#### Classical Ciphers: Affine & Hill Ciphers

Çetin Kaya Koç

http://cs.ucsb.edu/~koc koc@cs.ucsb.edu



# Affine Cipher

- Input/output:  $\{a, b, \dots, z\}$  with encoding  $\{0, 1, \dots, 25\}$
- Encryption:  $E(x) = \alpha x + \beta \pmod{26}$  such that  $gcd(\alpha, 26) = 1$
- Decryption:  $D(y) = \gamma y + \theta \pmod{26}$  such that  $\gamma = \alpha^{-1} \pmod{26}$  and  $\theta = -\alpha^{-1}\beta \pmod{26}$
- The encryption key:  $(\alpha, \beta)$  with restriction that  $\gcd(\alpha, 26) = 1$ The decryption key:  $(\gamma, \theta)$  as given above
- Since 26 is divisible by 2 and 13, we have 12 possible  $\alpha$  or  $\gamma$  values:  $\alpha \in \{1,3,5,7,9,11,15,17,19,21,23,25\}$  However, there are 26  $\beta$  values:  $\beta \in \{0,1,\ldots,25\}$
- The key space size  $12 \times 26 = 312$

## Affine Cipher

- For  $(\alpha,\beta)=(15,10)$ , "hello" is encrypted as "lsttm" since  $E(\text{"h"})=E(7)=15\cdot 7+10=115=11\pmod{26}\to \text{"l"}$   $E(\text{"e"})=E(4)=15\cdot 4+10=70=18\pmod{26}\to \text{"s"}$   $E(\text{"l"})=E(11)=15\cdot 11+10=175=19\pmod{26}\to \text{"t"}$   $E(\text{"o"})=E(14)=15\cdot 14+10=220=12\pmod{26}\to \text{"m"}$
- Since  $(\alpha, \beta) = (15, 10)$ , we obtain  $\gamma = 15^{-1} = 7 \pmod{26}$   $\theta = -15^{-1} \cdot 10 = -7 \cdot 10 = 8 \mod{26}$
- For  $(\gamma, \theta) = (7, 8)$ , "1sttm" is decrypted as "hello" since  $D("1") = D(11) = 7 \cdot 11 + 8 = 85 = 7 \pmod{26} \rightarrow "h"$   $D("s") = D(18) = 7 \cdot 18 + 8 = 134 = 4 \pmod{26} \rightarrow "e"$   $D("t") = D(19) = 7 \cdot 19 + 8 = 141 = 11 \pmod{26} \rightarrow "1"$   $D("m") = D(12) = 7 \cdot 12 + 8 = 92 = 14 \pmod{26} \rightarrow "o"$



## Exhaustive Key Search

• Given an encrypted text: "ufqfau omf fndo vnee", decrypt the text exhaustively all possible keys:

- Similar to the Shift Cipher, a short encrypted text may have several meaningful decryptions, however, for a sufficiently long encrypted text, there will not be ambiguity
- Since there 312 are possible keys, we will have to do 312 decryptions;
   we may also have to check whether each decrypted text is meaningful

## Frequency Analysis

 The previous short ciphertext: "ufqfau omf fndo vnee" suggests that "f" (most probably) is the ciphertext for the letter "e", and thus,

$$D("f") = "e"$$
  
 $\gamma \cdot 5 + \theta = 4 \pmod{26}$ 

This is a linear equation with two unknowns; it can be solved by:

- ① Exhaustively enumerating  $\gamma$  values (there are 12 of them), and solving  $\theta$  from the above equation, and decrypting the text using  $(\gamma,\theta)$ , and finally, checking to see if a meaningful message is obtained therefore, performing only 12 decryptions instead of 312
- Obtaining another plaintext and ciphertext pair, and thus, 2 linear equations with 2 unknowns which can be solved using Gaussian elimination

## Frequency Analysis

- The ciphertext "ufqfau omf fndo vnee" shows that the second most frequently occurring letters are "n", "o", "u", and "e" are the ciphertext of the letters "t" and "a" — but we cannot be sure which is which
- Let's assume "n" is the encryption of "t", this implies

$$D("n") = "t"$$
  
 $\gamma \cdot 13 + \theta = 19 \pmod{26}$ 

Together with the previous equation, we have

$$\gamma \cdot 5 + \beta = 4 \pmod{26}$$
$$\gamma \cdot 13 + \beta = 19 \pmod{26}$$



## Solving Linear Equations in Modular Arithmetic

- Apply Gaussian elimination (or any other matrix method) but always perform arithmetic mod 26
- Important: if at any point we need the inversion of a number, the number needs to be relatively prime to 26 for inverse to exist
- By elimination, we obtain  $8\cdot \gamma=15\pmod{26}$  from the above two equations, however, this equation cannot be solved to find a unique  $\gamma$  since 8 is not invertible mod 26 because  $\gcd(8,26)\neq 1$
- Therefore, our assumption "n" is the encryption of "t" was not correct

## Frequency Analysis

• Now, let's assume, "o" is the encryption of "t", we obtain

$$D("o") = "t"$$
  
 $\gamma \cdot 14 + \theta = 19 \pmod{26}$ 

Therefore, we now have the linear equations

$$\gamma \cdot 5 + \theta = 4 \pmod{26}$$
  
 $\gamma \cdot 14 + \theta = 19 \pmod{26}$ 

• By elimination we obtain  $9 \cdot \gamma = 15 \pmod{26}$ 

## Frequency Analysis

• This equation is solvable to give a unique  $\gamma$  since  $\gcd(9,26)=1$ 

$$\gamma = 9^{-1} \cdot 15 = 3 \cdot 15 = 45 = 19 \pmod{26}$$

 $\bullet$  Furthermore, we find  $\theta$  as

$$\theta = 4 - 5 \cdot \gamma = 4 - 5 \cdot 19 = -91 = 13 \pmod{26}$$

- Therefore, we find  $(\gamma, \theta) = (19, 13)$
- ullet If we decrypt the encrypted message using  $(\gamma, heta) = (19, 13)$ , we get

"ufqfau omf fndo vnee"  $\stackrel{(19,13)}{\longrightarrow}$  "defend the east wall"

◆ロト ◆団ト ◆草ト ◆草ト ■ からぐ

#### Known and Chosen Text Scenarios

• If we have two legitimate (correct) pairs of plaintext and ciphertext  $(x_1, y_1)$  and  $(x_2, y_2)$ , whether are given or chosen, we can write two sets of linear equations modulo 26 as

$$\gamma \cdot y_1 + \theta = x_1 \pmod{26}$$
  
 $\gamma \cdot y_2 + \theta = x_2 \pmod{26}$ 

and solve it using Gaussian elimination and mod 26 arithmetic to obtain the decryption keys  $(\gamma, \theta)$ 

- Of course, we may not know a priori that these pairs are correct; however, if they are not correct, the decrypted text will not be meaningful
- If we have more pairs, we can verify the decryption keys on them before decrypting a long text

## Cryptanalysis of Affine Cipher

- The Affine Cipher is only slightly stronger than the Shift Cipher
- The number of keys is larger than the Shift Cipher: 312 versus 26
- It requires 2 known (or chosen) pairs of plaintext and ciphertext to break
- The Shift and Affine Cipher are mono-alphabetic ciphers which means the same plaintext letter is always mapped to the same ciphertext letter, regardless of its location in the plaintext
- If we want more security, we should consider a poly-alphabetic cipher which maps the same plaintext letter to different letters;
   Examples: Hill Cipher and Vigenère Cipher, and Affine Block Ciphers

## Hill Cipher

• Same encoding as the Shift and Affine Ciphers:

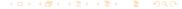
$${a,b,\ldots,z}\longrightarrow {0,1,\ldots,25}$$

- ullet Select a d imes d matrix  ${\mathcal A}$  of integers and find its inverse  ${\mathcal A}^{-1}$  mod 26
- For example, for d=2

$$\mathcal{A} = \begin{bmatrix} 3 & 3 \\ 2 & 5 \end{bmatrix}$$
 and  $\mathcal{A}^{-1} = \begin{bmatrix} 15 & 17 \\ 20 & 9 \end{bmatrix}$ 

Verify

$$\begin{bmatrix} 3 & 3 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 15 & 17 \\ 20 & 9 \end{bmatrix} = \begin{bmatrix} 105 & 78 \\ 130 & 79 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \pmod{26}$$



## Hill Cipher

- Encryption function:  $v = Au \pmod{26}$  such that u and v are  $d \times 1$  vectors of plaintext and ciphertext letter encodings
- Decryption function:  $u = A^{-1} v \pmod{26}$
- Encryption key A: a  $d \times d$  matrix such that  $det(A) \neq 0 \pmod{26}$
- Decryption key  $\mathcal{A}^{-1}$ : a  $d \times d$  matrix which is the inverse of  $\mathcal{A}$  mod 26
- Key space: Number of  $d \times d$  invertible matrices mod 26

## A 2-Dimensional Hill Cipher Example

• The plaintext: "help"

$$u_1 = \left[ egin{array}{c} "h" \ "e" \end{array} 
ight] = \left[ egin{array}{c} 7 \ 4 \end{array} 
ight] \;\; ; \;\; u_2 = \left[ egin{array}{c} "1" \ "p" \end{array} 
ight] = \left[ egin{array}{c} 11 \ 15 \end{array} 
ight]$$

• Encryption:  $v_1 = A u_1$  and  $v_2 = A u_2$ 

$$\begin{bmatrix} 3 & 3 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 7 \\ 4 \end{bmatrix} = \begin{bmatrix} 33 \\ 34 \end{bmatrix} = \begin{bmatrix} 7 \\ 8 \end{bmatrix} = \begin{bmatrix} "h" \\ "i" \end{bmatrix}$$

$$\begin{bmatrix} 3 & 3 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 11 \\ 15 \end{bmatrix} = \begin{bmatrix} 78 \\ 97 \end{bmatrix} = \begin{bmatrix} 0 \\ 19 \end{bmatrix} = \begin{bmatrix} "a" \\ "t" \end{bmatrix}$$

The ciphertext: "hiat"

## Hill Cipher

- To decrypt the ciphertext: "hiat", we need the vectors  $v_1$  and  $v_2$
- ullet Decryption:  $u_1=\mathcal{A}^{-1}\,v_1$  and  $u_2=\mathcal{A}^{-1}\,v_2$

$$\begin{bmatrix} 15 & 17 \\ 20 & 9 \end{bmatrix} \begin{bmatrix} 7 \\ 8 \end{bmatrix} = \begin{bmatrix} 241 \\ 212 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \end{bmatrix} = \begin{bmatrix} "h" \\ "e" \end{bmatrix}$$

$$\begin{bmatrix} 15 & 17 \\ 20 & 9 \end{bmatrix} \begin{bmatrix} 0 \\ 19 \end{bmatrix} = \begin{bmatrix} 323 \\ 171 \end{bmatrix} = \begin{bmatrix} 11 \\ 15 \end{bmatrix} = \begin{bmatrix} "l" \\ "p" \end{bmatrix}$$

The plaintext: "help"

ullet The d-dimensional Hill cipher is poly-alphabetic on single letters, however, mono-alphabetic on words of length d

## Key Space Size for Hill Space

• It was suggested by Overbey, Traves, and Wojdylo in Cryptologia, 29(1), Jan 2005, that the number of  $d \times d$  matrices invertible modulo m is

$$\prod_{i} \left( p_{i}^{(n_{i}-1)d^{2}} \prod_{k=0}^{d-1} (p_{i}^{d} - p_{i}^{k}) \right)$$

such that  $m = \prod p_i^{n_i}$ 

• When  $m = 26 = 2^1 \cdot 13^1$ , we simplify this as

$$\prod_{k=0}^{d-1} (2^d - 2^k) (13^d - 13^k) = 26^{d^2} (1 - 1/2) \cdots (1 - 1/2^d) (1 - 1/13) \cdots (1 - 1/13^d)$$

## Key Space Size for Hill Cipher

• We enumerate and find the number of keys for as follows:

| d | Number of Keys                                 | Decimal            | Binary             |
|---|------------------------------------------------|--------------------|--------------------|
| 2 | 157,248                                        | $10^{5.2}$         | $2^{17.3}$         |
| 3 | 1,750,755,202,560                              | 10 <sup>12.2</sup> | 2 <sup>40.7</sup>  |
| 4 | 13,621,827,326,505,327,820,800                 | 10 <sup>22.1</sup> | 2 <sup>75.5</sup>  |
| 5 | 72,803,944,226,174,990,390,435,243,910,758,400 | 10 <sup>34.9</sup> | 2 <sup>115.8</sup> |

 Exhaustive key search is probably not feasible for 4-dimensional Hill ciphers (requires significant resources), and definitely not feasible for 5-dimensional (and beyond) Hill ciphers

## A Special Hill Cipher

- Lester Hill (the author of Hill cipher) suggested that an involutory matrix can be used as the Hill matrix
- An involutory matrix is the inverse of itself:  $\mathcal{A}^2 = I$
- This way, the encryption and decryption keys are the same: Encryption function:  $v = Au \pmod{26}$ Decryption function:  $u = Av \pmod{26}$
- $\bullet$  This would be good to have from the implementation point of view: we will have to design a single code (or circuit) implementing both the encryption and decryption functions we do not need to compute the inverse of  ${\mathcal A}$

## Frequency Analysis of the Hill Cipher

- Frequency analysis is not applicable for single letters a plaintext letter is encrypted to different ciphertext letter depending on whether it is the first or second letter and what the other letter is
- For example, for our example 2-dimensional Hill cipher, the encryption of x is as follows:

```
"xy" \rightarrow "lk" implies "x" \rightarrow "l" "xz" \rightarrow "op" implies "x" \rightarrow "o" "zx" \rightarrow "oj" implies "x" \rightarrow "j"
```

 However, digrams (2-letter words) are always encrypted to the same ciphertext bigrams for a 2-dimensional cipher

```
"xyabcd" \rightarrow "lkdfpt"
"abxycd" \rightarrow "dflkpt"
"abcdxy" \rightarrow "dfptlk"
```

## Digram Frequencies in English

| ruei | and Fr | eque | ncy of L | eadi | ng DIG | KAIVI | 10    |
|------|--------|------|----------|------|--------|-------|-------|
| TH   | 3.15%  | TO   | 1.11%    | SA   | 0.75%  | MA    | 0.568 |
| HE   | 2.51   | NT   | 1.10     | HI   | 0.72   | TA    | 0.56  |
| AN   | 1.72   | ED   | 1.07     | LE   | 0.72   | CE    | 0.55  |
| IN   | 1.69   | IS   | 1.06     | SO   | 0.71   | IC    | 0.55  |
| ER   | 1.54   | AR   | 1.01     | AS   | 0.67   | LL    | 0.55  |
| RE   | 1.48   | OU   | 0.96     | NO   | 0.65   | NA    | 0.54  |
| ES   | 1.45   | TE   | 0.94     | NE   | 0.64   | RO    | 0.54  |
| ON   | 1.45   | OF   | 0.94     | EC   | 0.64   | OT    | 0.53  |
| EA   | 1.31   | IT   | 0.88     | IO   | 0.63   | TT    | 0.53  |
| TI   | 1.28   | HA   | 0.84     | RT   | 0.63   | VE    | 0.53  |
| AT   | 1.24   | SE   | 0.84     | CO   | 0.59   | NS    | 0.51  |
| ST   | 1.21   | ET   | 0.80     | BE   | 0.58   | UR    | 0.49  |
| EN   | 1.20   | AL   | 0.77     | DI   | 0.57   | ME    | 0.48  |
| ND   | 1.18   | RI   | 0.77     | LI   | 0.57   | WH    | 0.48  |
| OR   | 1.13   | NG   | 0.75     | RA   | 0.57   | LY    | 0.47  |

## Frequency Analysis of the Hill Cipher

- We can apply frequency attack to a d-dimensional Hill cipher if we have "useful" (distinguishable) d-gram frequencies
- As expected the digram "th" appears in English more often some studies have shown that the frequency of diagram "th" is about 3.15%
- Similarly the frequency of "the" is higher than most other trigrams, followed up by "and", "for" — however, these frequencies are too low and too close to one another
- As expected, as the word size increases the frequencies become indistinguishable from one another — we loose those useful frequency values such as 12.7% for the single letter "e"

## Known or Chosen Text Analysis

- The Hill Cipher is easily broken using a small number of known (or chosen) plaintext and ciphertext pairs
- In order to show this, we will formulate the Hill Cipher as an Affine Block Cipher
- It turns out several other poly-alphabetic ciphers also fall into this category — particularly, the Vigenère Cipher can also be modeled as an Affine Block Cipher
- We will show that a d-dimensional Affine Block Cipher can be broken using d+1 ciphertext and plaintext vectors which is equivalent to d(d+1) ciphertext and plaintext letters