
Public-Key Cryptography

Çetin Kaya Koç

http://cs.ucsb.edu/~koc/cs178

koc@cs.ucsb.edu

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 1 / 29

http://cs.ucsb.edu/~koc/cs178
koc@cs.ucsb.edu
http://cs.ucsb.edu/~koc

Secure Communication over an Insecure Channel

Sender Receiver

Adversary

M

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 2 / 29

http://cs.ucsb.edu/~koc

Secret-Key Cryptography

Sender Receiver

Adversary

C

C=EKe(M) M=DKd(C)

secure

channel Kd

Encryption and decryption functions: E (·) & D(·)
Encryption and decryption keys: Ke & Kd

Plaintext and ciphertext: M & C

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 3 / 29

http://cs.ucsb.edu/~koc

Secret-Key Cryptography

C = EKe
(M) and M = DKd

(C)

Either E (·) = D(·) and Ke 6= Kd

Kd is easily deduced from Ke

Ke is easily deduced from Kd

Or E (·) 6= D(·) and Ke = Kd

D(·) is easily deduced from E (·)
E (·) is easily deduced from D(·)

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 4 / 29

http://cs.ucsb.edu/~koc

Example: Hill Algebra

Encoding: {a, b, . . . , z} −→ {0, 1, . . . , 25}

Select a d × d matrix A of integers and find its inverse A−1 mod 26

For example, for d = 2

A =

[

3 3
2 5

]

and A−1 =

[

15 17
20 9

]

Verify:

[

3 3
2 5

] [

15 17
20 9

]

=

[

105 78
130 79

]

=

[

1 0
0 1

]

(mod 26)

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 5 / 29

http://cs.ucsb.edu/~koc

Hill Cipher

Encryption function: c = E (m) = Am (mod 26)

Decryption function: m = D(c) = A−1 c (mod 26)

m and c are d × 1 vectors of plaintext and ciphertext letter encodings

Encryption key Ke : A

Decryption key Kd : A
−1 (mod 26)

A and A−1 are d × d matrices such that det(A) 6= 0 (mod 26) and
A−1 is the inverse of A mod 26

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 6 / 29

http://cs.ucsb.edu/~koc

Secret-Key versus Public-Key Cryptography

Secret-Key Cryptography:

Requires establishment of a secure channel for key exchange
Two parties cannot start communication if they never met
Secure communication of n parties requires n(n − 1)/2 keys
Keys are “shared”, rather than “owned” (secret vs private)

Public-Key Cryptography:

No need for a secure channel
May require establishment of a public-key directory
Two parties can start communication even if they never met
Secure communication of n parties requires n keys
Keys are “owned’, rather than “shared”
Ability to “sign” digital data (secret vs private)

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 7 / 29

http://cs.ucsb.edu/~koc

Diffie-Hellman Key Exchange Method

Martin Hellman (1945): American cryptologist and co-inventor of
public key cryptography in cooperation with Whitfield Diffie and
Ralph Merkle at Stanford

Bailey Whitfield Diffie (1944) is an American cryptographer and
co-inventor of public key cryptography

Diffie and Hellman’s paper “New Directions in Cryptography” was
published IEEE Tran. Information Theory in Nov 1976

It introduced a radically new method of distributing cryptographic
keys, that went far toward solving one of the fundamental problems of
cryptography, key distribution

It has become known as Diffie-Hellman key exchange.

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 8 / 29

http://cs.ucsb.edu/~koc

Diffie-Hellman Key Exchange Method

A and B agree on a prime p and a primitive element g of Z∗

p

This is accomplished in public: p and g are known to the adversary

A selects a ∈ Z∗

p , computes s = ga (mod p), and sends s to B

B selects b ∈ Z∗

p , computes r = gb (mod p), and sends r to A

A computes K = ra (mod p)

B computes K = sb (mod p)

K = ra = (gb)a = gab (mod p)

K = sb = (ga)b = gab (mod p)

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 9 / 29

http://cs.ucsb.edu/~koc

Diffie-Hellman Key Exchange Method

User A

a

g
a

(g
b

)
a

K = g
ab

User B

b

g
b

(g
a

)
b

K = g
ab

Adversary

p & g

g
a

g
b

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 10 / 29

http://cs.ucsb.edu/~koc

Discrete Logarithm Problem

The adversary knows the group: p and g

The adversary also sees (obtains copies of) s = ga and r = gb

The discrete logarithm problem (DLP):
the computation of x ∈ Z∗

p in

y = gx (mod p)

given p, g , and y

Example: Given p = 23 and g = 5, find x such that

10 = 5x (mod 23)

Answer: x = 3

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 11 / 29

http://cs.ucsb.edu/~koc

Discrete Logarithm Problem

Given p = 158(2800 + 25) + 1 =

1053546280395016975304616582933958731948871814925913489342
6087342587178835751858673003862877377055779373829258737624
5199045043066135085968269741025626827114728303489756321430
0237166369174066615907176472549470083113107138189921280884
003892629359

and g = 3, find x ∈ Z∗

p such that

2 = 3x (mod p)

Answer: ?

How difficult is it to find x?

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 12 / 29

http://cs.ucsb.edu/~koc

Diffie-Hellman Key Exchange Method

The Diffie-Hellman algorithm allows two parties to agree on a key that
is known only to them, except that the adversary can solve the DLP

Once the secret key (shared key) is established, the parties can use a
secret-key cryptographic algorithm to encrypt and decrypt

However, we still have the problem of establishing n(n− 1)/2 keys
between n parties, and other difficulties of the secret-key
cryptography also remain

But, we no longer need a (secret-key type) secure channel — the
Diffie-Hellman algorithm gave us a secure channel, whose security
depends on computational difficulty of the DLP

The Diffie-Hellman algorithm is not a public-key encryption method

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 13 / 29

http://cs.ucsb.edu/~koc

Public-Key Cryptography

The functions C (·) and D(·) are inverses of one another

C = EKe
(M) and M = DKd

(C)

Encryption and decryption processes are asymmetric:

Ke 6= Kd

Ke is public, known to everyone

Kd is private, known only to the user

Ke may be easily deduced from Kd

However, Kd is NOT easily deduced from Ke

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 14 / 29

http://cs.ucsb.edu/~koc

Public-Key Cryptography

User2 User0

Adversary

C2

C3=EKe(M3)

M1=DKd(C1)

User1

User3

PK Directory

User0 Ke

C1

C3

C1=EKe(M1)

C2=EKe(M2)

M2=DKd(C2)

M3=DKd(C3)

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 15 / 29

http://cs.ucsb.edu/~koc

Public-Key Cryptography

The User publishes his/her own public key: Ke

Anyone can obtain the public key Ke and can encrypt a message M,
and send the ciphertext to the User

C = EKe
(M)

The private key is known only to the User: Kd

Only the User can decrypt the ciphertext to get the message

M = DKd
(C)

The adversary may be able to block the ciphertext, but cannot decrypt

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 16 / 29

http://cs.ucsb.edu/~koc

Public-Key Cryptography

A public-key cryptographic algorithm is based on a function y = f (x)
such that
Given x , computing y is EASY: y = f (x)
Given y , computing x is HARD: x = f −1(y)

x

easy

−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−

hard

y = f (x)

Such functions are called one-way

In order to decide what is hard: Theory of complexity could help

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 17 / 29

http://cs.ucsb.edu/~koc

Well-Known One-Way Functions

Discrete Logarithm:
Given p, g , and x , computing y in y = gx (mod p) is EASY
Given p, g , y , computing x in y = gx (mod p) is HARD

Factoring:
Given p and q, computing n in n = p · q is EASY
Given n, computing p or q in n = p · q is HARD

Discrete Square Root:
Given x and y , computing y in y = x2 (mod n) is EASY
Given y and n, computing x in y = x2 (mod n) is HARD

Discrete eth Root:
Given x , n and e, computing y in y = xe (mod n) is EASY
Given y , n and e, computing x in y = xe (mod n) is HARD

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 18 / 29

http://cs.ucsb.edu/~koc

One-Way Functions for PKC

However, a one-way function is difficult for anyone to invert

What we need: a function easy to invert for the legitimate receiver of
the encrypted message, but for everyone else: hard

Such functions are called one-way trapdoor functions

In order to build a public-key encryption algorithm, we need a
one-way trapdoor function

Once that is understood (in around 1975-1976), researchers looked
for such special functions which are either based on the known
one-way functions or some other constructions

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 19 / 29

http://cs.ucsb.edu/~koc

Knapsack Problem

A problem from combinatorial optimization: Given a set of items,
each with a weight and a value, determine the number of each item
to include in a collection so that the total weight is less than or equal
to a given limit and the total value is as large as possible

The decision problem form of the knapsack problem: “Can a value of
at least V be achieved without exceeding the weight X?” is
NP-complete

There is no known polynomial-time algorithm on all cases

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 20 / 29

http://cs.ucsb.edu/~koc

0-1 Knapsack Problem

0-1 Knapsack Problem: Given a set of integers A = {a0, a1, . . . , an−1}
and an integer X , is there a subset B of A such that the sum of the
elements in the subset B is exactly X?

∑

ai∈B

ai = X

For a randomly generated set of ais: A hard knapsack problem

Consider A = {3, 4, 5, 12, 13} and X = 19

We need to try all subsets of A to find out which one sums to 19

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 21 / 29

http://cs.ucsb.edu/~koc

Knapsack as a One-Way Function

EASY: Given a randomly generated A = {a0, a1, . . . , an−1}, select a
subset B ⊂ A, and find the sum

X =
∑

ai∈B

ai

HARD: Given a randomly generated A = {a0, a1, . . . , an−1}, and the
sum X , determine the subset B such that

X =
∑

ai∈B

ai

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 22 / 29

http://cs.ucsb.edu/~koc

Trapdoor Knapsack

What we need: A knapsack problem is that is hard for everyone else,
except the intended recipient

Consider the set A has the super-increasing property:

j−1
∑

i=0

ai < aj

A = {1, 2, 4, 8, 16, 32, 64, . . .}: Super-increasing

1 < 2 ; 1 + 2 < 4 ; 1 + 2 + 4 < 8 ; 1 + 2 + 4 + 8 < 16 ; · · ·

Given X , it would be trivial to determine if any of ais is to be
included: if there is a 1 in the binary expansion of X in the ith
position

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 23 / 29

http://cs.ucsb.edu/~koc

Trapdoor Knapsack

Take an easy knapsack and disguise it

Consider A = {1, 2, 4, 8, 16}

Select a prime p larger than the sum 31, for example p = 37

Select t and compute t−1 mod p, for example, t = 17 and t−1 = 24

Produce a new knapsack vector A′ from A such that

a′i = ai · t (mod p)

This gives A′ = {17, 34, 31, 25, 13}, which is not super-increasing

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 24 / 29

http://cs.ucsb.edu/~koc

Trapdoor Knapsack

However, with the special trapdoor information t = 17 and t−1 = 24,
and p = 37, we can convert this problem to a super-increasing
knapsack

Given A′ and X ′ = 72, is there a subset of A′ summing to X ′?

First turn the problem into a super-increasing knapsack version, by
simply finding X from X ′ as X = X ′ · t−1 = 72 · 24 = 26 (mod 37)

Solve the super-increasing knapsack A = {1,2, 4,8,16} and X = 26,
which is easily obtained from the binary expansion of 26 = 16 + 8 + 2

This gives the solution for A′ = {17,34, 31,25,13} and X ′ = 72 as
72 = 34 + 25 + 13

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 25 / 29

http://cs.ucsb.edu/~koc

Trapdoor Knapsack Public-Key Encryption

User A:
Selects a super-increasing vector A with |A| = n > 100
Selects a prime p larger than the sum

∑n−1

i=0
ai

Selects t and t−1 such that t · t−1 = 1 mod p

Obtains the hard knapsack A′ from A using a′i = ai · t mod p

Publishes A′ in a server and keeps A, t, t−1, and p secret

User B:
Wants to send a message M to User A
Breaks the message M into n bits: (mn−1mn−2 · · ·m1m0)
Obtains A′ from the public key server
Computes the ciphertext C ′ as C ′ =

∑n−1

i=0
mia

′

i

Sends the ciphertext C ′ to User A

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 26 / 29

http://cs.ucsb.edu/~koc

Trapdoor Knapsack Public-Key Encryption

User A:
Receives the ciphertext ′C

Computes C = C ′ · t−1 mod p

Solves the a super-increasing vector A and C

Uses this solution to obtain the plaintext M

Therefore, we obtained the Knapsack public-key encryption algorithm

Our objective: User A faces an easy problem due to the trapdoor
information, while everyone else faces a computationally difficult
problem

We accomplished the first half of our objective nicely: The
super-increasing knapsack problem is indeed easy to solve

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 27 / 29

http://cs.ucsb.edu/~koc

Trapdoor Knapsack Public-Key Encryption

The trapdoor knapsack public-key encryption method was proposed
by Ralph Merkle and Martin Hellman in 1978 (IEEE Tran.
Information Theory)

In 1984, Adi Shamir published a polynomial-time algorithm for
breaking the Merkle-Hellman knapsack public-key encryption method
in the same journal

Does this mean a general (randomly generated) 0-1 knapsack problem
is easy to solve? → It was supposed to be NP-complete :(

A knapsack problem with a disguised super-increasing vector is not

the same as a general knapsack problem with a randomly generated

vector

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 28 / 29

http://cs.ucsb.edu/~koc

Lessons from Knapsack Public-Key Encryption

Adi Shamir’s attack on the Merkle-Hellman knapsack public-key
encryption method essentially exposes the disguise and finds the
randomization parameters t, t−1 and p

This shows the difficulty of using the complexity theory for designing
public-key encryption methods

Public-key cryptography requires trapdoor one-way functions

The complexity theory identifies computationally intractable problems
by reducing them into known problems in a difficult-to-solve set
(NP-complete)

Such problems are inherently difficult for randomly generated inputs

Disguising easy problems for the purpose of trapdoor does not seem
to work well for designing public-key cryptographic algorithms

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 29 / 29

http://cs.ucsb.edu/~koc

