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Random Numbers in Cryptography

Session keys

Signature keys and parameters

Authentication protocols

Ephemeral keys (DSA, ECDSA, ElGamal)

Zero-knowledge protocols

IVs for block ciphers

Blinding and masking values

. . .
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Properties of Random Numbers

Silent Requirement: The random numbers should assume all admissible
values with equal probability and should be independent from predecessors
and successors.
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Properties of Random Numbers

Silent Requirement: The random numbers should assume all admissible
values with equal probability and should be independent from predecessors
and successors.

This characterizes an ideal random number generator
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Ideal RNGs

Even with maximal knowledge and unlimited computational power an
attacker has no better strategy than “blind” guessing
→ Brute force attack
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Ideal RNGs

Even with maximal knowledge and unlimited computational power an
attacker has no better strategy than “blind” guessing
→ Brute force attack

Guessing n random bits costs 2n−1 trials in average

The guess work remains invariant in the course of time
→ Today, in 2 years, in 100 years
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Ideal RNGs

Even with maximal knowledge and unlimited computational power an
attacker has no better strategy than “blind” guessing
→ Brute force attack

Guessing n random bits costs 2n−1 trials in average

The guess work remains invariant in the course of time
→ Today, in 2 years, in 100 years

However, An ideal RNG is a mathematical construct!
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Real World RNGs

Koç (http://cs.ucsb.edu/~koc) HRL RNG April 11, 2013 5 / 47

http://cs.ucsb.edu/~koc


Random Number Generators in Cryptography

Deterministic RNGs are also known as pseudorandom number
generators
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Random Number Generators in Cryptography

Deterministic RNGs are also known as pseudorandom number
generators

Hybrid deterministic RNGs and hybrid true RNGs apply design criteria
from both deterministic RNGs and non-deterministic RNGs

Koç (http://cs.ucsb.edu/~koc) HRL RNG April 11, 2013 6 / 47

http://cs.ucsb.edu/~koc


Random Number Generators in Cryptography

Deterministic RNGs are also known as pseudorandom number
generators

Hybrid deterministic RNGs and hybrid true RNGs apply design criteria
from both deterministic RNGs and non-deterministic RNGs

True random numbers cannot be computed on deterministic
computers, they are best produced using physical RNGs which
operate by measuring a well controlled and specially prepared random
physical process
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Random Number Generators in Cryptography

Deterministic RNGs are also known as pseudorandom number
generators

Hybrid deterministic RNGs and hybrid true RNGs apply design criteria
from both deterministic RNGs and non-deterministic RNGs

True random numbers cannot be computed on deterministic
computers, they are best produced using physical RNGs which
operate by measuring a well controlled and specially prepared random
physical process

Especially valuable are information-theoretic provable RNGs which, at
state of the art, seem to be possible only by exploiting randomness
inherent to certain quantum systems
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Challenge-Response Protocol
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Challenge-Response Protocol

To prevent replay attacks the random numbers U1,U2, . . . should be
distinct with overwhelming probability
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Security Requirement R1

Random numbers should not show any statistical weaknesses
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Security Requirement R1

Random numbers should not show any statistical weaknesses

Requirement R1 is usually verified by statistical tests
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Security Requirement R1

Random numbers should not show any statistical weaknesses

Requirement R1 is usually verified by statistical tests

Is Requirement R1 is sufficient?
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Key Exchange Protocol

Alice Bob Charles Daniel

r1
eB  mod nB || T1

r2
eC  mod nC || T2

r3
eC  mod nC || T3

r4
eD  mod nD || T4
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Key Exchange Protocol

Alice Bob Charles Daniel

r1
eB  mod nB || T1

r2
eC  mod nC || T2

r3
eC  mod nC || T3

r4
eD  mod nD || T4

Privileged attacker Charles:
The knowledge of r2 and r3 may allow him to guess r3
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Security Requirement R2

The knowledge of subsequences of random numbers should not allow
one to compute predecessors or successors practically or to guess
them with non-negligibly larger probability than without knowledge of
these subsequences
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Security Requirement R2

The knowledge of subsequences of random numbers should not allow
one to compute predecessors or successors practically or to guess
them with non-negligibly larger probability than without knowledge of
these subsequences

Requirement R2 implies backward and forward security
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Security Requirement R2

The knowledge of subsequences of random numbers should not allow
one to compute predecessors or successors practically or to guess
them with non-negligibly larger probability than without knowledge of
these subsequences

Requirement R2 implies backward and forward security

Requirement R2 can be thought of as the union of R3 (backward
security) and R4 (forward security)
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Security Requirements

The minimum requirements on the random numbers depend on the
intended applications
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Security Requirements

The minimum requirements on the random numbers depend on the
intended applications

For sensitive applications, e.g., the generation of session keys or
signature parameters, Requirement R2 is indispensable
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DRNGs

A pure DRNG starts with a seed (s ′0) value and using a “seeding
procedure” computes the first internal state s1 from s ′0
The output is the random number r1 which is computed using the
output function Ψ while the next state s2 is computed using the state
transition function Φ as

s1 = seeding (s ′0)

r1 = Ψ(s1)

s2 = Φ(s1)
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Pure DRNG Schematic
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DRNG Examples

Linear Feedback Shift Registers (LFSRs)

Cellular Automata (CA)

Linear Congruential Generators (LCGs)

Block cipher based methods

Hash function based methods

Number-theoretical methods: Blum-Blum-Shub, RSA, Rabin

Elliptic curve methods: LCG, Power Generator, Naor-Reingold

New: Edward curves method
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DRNG Advantages

DRNGs as random number generators have many advantages:

low cost

no dedicated hardware is required

implementations can be done in software

identical seed values imply identical random numbers which is a
necessary condition for using them as stream ciphers
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DRNG Disadvantages

However, there are disadvantages:

For pure DRNGs, the output is completely determined by the seed

Output sequences of pure DRNGs cannot be truly independent

They may behave as output sequence of an ideal RNG at most with
respect to certain aspects

The internal state has to be protected even if the device is not active
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Security Requirements of DRNGs

LFSRs: usually meet Requirement R1, but they do not meet R2

CA: on certain conditions meet R1 and R2

LCGs: usually meet Requirement R1, on certain conditions meet R2
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Security Requirements of DRNGs

LFSRs: usually meet Requirement R1, but they do not meet R2

CA: on certain conditions meet R1 and R2

LCGs: usually meet Requirement R1, on certain conditions meet R2

Simple structures are useful for efficient implementations but they
have serious security shortcomings

Koç (http://cs.ucsb.edu/~koc) HRL RNG April 11, 2013 17 / 47

http://cs.ucsb.edu/~koc


Block Cipher DRNGs

Block cipher based DRNGs: k key (to be kept secret) and internal
state sn = (rn, k) and sn+1 = (Ek(rn), k) = (rn+1, k)

Internal state: sn = (rn, k)

sn+1 = (E (rn, k), k) = (rn+1, k)
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Block Cipher DRNGs

Block cipher based DRNGs meet R1: ciphertext from a strong cipher
should not have any statistical weakness
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Block Cipher DRNGs

Block cipher based DRNGs meet R1: ciphertext from a strong cipher
should not have any statistical weakness

They also meet R2: only if the encryption and decryption functions
are secure against chosen-plaintext attacks
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Block Cipher DRNGs

Block cipher based DRNGs meet R1: ciphertext from a strong cipher
should not have any statistical weakness

They also meet R2: only if the encryption and decryption functions
are secure against chosen-plaintext attacks

This “security proof” is typical for DRNGs: tracing back to the
recognized properties of well-known cryptographic primitives
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Block Cipher DRNGs

Block cipher based DRNGs meet R1: ciphertext from a strong cipher
should not have any statistical weakness

They also meet R2: only if the encryption and decryption functions
are secure against chosen-plaintext attacks

This “security proof” is typical for DRNGs: tracing back to the
recognized properties of well-known cryptographic primitives

For AES and Triple-DES encryption functions, may assume that this
DRNG meets R2
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Block Cipher DRNGs

Block cipher based DRNGs meet R1: ciphertext from a strong cipher
should not have any statistical weakness

They also meet R2: only if the encryption and decryption functions
are secure against chosen-plaintext attacks

This “security proof” is typical for DRNGs: tracing back to the
recognized properties of well-known cryptographic primitives

For AES and Triple-DES encryption functions, may assume that this
DRNG meets R2

In the 80s, the same conclusion was justified for Single-DES, but this
conclusion is no longer valid!
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Hash Function DRNGs

sn is a 160-bit vector
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Hash Function DRNGs

sn is a 160-bit vector

Fulfills R1 and R2 (both backward and forward security)

Koç (http://cs.ucsb.edu/~koc) HRL RNG April 11, 2013 20 / 47

http://cs.ucsb.edu/~koc


Cryptographically Secure DRNGs

Their security is based on intractability assumptions, e.g.,
factoring is hard or DLP is hard

Examples: Blum-Blum-Shub, RSA, Rabin bit generators
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Cryptographically Secure DRNGs

Their security is based on intractability assumptions, e.g.,
factoring is hard or DLP is hard

Examples: Blum-Blum-Shub, RSA, Rabin bit generators

On the basis of these intractability assumptions certain security
properties can be proved, such as next-bit security

Usually only asymptotic security properties can be proved, for
example, with increasing RSA modulus
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Cryptographically Secure DRNGs

Their security is based on intractability assumptions, e.g.,
factoring is hard or DLP is hard

Examples: Blum-Blum-Shub, RSA, Rabin bit generators

On the basis of these intractability assumptions certain security
properties can be proved, such as next-bit security

Usually only asymptotic security properties can be proved, for
example, with increasing RSA modulus

Not used in practice due to their low output rate
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Security Requirement R4

For specific applications, Requirement R4 (enhanced forward security)
is desirable
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Security Requirement R4

For specific applications, Requirement R4 (enhanced forward security)
is desirable

It should not be practically feasible to compute future random
numbers from the internal state or to guess them with non-negligibly
larger probability than without the knowledge of the internal state

Koç (http://cs.ucsb.edu/~koc) HRL RNG April 11, 2013 22 / 47

http://cs.ucsb.edu/~koc


Security Requirement R4

For specific applications, Requirement R4 (enhanced forward security)
is desirable

It should not be practically feasible to compute future random
numbers from the internal state or to guess them with non-negligibly
larger probability than without the knowledge of the internal state

Attack Scenario: An attacker is able to read or to manipulate the
internal state of a DRNG without being noticed by the user/owner of
the DRNG who uses the subsequent random numbers
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Security Requirement R4

For specific applications, Requirement R4 (enhanced forward security)
is desirable

It should not be practically feasible to compute future random
numbers from the internal state or to guess them with non-negligibly
larger probability than without the knowledge of the internal state

Attack Scenario: An attacker is able to read or to manipulate the
internal state of a DRNG without being noticed by the user/owner of
the DRNG who uses the subsequent random numbers

Pure DRNGs cannot fulfill Requirement R4
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Security Requirement R4

For specific applications, Requirement R4 (enhanced forward security)
is desirable

It should not be practically feasible to compute future random
numbers from the internal state or to guess them with non-negligibly
larger probability than without the knowledge of the internal state

Attack Scenario: An attacker is able to read or to manipulate the
internal state of a DRNG without being noticed by the user/owner of
the DRNG who uses the subsequent random numbers

Pure DRNGs cannot fulfill Requirement R4

A hybrid DRNG may fulfill R4 for the random numbers that are
generated after the first update of its internal state with random data
after the internal state has been compromised
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Hybrid DRNGs
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Hybrid DRNGs

Additional input may be provided

After each step
Occasionally
Upon external request of an application

Koç (http://cs.ucsb.edu/~koc) HRL RNG April 11, 2013 24 / 47

http://cs.ucsb.edu/~koc


Hybrid DRNGs

Additional input may be provided

After each step
Occasionally
Upon external request of an application

Additional input may have

Large entropy per bit, using a strong physical RNG
Low entropy, time etc
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Block Cipher Hybrid DRNGs

Strong block cipher, e.g., AES or Triple-DES

Key k is kept secret

The algorithmic part guarantees R1 and R2

Additional input large entropy may ensure R3 and R4
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Elliptic Curve DRNGs

There are three existing proposals

Linear congruential generator
Power generator
Naor-Reingold generator

Koç (http://cs.ucsb.edu/~koc) HRL RNG April 11, 2013 26 / 47

http://cs.ucsb.edu/~koc


Elliptic Curve DRNGs

There are three existing proposals

Linear congruential generator
Power generator
Naor-Reingold generator

Some results have been obtained

Some complexity results (bounds) for the power generators
Studies involving Koblitz curves
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Elliptic Curve DRNGs

There are three existing proposals

Linear congruential generator
Power generator
Naor-Reingold generator

Some results have been obtained

Some complexity results (bounds) for the power generators
Studies involving Koblitz curves

Our new work

New pure and hybrid DRNG over Edward Curves
New complexity results
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Elliptic Curve DRNGs

Weierstrass form of elliptic curves has been the standard tool

Interesting applications of character sums, combinatorics, and curves

Requirement R1 is usually assumed

Requirement R2: Security proofs of elliptic curve DRNGs are based
on the elliptic curve discrete logarithm problem:

Find d , given P and Q = [d ]P
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Weierstrass Elliptic Curves

The set of points (x , y) on elliptic curve together with the point at
infinity O

E = {(x , y) | (x , y) ∈ F2
p and y2 = x3 + ax + b} ∪ {O}

forms an Abelian group with respect to the addition operation ⊕
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Elliptic Curve Point Addition

The addition operation computes the coordinates (x3, y3) of P3 for
P3 = P1 ⊕ P2 = (x1, y1)⊕ (x2, y2)
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Elliptic Curve Addition and Doubling over Fp

Given P1 = (x1, y1) and P2 = (x2, y2), the computation of P3 = (x3, y3):

If (x1, y1) = O, then (x3, y3) = (x2, y2) since P3 = O + P2 = P2

If (x2, y2) = O, then (x3, y3) = (x1, y1) since P3 = P1 +O = P1

If x2 = x1 and y2 = −y1, then (x3, y3) = O since P3 = −P1 +P1 = O
Otherwise, first compute the slope using

m =















y2−y1
x2−x1

for x1 6= x2

3x2
1
+a

2y1
for x1 = x2 and y1 = y2

Then, (x3, y3) is computed using

x3 = m2 − x1 − x2

y3 = m (x1 − x3)− y1
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Sequence from Points

Map points Pn = (xn, yn) ∈ F2
p into [0, 1) × [0, 1)

There is a natural map

Pn →
(

xn
p
,
yn
p

)

since Fp = {0, 1, . . . , p − 1}
Some applications use only the x coordinate or apply maps to the
coordinate values (for example, hash functions or trace maps)
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Elliptic Curve Linear Congruential Generator

For the “initial value” Q0 ∈ E (Fp), consider the sequence

Qk = P ⊕ Qk−1 = [k]P ⊕ Q0 for k = 1, 2, . . .

Easy to construct the following element given two consecutive ones

Let Qk = (xk , yk) and use (xk)k=0 as sequence in Fp or normalize to
[0, 1) using an enumeration of the field and dividing by p

Period is linked to the number of points in E
If the field is F2n , this sequence is studied

Tr(x0),Tr(y0),Tr(x1),Tr(y1),Tr(x2),Tr(y2), . . .
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Elliptic Curve Power Generator

For integer e ≥ 2, consider the sequence with Q0 = P

Qk = [e]Qk−1 = [ek ]P

Determining e from Qk and Qk−1 would be solving the ECDLP

Constructing the sequence element given longer substrings is related
to the generalized ECDH problem
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Elliptic Curve Naor-Reingold

Given an integer vector A = (a1, a2, . . . , an), consider the sequence

QA,k = [ak1
1
ak2
2
· · · aknn ]P

where k = k1k2 . . . kn is the bit representation of k , 0 ≤ k ≤ 2n − 1

Ezample: n = 4, l = 19, and A = (2, 5, 3, 4)

fA,0 = 20503040P = P

fA,1 = 20503041P = [4]P

fA,2 = 20503140P = [3]P

fA,3 = 20503141P = [12]P

fA,11 = 21503141P = [24]P = [5]P

fA,15 = 21513141P = [120]P = [6]P
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Research on EC-LCG, EC-PG, and EC-NRG

Recent work of Tanja Lange, David Kohel, Igor Shparlinski, Berry
Schoenmakers, and Vladimir Sidorenko

Some results of theoretical value; Other results are more practical: If
the order of P is at least p0.5+ǫ then all three sequences are
reasonably well distributed
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Research on EC-LCG, EC-PG, and EC-NRG

Recent work of Tanja Lange, David Kohel, Igor Shparlinski, Berry
Schoenmakers, and Vladimir Sidorenko

Some results of theoretical value; Other results are more practical: If
the order of P is at least p0.5+ǫ then all three sequences are
reasonably well distributed

Cryptanalysis results: A variant of EC-LCG, “dual elliptic curve
generator”: s0 random seed, Q = [a]P , a is secret

si = x([si−1]P)

ri = lsb240(x([si ]Q))

ri are not uniformly distributed; next bit is predictable without
knowing a; looks secure if fewer bits are extracted
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Edwards Curves

Harold Edwards introduced a new normal form for elliptic curves and
gave an addition law which is remarkably symmetric and much simpler

The original form the equation Edwards studied was

x2 + y2 = c2 + c2x2y2

solved over a field F whose characteristic is not equal to 2

Studies on such groups go as far back as to Gauss

Bernstein and Lange gave a slightly simpler form

x2 + y2 = 1 + dx2y2

where d is a quadratic non residue
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Edwards Curves (d = 0)

When d = 0, this becomes the unit circle
The zero element of the group is (0, 1)
The addition law is given as

(x1, y1)⊕ (x2, y2) = (x1y2 + x2y1, y1y2 − x1x2)

The geometric interpretation: add the angles of the points P1 and P2
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Edwards Curves

Other values of d ∈ F − {0, 1} for a non-binary field F form curves
within the unit circle

Edwards curves for d = 0,−2,−10,−50,−200

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
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Edwards Curve Addition Law

The zero (neutral) element is (0, 1)

The inverse of (x , y) is (−x , y)

The addition law

(x1, y1)⊕ (x2, y2) =

(

x1y2 + x2y1
1 + dx1x2y1y2

,
y1y2 − x1x2

1− dx1x2y1y2

)
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Edwards Curve Projections

A point (x , y) on the Edwards curve Ed projects to the point (u, v) in
the same quadrant on the unit circle as (u, v) = (αx , αy), where

α =
1

√

x2 + y2
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Edwards Curve Projections

A point (x , y) on the Edwards curve Ed projects to the point (u, v) in
the same quadrant on the unit circle as (u, v) = (αx , αy), where

α =
1

√

x2 + y2

A point (u, v) on the unit circle projects back to the point (x , y) in
the same quadrant on the Edwards curve Ed as (x , y) = (βu, βv),
where

β =

√
2

√

1 +
√
1− 4du2v2
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Edwards Curve Projections

A point (x0, y0) on the Edwards curve Ed0 projects to the point
(x1, y1) in the same quadrant on the Edwards curve Ed1 as
(x1, y1) = (γx0, γx1), where

γ =

√
2

√

x2
0
+ y2

0
+

√

(x2
0
+ y2

0
)2 − 4d1x20 y

2
0

Koç (http://cs.ucsb.edu/~koc) HRL RNG April 11, 2013 41 / 47

http://cs.ucsb.edu/~koc


Edwards Curve Projections

A point (x0, y0) on the Edwards curve Ed0 projects to the point
(x1, y1) in the same quadrant on the Edwards curve Ed1 as
(x1, y1) = (γx0, γx1), where

γ =

√
2

√

x2
0
+ y2

0
+

√

(x2
0
+ y2

0
)2 − 4d1x20 y

2
0

Equations are more complicated however where it is possible to
project from one curve to another, using clock addition and roots of
unity

(

sin

(

2π

n

)

, cos

(

2π

n

))
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Edwards Curve Hybrid DRNG

Given the seed vector K = (k0, k1, . . . , kn), consider the Edwards
curve Ed over the odd prime p

Koç (http://cs.ucsb.edu/~koc) HRL RNG April 11, 2013 42 / 47

http://cs.ucsb.edu/~koc


Edwards Curve Hybrid DRNG

Given the seed vector K = (k0, k1, . . . , kn), consider the Edwards
curve Ed over the odd prime p

Take initial d0 = d and start with P0 = (x0, y0) on Ed0 , and compute

[k0]P0 = (x0, y0)⊕d0 · · · ⊕d0 (x0, y0) = (a0, b0)
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Edwards Curve Hybrid DRNG

Given the seed vector K = (k0, k1, . . . , kn), consider the Edwards
curve Ed over the odd prime p

Take initial d0 = d and start with P0 = (x0, y0) on Ed0 , and compute

[k0]P0 = (x0, y0)⊕d0 · · · ⊕d0 (x0, y0) = (a0, b0)

Obtain t0 from the entropy source such that a20 + b20 − t20 is a QNR
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Edwards Curve Hybrid DRNG

Given the seed vector K = (k0, k1, . . . , kn), consider the Edwards
curve Ed over the odd prime p

Take initial d0 = d and start with P0 = (x0, y0) on Ed0 , and compute

[k0]P0 = (x0, y0)⊕d0 · · · ⊕d0 (x0, y0) = (a0, b0)

Obtain t0 from the entropy source such that a20 + b20 − t20 is a QNR

Assuming a0b0 6= 0, set

d1 =
t20

a2
0
b2
0

(a20 + b20 − t20 )
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Edwards Curve Hybrid DRNG

This d1 is a QNR, and we can use it to define a new Edwards curve
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Edwards Curve Hybrid DRNG

This d1 is a QNR, and we can use it to define a new Edwards curve

The selection t0 = 1 always works, but this gives d1 = d0
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Edwards Curve Hybrid DRNG

This d1 is a QNR, and we can use it to define a new Edwards curve

The selection t0 = 1 always works, but this gives d1 = d0

Now, project the point (a0, b0) on the Edwards curve Ed1 by

P1 = (x1, y1) = (γ0a0, γ0b0)
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Edwards Curve Hybrid DRNG

This d1 is a QNR, and we can use it to define a new Edwards curve

The selection t0 = 1 always works, but this gives d1 = d0

Now, project the point (a0, b0) on the Edwards curve Ed1 by

P1 = (x1, y1) = (γ0a0, γ0b0)

The projection coefficient simplifies γ0 = t−1

0

Now compute

[k1]P1 = (x1, y1)⊕d1 · · · ⊕d1 (x1, y1) = (a1, b1)
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Edwards Curve Hybrid DRNG

Assuming a1b1 6= 0, the parameter for the next Edwards curve is

d2 =
t21

a2
1
b2
1

(a21 + b21 − t21 )

such that a21 + b21 − t21 is a QNR and t1 comes from the entropy source
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Edwards Curve Hybrid DRNG

Assuming a1b1 6= 0, the parameter for the next Edwards curve is

d2 =
t21

a2
1
b2
1

(a21 + b21 − t21 )

such that a21 + b21 − t21 is a QNR and t1 comes from the entropy source

Now compute [k2]P2 on Ed2 where P2 is the projection

P2 = (x2, y2) = (t−1

1
a1, t

−1

1
b1)

and so on
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Edwards Curve Hybrid DRNG

Assuming a1b1 6= 0, the parameter for the next Edwards curve is

d2 =
t21

a2
1
b2
1

(a21 + b21 − t21 )

such that a21 + b21 − t21 is a QNR and t1 comes from the entropy source

Now compute [k2]P2 on Ed2 where P2 is the projection

P2 = (x2, y2) = (t−1

1
a1, t

−1

1
b1)

and so on

The final point produced is [kn]Pn on the Edwards curve Edn
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Edwards Curve Hybrid DRNG

System parameters: Edward curve over Fp with odd prime p and
d0 = d , and a point on the curve P0 = (x0, y0)
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Edwards Curve Hybrid DRNG

System parameters: Edward curve over Fp with odd prime p and
d0 = d , and a point on the curve P0 = (x0, y0)

Input seed vector: K = (k0, k1, . . . , kn)
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Edwards Curve Hybrid DRNG

System parameters: Edward curve over Fp with odd prime p and
d0 = d , and a point on the curve P0 = (x0, y0)

Input seed vector: K = (k0, k1, . . . , kn)

The entropy source produces: T0,T1, . . . ,Tn which have been
modified to obtain the QNRs t0, t1, . . . , tn at each step
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Edwards Curve Hybrid DRNG

System parameters: Edward curve over Fp with odd prime p and
d0 = d , and a point on the curve P0 = (x0, y0)

Input seed vector: K = (k0, k1, . . . , kn)

The entropy source produces: T0,T1, . . . ,Tn which have been
modified to obtain the QNRs t0, t1, . . . , tn at each step

For i = 0 to i = n, Step i :
(ai , bi ) = [ki ]Pi

Get Ti and compute ti such that a2i + b2i − t2i is a QNR

di+1 =
t2
i

a2
i
b2
i

(a2i + b2i − t2i )

γi = t−1

i

Pi+1 = (γiai , γibi)
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Edwards Curve Hybrid DRNG

System parameters: Edward curve over Fp with odd prime p and
d0 = d , and a point on the curve P0 = (x0, y0)

Input seed vector: K = (k0, k1, . . . , kn)

The entropy source produces: T0,T1, . . . ,Tn which have been
modified to obtain the QNRs t0, t1, . . . , tn at each step

For i = 0 to i = n, Step i :
(ai , bi ) = [ki ]Pi

Get Ti and compute ti such that a2i + b2i − t2i is a QNR

di+1 =
t2
i

a2
i
b2
i

(a2i + b2i − t2i )

γi = t−1

i

Pi+1 = (γiai , γibi)

Random points P1,P2, . . . ,Pn
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Edwards Curve Hybrid DRNG
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A Complexity Result

Theorem

Suppose p, q are prime numbers with p = 4q − 1. A few such (p, q) pairs
are (11, 3), (19, 5), (331, 83), (1314883, 328721),
(2760727332067, 690181833017). Consider the Edwards group G on Ed

with d = −1 (a QNR) over Fp . G has identity (0, 1), the element (0,−1)
of order 2, and the elements (±1, 0) are of order 4. Any other (x , y) has
order q, 2q or 4q.
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