m
1 + m2

=
m2 − 2m − 1

1 + m2
, v = 1 − m

2 + 2m
1 + m2

=
1 − 2m − m2

1 + m2
.

Note that m = −1 corresponds to (u, v) = (1, 1) (this is because the tangent
at this point has slope m = −1). Substituting into u2 + 4w2 = 5 yields

4(w(1 + m2))2 = 5(1 + m2)2 − (m2 − 2m− 1)2 = 4m4 + 4m3 + 8m2 − 4m + 4.

Letting r = w(1 + m2) yields

r2 = m4 + m3 + 2m2 − m + 1.

In Theorem 2.17, we use q = 1. The formulas then change this curve to the
generalized Weierstrass equation

y2 − xy + 2y = x3 +
7
4
x2 − 4x − 7.
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Completing the square yields

y2
1 = x3 + 2x2 − 5x − 6,

where y1 = y + 1 − 1
2x.

2.6 Other Coordinate Systems

The formulas for adding two points on an elliptic curve in Weierstrass form
require 2 multiplications, 1 squaring, and 1 inversion in the field. Although
finding inverses is fast, it is much slower than multiplication. In [27, p. 282],
it is estimated that inversion takes between 9 and 40 times as long as multi-
plication. Moreover, squaring takes about 0.8 the time of multiplication. In
many situations, this distinction makes no difference. However, if a central
computer needs to verify many signatures in a second, such distinctions can
become relevant. Therefore, it is sometimes advantageous to avoid inversion
in the formulas for point addition. In this section, we discuss a few alternative
formulas where this can be done.

2.6.1 Projective Coordinates

A natural method is to write all the points as points (x : y : z) in projective
space. By clearing denominators in the standard formulas for addition, we
obtain the following:

Let Pi = (xi : yi : zi), i = 1, 2, be points on the elliptic curve y2z =
x3 + Axz2 + Bz3. Then

(x1 : y1 : z1) + (x2 : y2 : z2) = (x3 : y3 : z3),

where x3, y3, z3 are computed as follows: When P1 �= ±P2,

u = y2z1 − y1z2, v = x2z1 − x1z2, w = u2z1z2 − v3 − 2v2x1z2,

x3 = vw, y3 = u(v2x1z2 − w) − v3y1z2, z3 = v3z1z2.

When P1 = P2,

t = Az2
1 + 3x2

1, u = y1z1, v = ux1y1, w = t2 − 8v,

x3 = 2uw, y3 = t(4v − w) − 8y2
1u2, z3 = 8u3.

When P1 = −P2, we have P1 + P2 = ∞.
Point addition takes 12 multiplications and 2 squarings, while point dou-

bling takes 7 multiplications and 5 squarings. No inversions are needed. Since
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addition and subtraction are much faster than multiplication, we do not con-
sider them in our analysis. Similarly, multiplication by a constant is not
included.

2.6.2 Jacobian Coordinates

A modification of projective coordinates leads to a faster doubling proce-
dure. Let (x : y : z) represent the affine point (x/z2, y/z3). This is somewhat
natural since, as we’ll see in Chapter 11, the function x has a double pole at ∞
and the function y has a triple pole at ∞. The elliptic curve y2 = x3 +Ax+B
becomes

y2 = x3 + Axz4 + Bz6.

The point at infinity now has the coordinates ∞ = (1 : 1 : 0).
Let Pi = (xi : yi : zi), i = 1, 2, be points on the elliptic curve y2 =

x3 + Axz4 + Bz6. Then

(x1 : y1 : z1) + (x2 : y2 : z2) = (x3 : y3 : z3),

where x3, y3, z3 are computed as follows: When P1 �= ±P2,

r = x1z
2
2 , s = x2z

2
1 , t = y1z

3
2 , u = y2z

3
1 , v = s − r, w = u − t,

x3 = −v3 − 2rv2 + w2, y3 = −tv3 + (rv2 − x3)w, z3 = vz1z2.

When P1 = P2,

v = 4x1y
2
1 , w = 3x2

1 + Az4
1 ,

x3 = −2v + w2, y3 = −8y4
1 + (v − x3)w, z3 = 2y1z1.

When P1 = −P2, we have P1 + P2 = ∞.
Addition of points takes 12 multiplications and 4 squarings. Doubling takes

3 multiplications and 6 squarings. There are no inversions.
When A = −3, a further speed-up is possible in doubling: we have w =

3(x2
1 − z4

1) = 3(x1 + z2
1)(x1 − z2

1), which can be computed in one squaring and
one multiplication, rather than in 3 squarings. Therefore, doubling takes only
4 multiplications and 4 squarings in this case. The elliptic curves in NIST’s
list of curves over fields Fp ([86], [48, p. 262]) have A = −3 for this reason.

There are also situations where a point in one coordinate system can be
efficiently added to a point in another coordinate system. For example, it takes
only 8 multiplications and 3 squarings to add a point in Jacobian coordinates
to one in affine coordinates. For much more on other choices for coordinates
and on efficient point addition, see [48, Sections 3.2, 3.3] and [27, Sections
13.2, 13.3].
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2.6.3 Edwards Coordinates

In [36], Harold Edwards describes a form for elliptic curves that has certain
computational advantages. The case with c = 1, d = −1 occurs in work of
Euler and Gauss. Edwards restricts to the case d = 1. The more general form
has subsequently been discussed by Bernstein and Lange [11].

PROPOSITION 2.18
LetK be a field ofcharacteristic not2.Letc, d ∈ K with c, d �= 0 and d not
a square in K.The curve

C : u2 + v2 = c2(1 + du2v2)

isisom orphic to the elliptic curve

E : y2 = (x − c4d − 1)(x2 − 4c4d)

via the change ofvariables

x =
−2c(w − c)

u2
, y =

4c2(w − c) + 2c(c4d + 1)u2

u3
,

where w = (c2du2 − 1)v.
The point(0, c) isthe identity forthe group law on C,and the addition law

is

(u1, v1) + (u2, v2) =
(

u1v2 + u2v1

c(1 + du1u2v1v2)
,

v1v2 − u1u2

c(1 − du1u2v1v2)

)
forallpoints (ui, vi) ∈ C(K).The negative ofa pointis−(u, v) = (−u, v).

PROOF Write the equation of the curve as

u2 − c2 =
(
c2du2 − 1

)
v2 =

w2

c2du2 − 1
.

This yields the curve

w2 = c2du4 − (c4d + 1)u2 + c2.

The formulas in Section 2.5.3 then change this curve to Weierstrass form. The
formula for the addition law can be obtained by a straightforward computa-
tion.

It remains to show that the addition law is defined for all points in C(K).
In other words, we need to show that the denominators are nonzero. Suppose
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du1v1u2v2 = −1. Then ui, vi �= 0 and u1v1 = −1/du2v2. Substituting into
the formula for C yields

u2
1 + v2

1 = c2

(
1 +

1
du2

2v
2
2

)
=

u2
2 + v2

2

du2
2v

2
2

.

Therefore,

(u1 + v1)
2 = u2

1 + v2
1 + 2u1v1

=
1
d

(
u2

2 + v2
2 − 2u2v2

u2
2v

2
2

)
=

1
d

(u2 − v2)
2

(u2v2)
2 .

Since d is not a square, this must reduce to 0 = 0, so u1 + v1 = 0.
Similarly,

(u1 − v1)
2 =

1
d

(u2 + v2)
2

(u2v2)
2 ,

which implies that u1 − v1 = 0. Therefore, u1 = v1 = 0, which is a contradic-
tion.

The case where du1v1u2v2 = 1 similarly produces a contradiction. There-
fore, the addition formula is always defined for points in C(K).

An interesting feature is that there are not separate formulas for 2P and
P1 + P2 when P1 �= P2.

The formula for adding points can be written in projective coordinates. The
resulting computation takes 10 multiplications and 1 squaring for both point
addition and point doubling.

Although any elliptic curve can be put into the form of the proposition over
an algebraically closed field, this often cannot be done over the base field. An
easy way to see this is that there is a point of order 2. In fact, the point (c, 0)
on C has order 4 (Exercise 2.7), so a curve that can be put into Edwards form
over a field must have a point of order 4 defined over that field.

2.7 The j-invariant

Let E be the elliptic curve given by y2 = x3 + Ax + B, where A,B are
elements of a field K of characteristic not 2 or 3. If we let

x1 = μ2x, y1 = μ3y, (2.8)

with μ ∈ K
×

, then we obtain

y2
1 = x3

1 + A1x1 + B1,
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with
A1 = μ4A,B1 = μ6B.

(In the generalized Weierstrass equation y2 + a1xy + a3y = x3 + a2x
2 + a4x+

a6, this change of variables yields new coefficients μiai. This explains the
numbering of the coefficients.)

Define the j-invariant of E to be

j = j(E) = 1728
4A3

4A3 + 27B2
.

Note that the denominator is the negative of the discriminant of the cubic,
hence is nonzero by assumption. The change of variables (2.8) leaves j un-
changed. The converse is true, too.

THEOREM 2.19
Lety2

1 = x3
1 +A1x1 +B1 and y2

2 = x3
2 +A2x2 +B2 be two elliptic curveswith

j-invariants j1 and j2,respectively. Ifj1 = j2,then there exists μ �= 0 in K
(= algebraic closure ofK)such that

A2 = μ4A1, B2 = μ6B1.

The transform ation
x2 = μ2x1, y2 = μ3y1

takesone equation to the other.

PROOF First, assume that A1 �= 0. Since this is equivalent to j1 �= 0, we
also have A2 �= 0. Choose μ such that A2 = μ4A1. Then

4A3
2

4A3
2 + 27B2

2

=
4A3

1

4A3
1 + 27B2

1

=
4μ−12A3

2

4μ−12A3
2 + 27B2

1

=
4A3

2

4A3
2 + 27μ12B2

1

,

which implies that
B2

2 = (μ6B1)2.

Therefore B2 = ±μ6B1. If B2 = μ6B1, we’re done. If B2 = −μ6B1, then
change μ to iμ (where i2 = −1). This preserves the relation A2 = μ4A1 and
also yields B2 = μ6B1.

If A1 = 0, then A2 = 0. Since 4A3
i +27B2

i �= 0, we have B1, B2 �= 0. Choose
μ such that B2 = μ6B1.

There are two special values of j that arise quite often:

1. j = 0: In this case, the elliptic curve E has the form y2 = x3 + B.

2. j = 1728: In this case, the elliptic curve has the form y2 = x3 + Ax.
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The first one, with B = −432, was obtained in Section 2.5.2 from the Fermat
equation x3 + y3 + z3 = 0. The second curve, once with A = −25 and once
with A = −4, appeared in Chapter 1.

The curves with j = 0 and with j = 1728 have automorphisms (bijective
group homomorphisms from the curve to itself) other than the one defined by
(x, y) �→ (x,−y), which is an automorphism for any elliptic curve in Weier-
strass form.

1. y2 = x3 + B has the automorphism (x, y) �→ (ζx,−y), where ζ is a
nontrivial cube root of 1.

2. y2 = x3 + Ax has the automorphism (x, y) �→ (−x, iy), where i2 = −1.

(See Exercise 2.17.)
Note that the j-invariant tells us when two curves are isomorphic over an

algebraically closed field. However, if we are working with a nonalgebraically
closed field K, then it is possible to have two curves with the same j-invariant
that cannot be transformed into each other using rational functions with co-
efficients in K. For example, both y2 = x3 − 25x and y2 = x3 − 4x have
j = 1728. The first curve has infinitely points with coordinates in Q, for
example, all integer multiples of (−4, 6) (see Section 8.4). The only rational
points on the second curve are ∞, (2, 0), (−2, 0), and (0, 0) (see Section 8.4).
Therefore, we cannot change one curve into the other using only rational func-
tions defined over Q. Of course, we can use the field Q(

√
10) to change one

curve to the other via (x, y) �→ (μ2x, μ3y), where μ =
√

10/2.
If two different elliptic curves defined over a field K have the same j-

invariant, then we say that the two curves are twists of each other.
Finally, we note that j is the j-invariant of

y2 = x3 +
3j

1728 − j
x +

2j

1728 − j
(2.9)

when j �= 0, 1728. Since y2 = x3 + 1 and y2 = x3 + x have j-invariants 0
and 1728, we find the j-invariant gives a bijection between elements of K and
K-isomorphism classes of elliptic curves defined over K (that is, each j ∈ K
corresponds to an elliptic curve defined over K, and any two elliptic curves
defined over K and with the same j-invariant can be transformed into each
other by a change of variables (2.8) defined over K).

If the characteristic of K is 2 or 3, the j-invariant can also be defined, and
results similar to the above one hold. See Section 2.8 and Exercise 2.18.

2.8 Elliptic Curves in Characteristic 2

Since we have been using the Weierstrass equation rather than the gener-
alized Weierstrass equation in most of the preceding sections, the formulas
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given do not apply when the field K has characteristic 2. In this section, we
sketch what happens in this case.

Note that the Weierstrass equation is singular. Let f(x, y) = y2 − x3 −
Ax − B. Then fy = 2y = 0, since 2 = 0 in characteristic 2. Let x0 be a
root (possibly in some extension of K) of fx = −3x2 − A = 0 and let y0

be the square root of x3
0 + Ax0 + B. Then (x0, y0) lies on the curve and

fx(x0, y0) = fy(x0, y0) = 0.
Therefore, we work with the generalized Weierstrass equation for an elliptic

curve E:
y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6.

If a1 �= 0, then the change of variables

x = a2
1x1 + (a3/a1), y = a3

1y1 + a−3
1 (a2

1a4 + a2
3)

changes the equation to the form

y2
1 + x1y1 = x3

1 + a′
2x

2
1 + a′

6.

This curve is nonsingular if and only if a′
6 �= 0. The j-invariant in this case

is defined to be 1/a′
6 (more precisely, there are formulas for the j-invariant of

the generalized Weierstrass form, and these yield 1/a′
6 in this case).

If a1 = 0, we let x = x1 + a2, y = y1 to obtain an equation of the form

y2
1 + a′

3y1 = x3
1 + a′

4x1 + a′
6.

This curve is nonsingular if and only if a′
3 �= 0. The j-invariant is defined to

be 0.
Let’s return to the generalized Weierstrass equation and look for points at

infinity. Make the equation homogeneous:

y2z + a1xyz + a3yz2 = x3 + a2x
2z + a4xz2 + a6z

3.

Now set z = 0 to obtain 0 = x3. Therefore, ∞ = (0 : 1 : 0) is the only point
at infinity on E, just as with the standard Weierstrass equation. A line L
through (x0, y0) and ∞ is a vertical line x = x0. If (x0, y0) lies on E then the
other point of intersection of L and E is (x0, −a1x0 − a3 − y0). See Exercise
2.9.

We can now describe addition of points. Of course, P + ∞ = P , for all
points P . Three points P,Q,R add to ∞ if and only if they are collinear. The
negation of a point is given by

−(x, y) = (x, −a1x − a3 − y).

To add two points P1 and P2, we therefore proceed as follows. Draw the line
L through P1 and P2 (take the tangent if P1 = P2). It will intersect E in a
third point P ′

3. Now compute P3 = −P ′
3 by the formula just given (do not

simply reflect across the x-axis). Then P1 + P2 = P3.
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The proof that this addition law is associative is the same as that given in
Section 2.4. The points on E, including ∞, therefore form an abelian group.

Since we will need it later, let’s look at the formula for doubling a point in
characteristic 2. To keep the formulas from becoming too lengthy, we’ll treat
separately the two cases obtained above.

1. y2 + xy = x3 + a2x
2 + a6. Rewrite this as y2 + xy + x3 + a2x

2 + a6 = 0
(remember, we are in characteristic 2). Implicit differentiation yields

xy′ + (y + x2) = 0

(since 2 = 0 and 3 = 1). Therefore the slope of the line L through
P = (x0, y0) is m = (y0 + x2

0)/x0. The line is

y = m(x − x0) + y0 = mx + b

for some b. Substitute to find the intersection (x1, y1) of L and E:

0 = (mx+b)2 +x(mx+b)+x3 +a2x
2 +a6 = x3 +(m2 +m+a2)x2 + · · · .

The sum x0 + x0 + x1 of the roots is (m2 + m + a2), so we obtain

x1 = m2 + m + a2 =
y2
0 + x4

0 + x0y0 + x3
0 + a2x

2
0

x2
0

=
x4

0 + a6

x2
0

(since y2
0 = x0y0 +x3

0 + a2x
2
0 + a6). The y-coordinate of the intersection

is y1 = m(x1 − x0) + y0. The point (x1, y1) equals −2P . Therefore
2P = (x2, y2), with

x2 = (x4
0 + a6)/x2

0, y2 = −x1 − y1 = x1 + y1.

2. y2 + a3y = x3 + a4x + a6. Rewrite this as y2 + a3y +x3 + a4x+ a6 = 0.
Implicit differentiation yields

a3y
′ + (x2 + a4) = 0.

Therefore the tangent line L is

y = m(x − x0) + y0, with m =
x2

0 + a4

a3
.

Substituting and solving, as before, finds the point of intersection (x1, y1)
of L and E, where

x1 = m2 =
x4

0 + a2
4

a2
3

and y1 = m(x1 − x0) + y0. Therefore, 2P = (x2, y2) with

x2 = (x4
0 + a2

4)/a2
3, y2 = a3 + y1.
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2.9 Endomorphisms

The main purpose of this section is to prove Proposition 2.21, which will
be used in the proof of Hasse’s theorem in Chapter 4. We’ll also prove a few
technical results on separable endomorphisms. The reader willing to believe
that every endomorphism used in this book is separable, except for powers
of the Frobenius map and multiplication by multiples of p in characteristic p,
can safely omit the technical parts of this section.

By an endomorphism of E, we mean a homomorphism α : E(K) → E(K)
that is given by rational functions. In other words, α(P1+P2) = α(P1)+α(P2),
and there are rational functions (quotients of polynomials) R1(x, y), R2(x, y)
with coefficients in K such that

α(x, y) = (R1(x, y), R2(x, y))

for all (x, y) ∈ E(K). There are a few technicalities when the rational func-
tions are not defined at a point. These will be dealt with below. Of course,
since α is a homomorphism, we have α(∞) = ∞. We will also assume that
α is nontrivial; that is, there exists some (x, y) such that α(x, y) �= ∞. The
trivial endomorphism that maps every point to ∞ will be denoted by 0.

Example 2.4

Let E be given by y2 = x3 + Ax + B and let α(P ) = 2P . Then α is a
homomorphism and

α(x, y) = (R1(x, y), R2(x, y)) ,

where

R1(x, y) =
(

3x2 + A

2y

)2

− 2x

R2(x, y) =
(

3x2 + A

2y

)(
3x −

(
3x2 + A

2y

)2
)

− y.

Since α is a homomorphism given by rational functions it is an endomorphism
of E.

It will be useful to have a standard form for the rational functions describing
an endomorphism. For simplicity, we assume that our elliptic curve is given in
Weierstrass form. Let R(x, y) be any rational function. Since y2 = x3+Ax+B
for all (x, y) ∈ E(K), we can replace any even power of y by a polynomial in
x and replace any odd power of y by y times a polynomial in x and obtain a

© 2008 by Taylor & Francis Group, LLC



SECTION 2.9 ENDOMORPHISMS 51

rational function that gives the same function as R(x, y) on points in E(K).
Therefore, we may assume that

R(x, y) =
p1(x) + p2(x)y
p3(x) + p4(x)y

.

Moreover, we can rationalize the denominator by multiplying the numerator
and denominator by p3 − p4y and then replacing y2 by x3 + Ax + B. This
yields

R(x, y) =
q1(x) + q2(x)y

q3(x)
. (2.10)

Consider an endomorphism given by

α(x, y) = (R1(x, y), R2(x, y)),

as above. Since α is a homomorphism,

α(x,−y) = α(−(x, y)) = −α(x, y).

This means that

R1(x,−y) = R1(x, y) and R2(x,−y) = −R2(x, y).

Therefore, if R1 is written in the form (2.10), then q2(x) = 0, and if R2 is
written in the form (2.10), then the corresponding q1(x) = 0. Therefore, we
may assume that

α(x, y) = (r1(x), r2(x)y)

with rational functions r1(x), r2(x).
We can now say what happens when one of the rational functions is not

defined at a point. Write

r1(x) = p(x)/q(x)

with polynomials p(x) and q(x) that do not have a common factor. If q(x) = 0
for some point (x, y), then we assume that α(x, y) = ∞. If q(x) �= 0, then
Exercise 2.19 shows that r2(x) is defined; hence the rational functions defining
α are defined.

We define the degree of α to be

deg(α) = Max{deg p(x), deg q(x)}

if α is nontrivial. When α = 0, let deg(0) = 0. Define α �= 0 to be a
separable endomorphism if the derivative r′1(x) is not identically zero. This
is equivalent to saying that at least one of p′(x) and q′(x) is not identically
zero. See Exercise 2.22. (In characteristic 0, a nonconstant polynomial will
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have nonzero derivative. In characteristic p > 0, the polynomials with zero
derivative are exactly those of the form g(xp).)

Example 2.5
We continue with the previous example, where α(P ) = 2P . We have

R1(x, y) =
(

3x2 + A

2y

)2

− 2x.

The fact that y2 = x3 + Ax + B, plus a little algebraic manipulation, yields

r1(x) =
x4 − 2Ax2 − 8Bx + A2

4(x3 + Ax + B)
.

(This is the same as the expression in terms of division polynomials that will
be given in Section 3.2.) Therefore, deg(α) = 4. The polynomial q′(x) =
4(3x2 + A) is not zero (including in characteristic 3, since if A = 0 then
x3 +B has multiple roots, contrary to assumption). Therefore α is separable.

Example 2.6
Let’s repeat the previous example, but in characteristic 2. We’ll use the

formulas from Section 2.8 for doubling a point. First, let’s look at y2 + xy =
x3 + a2x

2 + a6. We have

α(x, y) = (r1(x), R2(x, y))

with r1(x) = (x4 + a6)/x2. Therefore deg(α) = 4. Since p′(x) = 4x3 = 0 and
q′(x) = 2x = 0, the endomorphism α is not separable.

Similarly, in the case y2+a3y = x3+a4x+a6, we have r1(x) = (x4+a2
4)/a2

3.
Therefore, deg(α) = 4, but α is not separable.

In general, in characteristic p, the map α(Q) = pQ has degree p2 and is not
separable. The statement about the degree is Corollary 3.7. The fact that α
is not separable is proved in Proposition 2.28.

An important example of an endomorphism is the Frobenius map. Sup-
pose E is defined over the finite field Fq. Let

φq(x, y) = (xq, yq).

The Frobenius map φq plays a crucial role in the theory of elliptic curves over
Fq.

LEMMA 2.20
LetE be defined over Fq. Then φq is an endom orphism ofE ofdegree q,
and φq isnotseparable.
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PROOF Since φq(x, y) = (xq, yq), the map is given by rational functions
(in fact, by polynomials) and the degree is q. The main point is that φq :
E(Fq) → E(Fq) is a homomorphism. Let (x1, y1), (x2, y2) ∈ E(Fq) with
x1 �= x2. The sum is (x3, y3), with

x3 = m2 − x1 − x2, y3 = m(x1 − x3) − y1, where m =
y2 − y1

x2 − x1

(we are working with the Weierstrass form here; the proof for the generalized
Weierstrass form is essentially the same). Raise everything to the qth power
to obtain

xq
3 = m′2 − xq

1 − xq
2, yq

3 = m′(xq
1 − xq

3) − yq
1, where m′ =

yq
2 − yq

1

xq
2 − xq

1

.

This says that
φq(x3, y3) = φq(x1, y1) + φq(x2, y2).

The cases where x1 = x2 or where one of the points is ∞ are checked similarly.
However, there is one subtlety that arises when adding a point to itself. The
formula says that 2(x1, y1) = (x3, y3), with

x3 = m2 − 2x1, y3 = m(x1 − x3) − y1, where m =
3x2

1 + A

2y1
.

When this is raised to the qth power, we obtain

xq
3 = m′2 − 2xq

1, yq
3 = m′(xq

1 − xq
3) − yq

1, where m′ =
3q(xq

1)
2 + Aq

2qyq
1

.

Since 2, 3, A ∈ Fq, we have 2q = 2, 3q = 3, Aq = A. This means that we
obtain the formula for doubling the point (xq

1, y
q
1) on E (if Aq didn’t equal A,

we would be working on a new elliptic curve with Aq in place of A).
Since φq is a homomorphism given by rational functions, it is an endo-

morphism of E. Since q = 0 in Fq, the derivative of xq is identically zero.
Therefore, φq is not separable.

The following result will be crucial in the proof of Hasse’s theorem in Chap-
ter 4 and in the proof of Theorem 3.2.

PROPOSITION 2.21
Letα �= 0 be a separable endom orphism ofan elliptic curveE.Then

deg α = #Ker(α),

where Ker(α) isthe kernelofthe hom om orphism α : E(K) → E(K).
Ifα �= 0 isnotseparable,then

deg α > #Ker(α).
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PROOF Write α(x, y) = (r1(x), yr2(x)) with r1(x) = p(x)/q(x), as above.
Then r′1 �= 0, so p′q − pq′ is not the zero polynomial.

Let S be the set of x ∈ K such that (pq′−p′q)(x) q(x) = 0. Let (a, b) ∈ E(K)
be such that

1. a �= 0, b �= 0, (a, b) �= ∞,

2. deg (p(x) − aq(x)) = Max{deg(p),deg(q)} = deg(α),

3. a �∈ r1(S), and

4. (a, b) ∈ α(E(K)).

Since pq′−p′q is not the zero polynomial, S is a finite set, hence its image under
α is finite. The function r1(x) is easily seen to take on infinitely many distinct
values as x runs through K. Since, for each x, there is a point (x, y) ∈ E(K),
we see that α(E(K)) is an infinite set. Therefore, such an (a, b) exists.

We claim that there are exactly deg(α) points (x1, y1) ∈ E(K) such that
α(x1, y1) = (a, b). For such a point, we have

p(x1)
q(x1)

= a, y1r2(x1) = b.

Since (a, b) �= ∞, we must have q(x1) �= 0. By Exercise 2.19, r2(x1) is defined.
Since b �= 0 and y1r2(x1) = b, we must have y1 = b/r2(x1). Therefore, x1

determines y1 in this case, so we only need to count values of x1.
By assumption (2), p(x)− aq(x) = 0 has deg(α) roots, counting multiplici-

ties. We therefore must show that p−aq has no multiple roots. Suppose that
x0 is a multiple root. Then

p(x0) − aq(x0) = 0 and p′(x0) − aq′(x0) = 0.

Multiplying the equations p = aq and aq′ = p′ yields

ap(x0)q′(x0) = ap′(x0)q(x0).

Since a �= 0, this implies that x0 is a root of pq′ − p′q, so x0 ∈ S. Therefore,
a = r1(x0) ∈ r1(S), contrary to assumption. It follows that p − aq has no
multiple roots, and therefore has deg(α) distinct roots.

Since there are exactly deg(α) points (x1, y1) with α(x1, y1) = (a, b), the
kernel of α has deg(α) elements.

Of course, since α is a homomorphism, for each (a, b) ∈ α(E(K)), there are
exactly deg(α) points (x1, y1) with α(x1, y1) = (a, b). The assumptions on
(a, b) were made during the proof to obtain this result for at least one point,
which suffices.

If α is not separable, then the steps of the above proof hold, except that
p′−aq′ is always the zero polynomial, so p(x)−aq(x) = 0 always has multiple
roots and therefore has fewer than deg(α) solutions.
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THEOREM 2.22

LetE be an elliptic curve defined over a field K.Letα �= 0 be an endom or-
phism ofE.Then α : E(K) → E(K) issurjective.

REMARK 2.23 We definitely need to be working with K instead of K in
the theorem. For example, the Mordell-Weil theorem (Theorem 8.17) implies
that multiplication by 2 cannot be surjective on E(Q) if there is a point in
E(Q) of infinite order. Intuitively, working with an algebraically closed field
allows us to solve the equations defining α in order to find the inverse image
of a point.

PROOF Let (a, b) ∈ E(K). Since α(∞) = ∞, we may assume that
(a, b) �= ∞. Let r1(x) = p(x)/q(x) be as above. If p(x) − aq(x) is not a
constant polynomial, then it has a root x0. Since p and q have no common
roots, q(x0) �= 0. Choose y0 ∈ K to be either square root of x3

0 + Ax0 + B.
Then α(x0, y0) is defined (Exercise 2.19) and equals (a, b′) for some b′. Since
b′2 = a3 + Aa + B = b2, we have b = ±b′. If b′ = b, we’re done. If b′ = −b,
then α(x0,−y0) = (a,−b′) = (a, b).

We now need to consider the case when p − aq is constant. Since E(K) is
infinite and the kernel of α is finite, only finitely many points of E(K) can
map to a point with a given x-coordinate. Therefore, either p(x) or q(x) is not
constant. If p and q are two nonconstant polynomials, then there is at most
one constant a such that p−aq is constant (if a′ is another such number, then
(a′−a)q = (p−aq)−(p−a′q) is constant and (a′−a)p = a′(p−aq)−a(p−a′q)
is constant, which implies that p and q are constant). Therefore, there are at
most two points, (a, b) and (a,−b) for some b, that are not in the image of
α. Let (a1, b1) be any other point. Then α(P1) = (a1, b1) for some P1. We
can choose (a1, b1) such that (a1, b1)+(a, b) �= (a,±b), so there exists P2 with
α(P2) = (a1, b1) + (a, b). Then α(P2 −P1) = (a, b), and α(P1 −P2) = (a,−b).
Therefore, α is surjective.

For later applications, we need a convenient criterion for separability. If
(x, y) is a variable point on y2 = x3 + Ax + B, then we can differentiate y
with respect to x:

2yy′ = 3x2 + A.

Similarly, we can differentiate a rational function f(x, y) with respect to x:

d

dx
f(x, y) = fx(x, y) + fy(x, y)y′,

where fx and fy denote the partial derivatives.
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LEMMA 2.24
LetE be the elliptic curve y2 = x3 +Ax+B.Fix a point(u, v) on E.W rite

(x, y) + (u, v) = (f(x, y), g(x, y)),

where f(x, y) and g(x, y) arerationalfunctionsofx, y (thecoe cientsdepend
on (u, v)) and y is regarded as a function of x satisfying dy/dx = (3x2 +
A)/(2y).Then

d
dxf(x, y)
g(x, y)

=
1
y
.

PROOF The addition formulas give

f(x, y) =
(

y − v

x − u

)2

− x − u

g(x, y) =
−(y − v)3 + x(y − v)(x − u)2 + 2u(y − v)(x − u)2 − v(x − u)3

(x − u)3

d

dx
f(x, y) =

2y′(y − v)(x − u) − 2(y − v)2 − (x − u)3

(x − u)3
.

A straightforward but lengthy calculation, using the fact that 2yy′ = 3x2 +A,
yields

(x − u)3(y
d

dx
f(x, y) − g(x, y))

= v(Au + u3 − v2 − Ax − x3 + y2) + y(−Au − u3 + v2 + Ax + x3 − y2).

Since (u, v) and (x, y) are on E, we have v2 = u3+Au+B and y2 = x3+Ax+B.
Therefore, the above expression becomes

v(−B + B) + y(B − B) = 0.

Therefore, y d
dxf(x, y) = g(x, y).

REMARK 2.25 Lemma 2.24 is perhaps better stated in terms of differ-
entials. It says that the differential dx/y is translation invariant. In fact, it
is the unique translation invariant differential, up to scalar multiples, for E.
See [109].

LEMMA 2.26
Letα1, α2, α3 benonzeroendom orphism sofan ellipticcurveE withα1+α2 =
α3.W rite

αj(x, y) = (Rαj
(x), ySαj

(x)).
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Suppose there are constants cα1 , cα2 such that

R′
α1

(x)
Sα1(x)

= cα1 ,
R′

α2
(x)

Sα2(x)
= cα2 .

Then
R′

α3
(x)

Sα3(x)
= cα1 + cα2 .

PROOF Let (x1, y1) and (x2, y2) be variable points on E. Write

(x3, y3) = (x1, y1) + (x2, y2),

where
(x1, y1) = α1(x, y), (x2, y2) = α2(x, y).

Then x3 and y3 are rational functions of x1, y1, x2, y2, which in turn are
rational functions of x, y. By Lemma 2.24, with (u, v) = (x2, y2),

∂x3

∂x1
+

∂x3

∂y1

dy1

dx1
=

y3

y1
.

Similarly,
∂x3

∂x2
+

∂x3

∂y2

dy2

dx2
=

y3

y2
.

By assumption,
dxj

dx
= cαj

yj

y

for j = 1, 2. By the chain rule,

dx3

dx
=

∂x3

∂x1

dx1

dx
+

∂x3

∂y1

dy1

dx1

dx1

dx
+

∂x3

∂x2

dx2

dx
+

∂x3

∂y2

dy2

dx2

dx2

dx

=
y3

y1

y1

y
cα1 +

y3

y2

y2

y
cα2

= (cα1 + cα2)
y3

y
.

Dividing by y3/y yields the result.

REMARK 2.27 In terms of differentials (see the previous Remark), we
have (dx/y)◦α is a translation-invariant differential on E. Therefore it must be
a scalar multiple cαdx/y of dx/y. It follows that every nonzero endomorphism
α satisfies the hypotheses of Lemma 2.26.
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PROPOSITION 2.28
LetE be an elliptic curve defined over a field K, and let n be a nonzero
integer.Suppose thatm ultiplication by n on E isgiven by

n(x, y) = (Rn(x), ySn(x))

forall(x, y) ∈ E(K),whereRn and Sn are rationalfunctions.Then

R′
n(x)

Sn(x)
= n.

Therefore,m ultiplication by n is separable ifand only ifn is nota m ultiple
ofthe characteristic p ofthe field.

PROOF Since R−n = Rn and S−n = −Sn, we have R′
−n/S−n = −R′

n/Sn.
Therefore, the result for positive n implies the result for negative n.

Note that the first part of the proposition is trivially true for n = 1. If it
is true for n, then Lemma 2.26 implies that it is true for n + 1, which is the
sum of n and 1. Therefore, R′

n(x)
S(x) = n for all n.

We have R′
n(x) �= 0 if and only if n = R′

n(x)/Sn(x) �= 0, which is equivalent
to p not dividing n. Since the definition of separability is that R′

n �= 0, this
proves the second part of the proposition.

Finally, we use Lemma 2.26 to prove a result that will be needed in Sec-
tions 3.2 and 4.2. Let E be an elliptic curve defined over a finite field Fq.
The Frobenius endomorphism φq is defined by φq(x, y) = (xq, yq). It is an
endomorphism of E by Lemma 2.20.

PROPOSITION 2.29
LetE bean ellipticcurvedefined overFq,where q isa poweroftheprim e p.
Letr and s be integers,notboth 0.The endom orphism rφq + s isseparable if
and only ifp � s.

PROOF Write the multiplication by r endomorphism as

r(x, y) = (Rr(x), ySr(x)).

Then

(Rrφq
(x), ySrφq

(x)) = (φqr)(x, y) = (Rq
r(x), yqSq

r (x))

=
(
Rq

r(x), y(x3 + Ax + B)(q−1)/2Sq
r (x)

)
.

Therefore,
crφq

= R′
rφq

/Srφq
= qRq−1

r R′
r/Srφq

= 0.
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Also, cs = R′
s/Ss = s by Proposition 2.28. By Lemma 2.26,

R′
rφq+s/Srφq+s = crφq+s = crφq

+ cs = 0 + s = s.

Therefore, R′
rφq+s �= 0 if and only if p � s.

2.10 Singular Curves

We have been working with y2 = x3 + Ax + B under the assumption that
x3 +Ax+B has distinct roots. However, it is interesting to see what happens
when there are multiple roots. It will turn out that elliptic curve addition
becomes either addition of elements in K or multiplication of elements in K×

or in a quadratic extension of K. This means that an algorithm for a group
E(K) arising from elliptic curves, such as one to solve a discrete logarithm
problem (see Chapter 5), will probably also apply to these more familiar
situations. See also Chapter 7. Moreover, as we’ll discuss briefly at the end of
this section, singular curves arise naturally when elliptic curves defined over
the integers are reduced modulo various primes.

We first consider the case where x3 + Ax + B has a triple root at x = 0, so
the curve has the equation

y2 = x3.

The point (0, 0) is the only singular point on the curve (see Figure 2.7). Since

Figure 2.7

y2 = x3

any line through this point intersects the curve in at most one other point,
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(0, 0) causes problems if we try to include it in our group. So we leave it out.
The remaining points, which we denote Ens(K), form a group, with the group
law defined in the same manner as when the cubic has distinct roots. The
only thing that needs to be checked is that the sum of two points cannot be
(0, 0). But since a line through (0, 0) has at most one other intersection point
with the curve, a line through two nonsingular points cannot pass through
(0, 0) (this will also follow from the proof of the theorem below).

THEOREM 2.30
LetE be the curve y2 = x3 and letEns(K) be the nonsingularpointson this
curve with coordinatesin K,including the point∞ = (0 : 1 : 0).The m ap

Ens(K) → K, (x, y) �→ x

y
, ∞ �→ 0

isa group isom orphism between Ens(K) andK,regarded asan additivegroup.

PROOF Let t = x/y. Then x = (y/x)2 = 1/t2 and y = x/t = 1/t3.
Therefore we can express all of the points in Ens(K) in terms of the parameter
t. Let t = 0 correspond to (x, y) = ∞. It follows that the map of the theorem
is a bijection. (Note that 1/t is the slope of the line through (0, 0) and (x, y),
so this parameterization is obtained similarly to the one obtained for quadratic
curves in Section 2.5.4.)

Suppose (x1, y1) + (x2, y2) = (x3, y3). We must show that t1 + t2 = t3,
where ti = xi/yi. If (x1, y1) �= (x2, y2), the addition formulas say that

x3 =
(

y2 − y1

x2 − x1

)2

− x1 − x2.

Substituting xi = 1/t2i and yi = 1/t3i yields

t−2
3 =

(
t−3
2 − t−3

1

t−2
2 − t−2

1

)2

− t−2
1 − t−2

2 .

A straightforward calculation simplifies this to

t−2
3 = (t1 + t2)−2.

Similarly,

−y3 =
(

y2 − y1

x2 − x1

)
(x3 − x1) + y1

may be rewritten in terms of the ti to yield

t−3
3 = (t1 + t2)−3.
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Taking the ratio of the expressions for t−2
3 and t−3

3 gives

t3 = t1 + t2,

as desired.
If (x1, y1) = (x2, y2), the proof is similar. Finally, the cases where one or

more of the points (xi, yi) = ∞ are easily checked.

Figure 2.8

y2 = x3 + x2

We now consider the case where x3 + Ax + B has a double root. By trans-
lating x, we may assume that this root is 0 and the curve E has the equation

y2 = x2(x + a)

for some a �= 0. The point (0, 0) is the only singularity (see Figure 2.8). Let
Ens(K) be the nonsingular points on E with coordinates in K, including the
point ∞. Let α2 = a (so α might lie in an extension of K). The equation for
E may be rewritten as (y

x

)2

= a + x.

When x is near 0, the right side of this equation is approximately a. Therefore,
E is approximated by (y/x)2 = a, or y/x = ±α near x = 0. This means that
the two “tangents” to E at (0, 0) are

y = αx and y = −αx

(for a different way to obtain these tangents, see Exercise 2.20).
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THEOREM 2.31
LetE be the curve y2 = x2(x + a) with 0 �= a ∈ K. LetEns(K) be the
nonsingular points on E with coordinates in K. Letα2 = a. Consider the
m ap

ψ : (x, y) �→ y + αx

y − αx
, ∞ �→ 1.

1. Ifα ∈ K,then ψ givesan isom orphism from Ens(K) toK×,considered
asa m ultiplicative group.

2. Ifα �∈ K,then ψ givesan isom orphism

Ens(K) � {u + αv |u, v ∈ K, u2 − av2 = 1},

where the righthand side isa group under m ultiplication.

PROOF Let
t =

y + αx

y − αx
.

This may be solved for y/x to obtain

y

x
= α

t + 1
t − 1

.

Since x + a = (y/x)2, we obtain

x =
4α2t

(t − 1)2
and y =

4α3t(t + 1)
(t − 1)3

(the second is obtained from the first using y = x(y/x)). Therefore, (x, y)
determines t and t determines (x, y), so the map ψ is injective, and is a
bijection in case (1).

In case (2), rationalize the denominator by multiplying the numerator and
denominator of (y + αx)/(y − αx) by y + αx to obtain an expression of the
form u + αv:

(y + αx)
(y − αx)

= u + αv.

We can change the sign of α throughout this equation and preserve the equal-
ity. Now multiply the resulting expression by the original to obtain

u2 − av2 = (u + αv)(u − αv) =
(y + αx)
(y − αx)

(y − αx)
(y + αx)

= 1.

Conversely, suppose u2 − av2 = 1. Let

x =
(

u + 1
v

)2

− a, y =
(

u + 1
v

)
x.
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Then (x, y) is on the curve E and

ψ(x, y) =
(y/x) + α

(y/x) − α
=

u + 1 + αv

u + 1 − αv
= u + αv

(the last equality uses the fact that u2 − av2 = 1). Therefore, ψ is surjective,
hence is a bijection in case (2), too.

It remains to show that ψ is a homomorphism. Suppose (x1, y1)+(x2, y2) =
(x3, y3). Let

ti =
yi + αxi

yi − αxi
.

We must show that t1t2 = t3.
When (x1, y1) �= (x2, y2), we have

x3 =
(

y2 − y1

x2 − x1

)2

− a − x1 − x2.

Substituting xi =
4α2ti

(ti − 1)2
and yi =

4α3ti(ti + 1)
(ti − 1)3

and simplifying yields

4t3
(t3 − 1)2

=
4t1t2

(t1t2 − 1)2
. (2.11)

Similarly,

−y3 =
(

y2 − y1

x2 − x1

)
(x3 − x1) + y1

yields
4α3t3(t3 + 1)

(t3 − 1)3
=

4α3t1t2(t1t2 + 1)
(t1t2 − 1)3

.

The ratio of this equation and (2.11) yields

t3 − 1
t3 + 1

=
t1t2 − 1
t1t2 + 1

.

This simplifies to yield
t1t2 = t3,

as desired.
The case where (x1, y1) = (x2, y2) is similar, and the cases where one or

more of the points is ∞ are trivial. This completes the proof.

One situation where the above singular curves arise naturally is when we
are working with curves with integral coefficients and reduce modulo various
primes. For example, let E be y2 = x(x + 35)(x − 55). Then we have

E mod 5 : y2 ≡ x3,

E mod 7 : y2 ≡ x2(x + 1),
E mod 11 : y2 ≡ x2(x + 2).

© 2008 by Taylor & Francis Group, LLC



64 CHAPTER 2 THE BASIC THEORY

The first case is treated in Theorem 2.30 and is called additive reduction.
The second case is split multiplicative reduction and is covered by The-
orem 2.31(1). In the third case, α �∈ F11, so we are in the situation of The-
orem 2.31(2). This is called nonsplit multiplicative reduction. For all
primes p ≥ 13, the cubic polynomial has distinct roots mod p, so E mod p is
nonsingular. This situation is called good reduction.

2.11 Elliptic Curves mod n

In a few situations, we’ll need to work with elliptic curves mod n, where n
is composite. We’ll also need to take elliptic curves over Q and reduce them
mod n, where n is an integer. Both situations are somewhat subtle, as the
following three examples show.

Example 2.7
Let E be given by

y2 = x3 − x + 1 (mod 52).

Suppose we want to compute (1, 1) + (21, 4). The slope of the line through
the two points is 3/20. The denominator is not zero mod 25, but it is also
not invertible. Therefore the slope is neither infinite nor finite mod 25. If we
compute the sum using the formulas for the group law, the x-coordinate of
the sum is (

3
20

)2

− 1 − 21 ≡ ∞ (mod 25).

But (1, 1) + (1, 24) = ∞, so we cannot also have (1, 1) + (21, 4) = ∞.

Example 2.8
Let E be given by

y2 = x3 − x + 1 (mod 35).

Suppose we want to compute (1, 1) + (26, 24). The slope is 23/25, which is
infinite mod 5 but finite mod 7. Therefore, the formulas for the sum yield a
point that is ∞ mod 5 but is finite mod 7. In a sense, the point is partially
at ∞. We cannot express it in affine coordinates mod 35. One remedy is to
use the Chinese Remainder Theorem to write

E(Z35) = E(Z5) ⊕ E(Z7)

and then work mod 5 and mod 7 separately. This strategy works well in the
present case, but it doesn’t help in the previous example.
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Example 2.9
Let E be given by

y2 = x3 + 3x − 3

over Q. Suppose we want to compute

(1, 1) + (
571
361

,
16379
6859

).

Since the points are distinct, we compute the slope of the line through them
in the usual way. This allows us to find the sum. Now consider E mod 7.
The two points are seen to be congruent mod 7, so the line through them
mod 7 is the tangent line. Therefore, the formula we use to add the points
mod 7 is different from the one used in Q. Suppose we want to show that the
reduction map from E(Q) to E(F7) is a homomorphism. At first, it would
seem that this is obvious, since we just take the formulas for the group law
over Q and reduce them mod 7. But the present example says that sometimes
we are using different formulas over Q and mod 7. A careful analysis shows
that this does not cause problems, but it should be clear that the reduction
map is more subtle than one might guess.

The remedy for the above problems is to develop a theory of elliptic curves
over rings. We follow [74]. The reader willing to believe Corollaries 2.32, 2.33,
and 2.34 can safely skip the details in this section.

Let R be a ring (always assumed to be commutative with 1). A tuple of
elements (x1, x2, . . . ) from R is said to be primitive if there exist elements
r1, r2, · · · ∈ R such that

r1x1 + r2x2 + · · · = 1.

When R = Z, this means that gcd(x1, x2, . . . ) = 1. When R = Zn, primitivity
means that gcd(n, x1, x2, . . . ) = 1. When R is a field, primitivity means that
at least one of the xi is nonzero. In general, primitivity means that the ideal
generated by x1, x2, . . . is R. We say that two primitive triples (x, y, z) and
(x′, y′, z′) are equivalent if there exists a unit u ∈ R× such that

(x′, y′, z′) = (ux, uy, uz)

(in fact, it follows easily from the existence of r, s, t with rx′ + sy′ + tz′ = 1
that any u satisfying this equation must be a unit). Define 2-dimensional
projective space over R to be

P2(R) = {(x, y, z) ∈ R3 | (x, y, z) is primitive} mod equivalence.

The equivalence class of (x, y, z) is denoted by (x : y : z).
If R is a field, P2(R) is the same as that defined in Section 2.3. If (x :

y : z) ∈ P2(Q), we can multiply by a suitable rational number to clear
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denominators and remove common factors from the numerators and therefore
obtain a triple of integers with gcd=1. Therefore, P2(Q) and P2(Z) will be
regarded as equal. Similarly, if R is a ring with

Z ⊆ R ⊆ Q,

then P2(R) = P2(Z).
In order to work with elliptic curves over R, we need to impose two condi-

tions on R.

1. 2 ∈ R×

2. If (aij) is an m×n matrix such that (a11, a12, . . . , amn) is primitive and
such that all 2×2 subdeterminants vanish (that is, aijak�−ai�akj = 0 for
all i, j, k, �), then some R-linear combination of the rows is a primitive
n-tuple.

The first condition is needed since we’ll be working with the Weierstrass equa-
tion. In fact, we should add the condition that 3 ∈ R× if we want to change
an arbitrary elliptic curve into Weierstrass form. Note that Z does not satisfy
the first condition. This can be remedied by working with

Z(2) = { x

2k
|x ∈ Z, k ≥ 0}.

This is a ring. As pointed out above, P2(Z(2)) equals P2(Z), so the introduc-
tion of Z(2) is a minor technicality.

The second condition is perhaps best understood when R is a field. In this
case, the primitivity of the matrix simply means that at least one entry is
nonzero. The vanishing of the 2 × 2 subdeterminants says that the rows are
proportional to each other. The conclusion is that some linear combination
of the rows (in this case, some row itself) is a nonzero vector.

When R = Z, the primitivity of the matrix means that the gcd of the
elements in the matrix is 1. Since the rows are assumed to be proportional,
there is a vector v and integers a1, . . . , am such that the ith row is aiv. The
m-tuple (a1, . . . , am) must be primitive since the gcd of its entries divides the
gcd of the entries of the matrix. Therefore, there is a linear combination of
the ai’s that equals 1. This means that some linear combination of the rows
of the matrix is v. The vector v is primitive since the gcd of its entries divides
the gcd of the entries of the matrix. Therefore, we have obtained a primitive
vector as a linear combination of the rows of the matrix. This shows that
Z satisfies the second condition. The same argument, slightly modified to
handle powers of 2, shows that Z(2) also satisfies the second condition.

In general, condition 2 says that projective modules over R of rank 1 are
free (see [74]). In particular, this holds for local rings, for finite rings, and for
Z(2). These suffice for our purposes.
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For the rest of this section, assume R is a ring satisfying 1 and 2. An
elliptic curve E over R is given by a homogeneous equation

y2z = x3 + Axz2 + Bz3

with A,B ∈ R such that 4A3 + 27B2 ∈ R×. Define

E(R) = {(x : y : z) ∈ P2(R) | y2z = x3 + Axz2 + Bz3}.
The addition law is defined in essentially the same manner as in Section 2.2,
but the formulas needed are significantly more complicated. To make a long
story short (maybe not so short), the answer is the following.

GROUP LAW
Let (xi : yi : zi) ∈ E(R) for i = 1, 2. Consider the following three sets of
equations:

I.

x′
3 = (x1y2 − x2y1)(y1z2 + y2z1) + (x1z2 − x2z1)y1y2

−A(x1z2 + x2z1)(x1z2 − x2z1) − 3B(x1z2 − x2z1)z1z2

y′
3 = −3x1x2(x1y2 − x2y1) − y1y2(y1z2 − y2z1) − A(x1y2 − x2y1)z1z2

+A(x1z2 + x2z1)(y1z2 − y2z1) + 3B(y1z2 − y2z1)z1z2

z′3 = 3x1x2(x1z2 − x2z1) − (y1z2 + y2z1)(y1z2 − y2z1)
+A(x1z2 − x2z1)z1z2

II.

x′′
3 = y1y2(x1y2 + x2y1) − Ax1x2(y1z2 + y2z1)

−A(x1y2 + x2y1)(x1z2 + x2z1) − 3B(x1y2 + x2y1)z1z2

−3B(x1z2 + x2z1)(y1z2 + y2z1) + A2(y1z2 + y2z1)z1z2

y′′
3 = y2

1y2
2 + 3Ax2

1x
2
2 + 9Bx1x2(x1z2 + x2z1)

−A2x1z2(x1z2 + 2x2z1) − A2x2z1(2x1z2 + x2z1)
−3ABz1z2(x1z2 + x2z1) − (A3 + 9B2)z2

1z2
2

z′′3 = 3x1x2(x1y2 + x2y1) + y1y2(y1z2 + y2z1) + A(x1y2 + x2y1)z1z2

+A(x1z2 + x2z1)(y1z2 + y2z1) + 3B(y1z2 + y2z1)z1z2

III.

x′′′
3 = (x1y2 + x2y1)(x1y2 − x2y1) + Ax1x2(x1z2 − x2z1)

+3B(x1z2 + x2z1)(x1z2 − x2z1) − A2(x1z2 − x2z1)z1z2

y′′′
3 = (x1y2 − x2y1)y1y2 − 3Ax1x2(y1z2 − y2z1)

+A(x1y2 + x2y1)(x1z2 − x2z1) + 3B(x1y2 − x2y1)z1z2

−3B(x1z2 + x2z1)(y1z2 − y2z1) + A2(y1z2 − y2z1)z1z2
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z′′′3 = −(x1y2 + x2y1)(y1z2 − y2z1) − (x1z2 − x2z1)y1y2

−A(x1z2 + x2z1)(x1z2 − x2z1) − 3B(x1z2 − x2z1)z1z2

Then the m atrix ⎛⎝ x′
3 y′

3 z′3
x′′

3 y′′
3 z′′3

x′′′
3 y′′′

3 z′′′3

⎞⎠
is prim itive and all2 × 2 subdeterm inants vanish. Take a prim itive R-linear
com bination (x3, y3, z3) ofthe rows.Define

(x1 : y1 : z1) + (x2 : y2 : z2) = (x3 : y3 : z3).

Also,define
−(x1 : y1 : z1) = (x1 : −y1 : z1).

Then E(R) is an abelian group under this definition ofpointaddition. The
identity elem entis (0 : 1 : 0).

For some of the details concerning this definition, see [74]. The equations
are deduced (with a slight correction) from those in [18]. A similar set of
equations is given in [72].

When R is a field, each of these equations can be shown to give the usual
group law when the output is a point in P2(R) (that is, not all three coor-
dinates vanish). If two or three of the equations yield points in P2(R), then
these points are equal (since the 2×2 subdeterminants vanish). If R is a ring,
then it is possible that each of the equations yields a nonprimitive output
(for example, perhaps 5 divides the output of I, 7 divides the output of II,
and 11 divides the output of III). If we are working with Z or Z(2), this is
no problem. Simply divide by the gcd of the entries in an output. But in an
arbitrary ring, gcd’s might not exist, so we must take a linear combination to
obtain a primitive vector, and hence an element in P2(R).

Example 2.10
Let R = Z25 and let E be given by

y2 = x3 − x + 1 (mod 52).

Suppose we want to compute (1, 1) + (21, 4), as in Example 2.7 above. Write
the points in homogeneous coordinates as

(x1 : y1 : z1) = (1 : 1 : 1), (x2 : y2 : z2) = (21 : 4 : 1).

Formulas I, II, III yield

(x′
3, y

′
3, z

′
3) = (5, 23, 0)

(x′′
3 , y′′

3 , z′′3 ) = (5, 8, 0)
(x′′′

3 , y′′′
3 , z′′′3 ) = (20, 12, 0),
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respectively. Note that these are all the same point in P2(Z25) since

(5, 23, 0) = 6(5, 8, 0) = 4(20, 12, 0).

If we reduce the point (5 : 8 : 0) mod 5, we obtain (0 : 3 : 0) = (0 : 1 : 0),
which is the point ∞. The fact that the point is at infinity mod 5 but not
mod 25 is what caused the difficulties in our calculations in Example 2.7.

Example 2.11
Let E be an elliptic curve. Suppose we use the formulas to calculate

(0 : 1 : 0) + (0 : 1 : 0).

Formulas I, II, III yield

(0, 0, 0), (0, 1, 0), (0, 0, 0),

respectively. The first and third outputs do not yield points in projective
space. The second says that

(0 : 1 : 0) + (0 : 1 : 0) = (0 : 1 : 0).

This is of course the rule ∞ + ∞ = ∞ from the usual group law on elliptic
curves.

The present version of the group law allows us to work with elliptic curves
over rings in theoretical settings. We give three examples.

COROLLARY 2.32
Letn1 and n2 beodd integerswith gcd(n1, n2) = 1.LetE bean ellipticcurve
defined overZn1n2.Then there isa group isom orphism

E(Zn1n2) � E(Zn1) ⊕ E(Zn2).

PROOF Suppose that E is given by y2z = x3 + Axz2 + Bz3 with A,B ∈
Zn1n2 and 4A3 + 27B2 ∈ Z×

n1n2
. Then we can regard A and B as elements of

Zni
and we have 4A3 +27B2 ∈ Z×

ni
. Therefore, we can regard E as an elliptic

curve over Zni
, so the statement of the corollary makes sense.

The Chinese remainder theorem says that there is an isomorphism of rings

Zn1n2 � Zn1 ⊕ Zn2

given by
x mod n1n2 ←→ (x mod n1, x mod n2) .
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This yields a bijection between triples in Zn1n2 and pairs of triples, one in
Zn1 and one in Zn2 . It is not hard to see that primitive triples for Zn1n2

correspond to pairs of primitive triples in Zn1 and Zn2 . Moreover,

y2z ≡ x3 + Axz2 + Bz3 (mod n1n2)

⇐⇒
{

y2z ≡ x3 + Axz2 + Bz3 (mod n1)
y2z ≡ x3 + Axz2 + Bz3 (mod n2)

Therefore, there is a bijection

ψ : E(Zn1n2) −→ E(Zn1) ⊕ E(Zn2).

It remains to show that ψ is a homomorphism. Let P1, P2 ∈ E(Zn1n2) and let
P3 = P1 + P2. This means that there is a linear combination of the outputs
of formulas I, II, III that is primitive and yields P3. Reducing all of these
calculations mod ni (for i = 1, 2) yields exactly the same result, namely the
primitive point P3 (mod ni) is the sum of P1 (mod ni) and P2 (mod ni).
This means that ψ(P3) = ψ(P1) + ψ(P2), so ψ is a homomorphism.

COROLLARY 2.33
LetE be an elliptic curve overQ given by

y2 = x3 + Ax + B

withA,B ∈ Z.Letn bea positiveodd integersuch thatgcd(n, 4A3+27B2) =
1. Representthe elem ents ofE(Q) as prim itive triples (x : y : z) ∈ P2(Z).
The m ap

redn : E(Q) −→ E(Zn)
(x : y : z) �→ (x : y : z) (mod n)

isa group hom om orphism .

PROOF If P1, P2 ∈ E(Q) and P1 + P2 = P3, then P3 is a primitive point
that can be expressed as a linear combination of the outputs of formulas I, II,
III. Reducing all of the calculations mod n yields the result.

Corollary 2.33 can be generalized as follows.

COROLLARY 2.34
LetR be a ring and let I be an idealofR. Assum e thatboth R and R/I
satisfy conditions(1)and (2)on page 66.LetE be given by

y2z = x3 + Axz2 + Bz3
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with A,B ∈ R and assum e there exists r ∈ R such that

(4A3 + 27B2)r − 1 ∈ I.

Then the m ap

redI : E(R) −→ E(R/I)
(x : y : z) �→ (x : y : z) mod I

isa group hom om orphism .

PROOF The proof is the same as for Corollary 2.33, with R in place of
Z and mod I in place of mod n. The condition that (4A3 + 27B2)r − 1 ∈ I
for some r is the requirement that 4A3 + 27B2 is a unit in R/I, which was
required in the definition of an elliptic curve over the ring R/I.

Exercises

2.1 (a) Show that the constant term of a monic cubic polynomial is the
negative of the product of the roots.

(b) Use (a) to derive the formula for the sum of two distinct points
P1, P2 in the case that the x-coordinates x1 and x2 are nonzero, as
in Section 2.2. Note that when one of these coordinates is 0, you
need to divide by zero to obtain the usual formula.

2.2 The point (3, 5) lies on the elliptic curve E : y2 = x3 − 2, defined over
Q. Find a point (not ∞) with rational, nonintegral coordinates in (Q).

2.3 The points P = (2, 9), Q = (3, 10), and R = (−4,−3) lie on the elliptic
curve E : y2 = x3 + 73.

(a) Compute P + Q and (P + Q) + R.

(b) Compute Q + R and P + (Q + R). Your answer for P + (Q + R)
should agree with the result of part (a). However, note that one
computation used the doubling formula while the other did not use
it.

2.4 Let E be the elliptic curve y2 = x3 − 34x + 37 defined over Q. Let
P = (1, 2) and Q = (6, 7).

(a) Compute P + Q.
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(b) Note that P ≡ Q (mod 5). Compute 2P on E mod 5. Show that
the answer is the same as (P+Q) mod 5. Observe that since P ≡ Q,
the formula for adding the points mod 5 is not the reduction of the
formula for adding P +Q. However, the answers are the same. This
shows that the fact that reduction mod a prime is a homomorphism
is subtle, and this is the reason for the complicated formulas in
Section 2.11.

2.5 Let (x, y) be a point on the elliptic curve E given by y2 = x3 + Ax + B.
Show that if y = 0 then 3x2 + A �= 0. (Hint:What is the condition for
a polynomial to have x as a multiple root?)

2.6 Show that three points on an elliptic curve add to ∞ if and only if they
are collinear.

2.7 Let C be the curve u2 + v2 = c2
(
1 + du2v2

)
, as in Section 2.6.3. Show

that the point (c, 0) has order 4.

2.8 Show that the method at the end of Section 2.2 actually computes kP .
(Hint: Use induction on the length of the binary expansion of k. If
k = k0 + 2k1 + 4k2 + · · · + 2�a�, assume the result holds for k′ = k0 +
2k1 + 4k2 + · · · + 2�−1a�−1.)

2.9 If P = (x, y) �= ∞ is on the curve described by (2.1), then −P is the
other finite point of intersection of the curve and the vertical line through
P . Show that −P = (x, −a1x − a3 − y). (Hint: This involves solving
a quadratic in y. Note that the sum of the roots of a monic quadratic
polynomial equals the negative of the coefficient of the linear term.)

2.10 Let R be the real numbers. Show that the map (x, y, z) �→ (x : y : z)
gives a two-to-one map from the sphere x2 + y2 + z2 = 1 in R3 to P2

R.
Since the sphere is compact, this shows that P2

R is compact under the
topology inherited from the sphere (a set is open in P2

R if and only if
its inverse image is open in the sphere).

2.11 (a) Show that two lines a1x + b1y + c1z = 0 and a2x + b2y + c2z = 0
in two-dimensional projective space have a point of intersection.

(b) Show that there is exactly one line through two distinct given points
in P2

K .

2.12 Suppose that the matrix

M =

⎛⎝a1 b1

a2 b2

a3 b3

⎞⎠
has rank 2. Let (a, b, c) be a nonzero vector in the left nullspace of M ,
so (a, b, c)M = 0. Show that the parametric equations

x = a1u + b1v, y = a2u + b2v, z = a3u + b3v,

© 2008 by Taylor & Francis Group, LLC



EXERCISES 73

describe the line ax + by + cz = 0 in P2
K . (It is easy to see that the

points (x : y : z) lie on the line. The main point is that each point on
the line corresponds to a pair (u, v).)

2.13 (a) Put the Legendre equation y2 = x(x − 1)(x − λ) into Weierstrass
form and use this to show that the j-invariant is

j = 28 (λ2 − λ + 1)3

λ2(λ − 1)2
.

(b) Show that if j �= 0, 1728 then there are six distinct values of λ
giving this j, and that if λ is one such value then the full set is

{λ,
1
λ

, 1 − λ,
1

1 − λ
,

λ

λ − 1
,
λ − 1

λ
}.

(c) Show that if j = 1728 then λ = −1, 2, 1/2, and if j = 0 then
λ2 − λ + 1 = 0.

2.14 Consider the equation u2 − v2 = 1, and the point (u0, v0) = (1, 0).

(a) Use the method of Section 2.5.4 to obtain the parameterization

u =
m2 + 1
m2 − 1

, v =
2m

m2 − 1
.

(b) Show that the projective curve u2 − v2 = w2 has two points at
infinity, (1 : 1 : 0) and (1 : −1 : 0).

(c) The parameterization obtained in (a) can be written in projective
coordinates as (u : v : w) = (m2 + 1 : 2m : m2 − 1) (or (m2 + n2 :
2mn : m2 − n2) in a homogeneous form). Show that the values
m = ±1 correspond to the two points at infinity. Explain why this
is to be expected from the graph (using real numbers) of u2−v2 = 1.
(Hint:Where does an asymptote intersect a hyperbola?)

2.15 Suppose (u0, v0, w0) = (u0, 0, 0) lies in the intersection

au2 + bv2 = e, cu2 + dw2 = f.

(a) Show that the procedure of Section 2.5.4 leads to an equation of
the form “square = degree 2 polynomial in m.”

(b) Let F = au2 + bv2 = e and G = cu2 + dw2 = f . Show that the

Jacobian matrix
(

Fu Fv Fw

Gu Gv Gw

)
at (u0, 0, 0) has rank 1. Since the

rank is less than 2, this means that the point is a singular point.

2.16 Show that the cubic equation x3 + y3 = d can be transformed to the
elliptic curve y2

1 = x3
1 − 432d2.
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2.17 (a) Show that (x, y) �→ (x,−y) is a group homomorphism from E to
itself, for any elliptic curve in Weierstrass form.

(b) Show that (x, y) �→ (ζx,−y), where ζ is a nontrivial cube root of
1, is an automorphism of the elliptic curve y2 = x3 + B.

(c) Show that (x, y) �→ (−x, iy), where i2 = −1, is an automorphism
of the elliptic curve y2 = x3 + Ax.

2.18 Let K have characteristic 3 and let E be defined by y2 = x3 + a2x
2 +

a4x + a6. The j-invariant in this case is defined to be

j =
a6
2

a2
2a

2
4 − a3

2a6 − a3
4

(this formula is false if the characteristic is not 3).

(a) Show that either a2 �= 0 or a4 �= 0 (otherwise, the cubic has a triple
root, which is not allowed).

(b) Show that if a2 �= 0, then the change of variables x1 = x− (a4/a2)
yields an equation of the form y2

1 = x3
1 + a′

2x
2
1 + a′

6. This means
that we may always assume that exactly one of a2 and a4 is 0.

(c) Show that if two elliptic curves y2 = x3 + a2x
2 + a6 and y2 =

x3 +a′
2x

2 +a′
6 have the same j-invariant, then there exists μ ∈ K

×

such that a′
2 = μ2a2 and a′

6 = μ6a6.
(d) Show that if y2 = x3 + a4x + a6 and y2 = x3 + a′

4x
2 + a′

6 are
two elliptic curves (in characteristic 3), then there is a change of
variables y �→ ay, x �→ bx + c, with a, b ∈ K

×
and c ∈ K, that

changes one equation into the other.
(e) Observe that if a2 = 0 then j = 0 and if a4 = 0 then j = −a3

2/a6.
Show that every element of K appears as the j-invariant of a curve
defined over K.

(f) Show that if two curves have the same j-invariant then there is a
change of variables over K that changes one into the other.

2.19 Let α(x, y) = (p(x)/q(x), y ·s(x)/t(x)) be an endomorphism of the ellip-
tic curve E given by y2 = x3 + Ax + B, where p, q, s, t are polynomials
such that p and q have no common root and s and t have no common
root.

(a) Using the fact that (x, y) and α(x, y) lie on E, show that

(x3 + Ax + B) s(x)2

t(x)2
=

u(x)
q(x)3

for some polynomial u(x) such that q and u have no common root.
(Hint:Show that a common root of u and q must also be a root of
p.)
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(b) Suppose t(x0) = 0. Use the facts that x3 +Ax+B has no multiple
roots and all roots of t2 are multiple roots to show that q(x0) = 0.
This shows that if q(x0) �= 0 then α(x0, y0) is defined.

2.20 Consider the singular curve y2 = x3 + ax2 with a �= 0. Let y = mx
be a line through (0, 0). Show that the line always intersects the curve
to order at least 2, and show that the order is 3 exactly when m2 = a.
This may be interpreted as saying that the lines y = ±√

ax are the two
tangents to the curve at (0, 0).

2.21 (a) Apply the method of Section 2.5.4 to the circle u2 + v2 = 1 and
the point (−1, 0) to obtain the parameterization

u =
1 − t2

1 + t2
, v =

2t

1 + t2
.

(b) Suppose x, y, z are integers such that x2 +y2 = z2, gcd(x, y, z) = 1,
and x is even. Use (a) to show that there are integers m,n such
that

x = 2mn, y = m2 − n2, z = m2 + n2.

Also, show that gcd(x, y, z) = 1 implies that gcd(m,n) = 1 and
that m �≡ n (mod 2).

2.22 Let p(x) and q(x) be polynomials with no common roots. Show that

d

dx

(
p(x)
q(x)

)
= 0

(that is, the identically 0 rational function) if and only if both p′(x) = 0
and q′(x) = 0. (If p or q is nonconstant, then this can happen only in
positive characteristic.)

2.23 Let E be given by y2 = x3 +Ax+B over a field K and let d ∈ K×. The
twist of E by d is the elliptic curve E(d) given by y2 = x3+Ad2x+Bd3.

(a) Show that j(E(d)) = j(E).

(b) Show that E(d) can be transformed into E over K(
√

d).

(c) Show that E(d) can be transformed over K to the form dy2
1 =

x3
1 + Ax1 + B.

2.24 Let α, β ∈ Z be such that gcd(α, β) = 1. Assume that α ≡ −1 (mod 4)
and β ≡ 0 (mod 32). Let E be given by y2 = x(x − α)(x − β).

(a) Let p be prime. Show that the cubic polynomial x(x − α)(x − β)
cannot have a triple root mod p.
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(b) Show that the substitution

x = 4x1, y = 8y1 + 4x1

changes E into E1, given by

y2
1 + x1y1 = x3

1 +
−β − α − 1

4
x2

1 +
αβ

16
x1.

(c) Show that the reduction mod 2 of the equation for E1 is

y2
1 + x1y1 = x3

1 + ex2
1

for some e ∈ F2. This curve is singular at (0, 0).

(d) Let γ be a constant and consider the line y1 = γx1. Show that if
γ2 + γ = e, then the line intersects the curve in part (c) to order
3, and if γ2 + γ �= e then this line intersects the curve to order 2.

(e) Show that there are two distinct values of γ ∈ F2 such that γ2+γ =
e. This implies that there are two distinct tangent lines to the curve
E1 mod 2 at (0,0), as in Exercise 2.20.

We take the property of part (e) to be the definition of multiplicative
reduction in characteristic 2. Therefore, parts (a) and (e) show that
the curve E1 has good or multiplicative reduction at all primes. A
semistable elliptic curve over Q is one that has good or multiplicative
reduction at all primes, possibly after a change of variables (over Q)
such as the one in part (b). Therefore, E is semistable. See Section 15.1
for a situation where this fact is used.
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