
Stream Ciphers

Çetin Kaya Koç

http://cs.ucsb.edu/~koc

koc@cs.ucsb.edu

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 1 / 13

http://cs.ucsb.edu/~koc
koc@cs.ucsb.edu
http://cs.ucsb.edu/~koc

Block Ciphers

Plaintext: Mi with |Mi | = n, where n is the block length (in bits)

Ciphertext: Ci with |Ci | = m, where m ≥ n, however, generally
output size is equal to intput size: m = n

If m < n, there will be more than one ciphertext for a given plaintext
— ambiguity in decryption

If m > n, some ciphertexts will never appear

Encryption and decryption functions:

Ek(Mi) = Ci ; Dk(Ci) = Mi

Key size: |K |, the length of the key in bits

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 2 / 13

http://cs.ucsb.edu/~koc

Stream Ciphers

Plaintext: mi with |mi | = k , where k is the plaintext length (in bits),
which is generally a small number: 1, 2, 4, 8, etc

Ciphertext: ci with |ci | = k , in other words, |mi | = |ci |

Running key: ri with |ci | = k , a sequence of symbols length k

Plaintext, ciphertext, and running keys are from the same alphabet;
for example, for k = 4 this would be {0000, 0001, . . . , 1111}

Encryption and decryption functions:

E (mi) = ci = mi ⊕ ri ; D(ci) = mi = ci ⊕
−1 ri

where ⊕ is the (appropriate) addition function

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 3 / 13

http://cs.ucsb.edu/~koc

A Stream Cipher — à la Vigenère

Plaintext, Ciphertext, Running Key Alphabet: {a, b, c , . . . , z}
encoded as elements of Z26

Given a plaintext message: mi ∈ Z26 for i = 1, 2, 3, . . .

Given a sequence of running keys: ri ∈ Z26 for i = 1, 2, 3, . . .

The ciphertext sequence is computed using the encryption function

ci = mi + ri (mod 26)

Similarly, the plaintext is computed using the decryption function

mi = ci − ri (mod 26)

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 4 / 13

http://cs.ucsb.edu/~koc

A Stream Cipher — à la Vigenère

The encryption and decryption function are

ci = mi ⊕ ri ≡ mi + ri (mod 26)

mi = ci ⊕
−1 ri ≡ ci − ri (mod 26)

The sequence of running keys ri needs to have certain properties in
order for a stream cipher to be cryptographically strong

For the classic Vigènere:

The running key sequence is repeating:
herbalistherbalistherbalistherbalistherbali· · ·
The period is equal to the length of the key word, which is generally a
small integer

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 5 / 13

http://cs.ucsb.edu/~koc

Cryptanalyzing Stream Ciphers

In order to understand what properties the running key sequence
needs to have we need to see if the stream cipher can be
cryptanalyzed under the usual attack scenarios: CO, KP, CP, CT

Under the CO scenario, given the ciphertext sequence ci , the purpose
of the adversary is to guess or to compute:

A portion or all of the running key sequence ri
A portion or all of the plaintext sequence mi

These actions produce equivalent results in the sense that:

If a portion of ri is obtained, we compute mi using mi = ci ⊕
−1 ri

If a portion of mi is obtained, we compute ri using ri = ci ⊕
−1 mi

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 6 / 13

http://cs.ucsb.edu/~koc

Cryptanalyzing Stream Ciphers

On the other hand, under the known or chosen text attack scenarios,
the adversary obtains (or chooses) a portion of the plaintext sequence
mi

This immediately implies that the adversary can compute a portion of
the running key sequence ri (which is of the same length as mi) using

ri = ci ⊕
−1 mi

In order to obtain longer portions of the plaintext, we cannot assume
that the adversary will receive further known (or chosen) text

At this stage, the adversary can try guess what the other (past or
future) portions of the running key would be, given a portion of the
running key

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 7 / 13

http://cs.ucsb.edu/~koc

Properties of Running Key Sequences

As we have said: the sequence of running keys ri needs to have certain
properties in order for a stream cipher to be cryptographically strong

Considering the CO attack scenario: The running key sequence needs
to have uniformly distributed or statistically random finite
segments so that all segments appear with equal probability, and any
segment of the sequence cannot be guessed with better probability
than the probability of that segment appearing in the sequence —
Requirement R1

Considering the CT attack scenario: Given any finite segment(s) of
the running key sequence, any past or future segments need to be
unpredictable which means they cannot be computed or guessed
with better probability than the probability of that segment appearing
in the sequence — Requirement R2

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 8 / 13

http://cs.ucsb.edu/~koc

Binary Stream Cipher

For the rest of our discussions, we will consider the binary stream
cipher in which the plaintext mi , ciphertext ci , and the running key ri
words are binary bits, mi , ci , ri ∈ {0, 1} — The plaintext, ciphertext,
and running key sequences are binary bit streams

The encryption and decryption functions are the same:

ci = mi ⊕ ri = mi + ri (mod 2)
mi = ci ⊕ ri = ci + ri (mod 2)

The operation ⊕ is the mod 2 addition, which is its own inverse

mi 0101 0010 1101 1001 0011

ri 0110 0101 0110 0110 0101

ci 0011 0111 1011 1111 0110

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 9 / 13

http://cs.ucsb.edu/~koc

Running Key Sequence Generators

A running key sequence generator needs to work in both sides of the
channel, at the side of the sender and the receiver, and produce
exactly the same sequence ri in order for the stream cipher to
function properly

Sender: ri is produced; ci = mi ⊕ ri is computed; ci is sent
Receiver: ci is received; the same ri is produced; mi = ci ⊕ ri is
computed

Therefore, we need to have a deterministic state machine
producing the running key sequence

Furthermore, in order for it to be computable, the state machine
needs to be finite, i.e., it needs to have a finite number of states
(memory)

Therefore: A stream cipher running key generator is a deterministic
finite state machine whose sequences ri satisfy Requirements R1 and
R2

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 10 / 13

http://cs.ucsb.edu/~koc

Random Number Generators (RNGs)

A random number generator (RNG) produces a sequence of random
(or random-looking) numbers in a predetermined range, such as
ri ∈ {0, 1} or ri ∈ [0, 1]

Random (or random-looking) numbers have many applications:
statistical physics, simulation, industrial testing and labeling, games,
gambling, Monte Carlo methods, and cryptography

True random numbers cannot be computed on deterministic
computers.

True random numbers are best produced using physical random
number generators which operate by measuring a well controlled and
specially prepared random physical process

An information-theoretic provable RNG seems to be possible only by
exploiting randomness inherent to certain quantum systems

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 11 / 13

http://cs.ucsb.edu/~koc

Random Number Generators (RNGs)

There are two basic categories of RNGs: True RNGs (TRNGs) and
Deterministic RNGs (DRNGs)

TRNGs are produced using physical or quantum processes; physical
processes include free running oscillators, electrical noise from a
resistor or semiconductor, and decay times from a radio-active
material

We cannot use TRNGs as stream ciphers, except for the special case
of the Vernam cipher, called the one-time pad

In order to understand the properties of the one-time pad, we need to
define perfect secrecy, a concept introduced by Claude Elwood
Shannon, an American mathematician, electronic engineer, and
cryptographer known as “The father of Information Theory” —
however, we will study perfect secrecy after we study block ciphers

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 12 / 13

http://cs.ucsb.edu/~koc

Stream Ciphers and DRNGs

Our purpose is to build and understand the properties of stream
ciphers

DRNGs are finite state machines that have a fixed but large number
of starting conditions and states, and thus, very long periods

Having long periods is an essential quality for stream ciphers; repeated
sequences of running keys will yield information about the plaintext

In addition to long period, we also would like the have DRNGs that
satisfy Requirement R1 (uniform distribution or statistical
randomness) and Requirement R2 (unpredictability)

In this course, we will limit our attention to DRNGs, and study linear
congruential generators, linear feedback shift registers, and cellular
automata

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 13 / 13

http://cs.ucsb.edu/~koc

