Elliptic Curve Cryptography

Çetin Kaya Koç

<http://cs.ucsb.edu/~koc> <koc@cs.ucsb.edu>

 299

- **•** The security of the Diffie-Hellman key exchange, ElGamal public-key encryption algorithm, ElGamal signature scheme, and Digital Signature Algorithm depends on the difficulty of the DLP in \mathcal{Z}_ρ^*
- Another type of group for which the DLP is difficult is the elliptic curve group over a finite field
- **In fact, the Elliptic Curve Discrete Logarithm Problem (ECDLP)** seems to be a much more difficult problem than the DLP
- There is no subexponential algorithm for the ECDLP as of yet
- **•** Furthermore, the elliptic curve variants of the Diffie-Hellman and the DSA require significantly smaller group size for the same amount of security, as compared to that of \mathcal{Z}_ρ^* groups

An elliptic curve is the solution set of a nonsingular cubic polynomial equation in two unknowns over a field $\mathcal F$

$$
\mathcal{E} = \{(x, y) \in \mathcal{F} \times \mathcal{F} \mid f(x, y) = 0\}
$$

• The general equation of a cubic in two variables is given by

$$
ax^{3} + by^{3} + cx^{2}y + dxy^{2} + ex^{2} + fy^{2} + gxy + hx + iy + j = 0
$$

• When char(\mathcal{F}) \neq {2, 3}, we can convert the above equation to the Weierstrass form

$$
y^2 = x^3 + ax + b
$$

- **•** The field in which this equation solved can be an infinite field, such as C (complex numbers), R (real numbers), or Q (rational numbers)
- \bullet The point at infinity, represented by \mathcal{O} , is also considered a solution of the equation
- The discriminant is defined as

$$
\Delta = 4a^3 + 27b^2
$$

which is nonzero for nonsingular curves

• The elliptic curves over R for different values of a and b make continuous curves on the plane, which have either one or two parts

Elliptic Curves over $\mathcal R$

 299

이동 >

Elliptic Curves over $\mathcal R$

 QQ

Theorem

A linear line that intersects an elliptic curve at 2 points also crosses at a third point.

• Consider the elliptic curve and the linear equation together:

$$
y2 = x3 + ax + b
$$

$$
y = cx + d
$$

• Substituting either y or x from the second equation to the first one, we obtain one of the following cubic equations

$$
(\alpha x + d)^2 = x^3 + ax + b
$$

$$
y^2 = (y - d)^3/c^3 + a(y - d)/c + b
$$

• A cubic equation has either 1 or 3 real roots; since we already have two points on the curve (2 real roots), the [th](#page-5-0)i[rd](#page-7-0) [o](#page-5-0)[n](#page-6-0)[e](#page-7-0) [m](#page-0-0)[ust](#page-52-0) [b](#page-0-0)[e](#page-52-0)[r](#page-52-0)[ea](#page-0-0)[l](#page-52-0) 299

Elliptic Curve Chord and Tangent

For example, by solving $y^2 = x^3 - 4x$ with three different linear \bullet equations, as given below, we find the following points on the curve:

→ イラン イヨン イヨン ニヨ

Elliptic Curve Chord and Tangent

Elliptic Curve Chord and Tangent

- In the first case we have (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , where all three coordinates are different
- In the second case, we have (x_1, y_1) , (x_1, y_1) , (x_3, y_3) , where the first two coordinates are same, but the third one different
- Finally, in the third case we have (x_1, y_1) , $(x_1, -y_1)$, where the x coordinates are equal and the y coordinates are equal with different sign
- \bullet By including the point at infinity $\mathcal O$ as one of points (neutral element) of the curve, we can introduce an operation ⊕ which "adds" three points P_1 , P_2 , and P_3 to get neutral element O

$$
P_1\oplus P_2\oplus P_3=\mathcal{O}
$$

※ イヨ × イヨ × …

Elliptic Curve Point Addition

- 3

 Ω

 \triangleright and \exists \triangleright and \exists \triangleright

4 **D** F

- The "point addition" is a geometric operation: a linear line that connects P_1 and P_2 also crosses the elliptic curve at a third point, which we will name as P_3
- The new "sum" point $-P_3 = P_1 \oplus P_2$ is the mirror image of P_3 with respect to the x axis:

if
$$
P_3 = (x_3, y_3)
$$
 then $-P_3 = (x_3, -y_3)$

 \bullet The point at infinity $\mathcal O$ acts as the neutral (zero) element

$$
P \oplus O = O \oplus P = P
$$

$$
P \oplus (-P) = (-P) \oplus P = O
$$

• The set of points (x, y) on elliptic curve together with the point at infinity O

$$
\mathcal{E} = \{(x, y) \mid (x, y) \in \mathcal{F}^2 \text{ and } y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}\
$$

forms an Abelian group with respect to the addition operation ⊕

- The addition operation computes the coordinates (x_3, y_3) of $-P_3$ for $-P_3 = P_1 \oplus P_2 = (x_1, y_1) \oplus (x_2, y_2)$
- The addition rule for $-P_3 = P_1 \oplus P_2$ can be algebraically obtained by first computing the slope m of the straight line that connects $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ using

$$
m=\frac{y_2-y_1}{x_2-x_1}
$$

ാം മര

→ 何 → → モ → → モ → ニ ヨ

Elliptic Curve Addition and Doubling Rule

- Then, the linear equation $y y_1 = m(x x_1)$ is solved together with the elliptic curve equation $y^2=x^3+ax+b$ to obtain the coordinates of the third point $-P_3 = (x_3, y_3)$
- \bullet In the case of doubling

$$
-Q_3 = Q_1 \oplus Q_1 = (x_1, y_1) \oplus (x_1, y_1)
$$

the slope m of the linear line is equal to the derivative of the elliptic curve equation $y^2 = x^3 + ax + b$ evaluated at point x_1 as

$$
2yy' = 3x^2 + a \rightarrow y' = \frac{3x^2 + a}{2y}
$$

 \bullet Once the slope m is obtained, the linear equation can be written, and solved together with the elliptic curve equation to find x_3 and y_3

 2090

Elliptic Curve Addition and Doubling over $GF(p)$

Given $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$, the computation of $-P_3 = (x_3, y_3)$:

- **If** $(x_1, y_1) = \mathcal{O}$, then $(x_3, y_3) = (x_2, y_2)$ since $-P_3 = \mathcal{O} + P_2 = P_2$
- **If** $(x_2, y_2) = 0$, then $(x_3, y_3) = (x_1, y_1)$ since $-P_3 = P_1 + 0 = P_1$
- **•** If $x_2 = x_1 \& y_2 = -y_1$, then $(x_3, y_3) = \mathcal{O}$ since $-P_3 = -P_1 + P_1 = \mathcal{O}$
- Otherwise, first compute the slope using

$$
m = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{for } x_1 \neq x_2 \\ \frac{3x_1^2 + a}{2y_1} & \text{for } x_1 = x_2 \text{ and } y_1 = y_2 \end{cases}
$$

• Then, (x_3, y_3) is computed using

$$
x_3 = m^2 - x_1 - x_2
$$

$$
y_3 = m (x_1 - x_3) - y_1
$$

イロン イ部ン イ君ン イ君ン 一君

Elliptic Curves over Finite Fields

- **•** The field in which the Weierstrass equation solved can also be a finite field, which is of interest in cryptography
- Most common cases of finite fields are:
	- Characteristic $p: GF(p)$, where p is a large prime
	- Characteristic 2: $GF(2^k)$, where k is a small prime
	- Characteristic p: $GF(p^k)$, where p and k are small primes
- In GF(p) for a prime $p \neq 2, 3$, we can use the Weierstrass equation

$$
y^2 = x^3 + ax + b
$$

with the understanding that the solution of this equation and all field operations are performed in the finite field $GF(p)$

• We will denote this group by $\mathcal{E}(a, b, p)$

※ イヨ × イヨ × …

• Consider the elliptic curve group $\mathcal{E}(1, 1, 23)$: The solutions of the equation with $a = 1$ and $b = 1$

$$
y^2 = x^3 + x + 1
$$

over the finite field GF(23)

- We obtain the elements of the group by solving this equation in $\mathsf{GF}(23)$ for all values of $x\in \mathcal{Z}_{23}^*$
- \bullet As we give a particular value for x, we obtain a quadratic equation in y modulo 23, whose solution will depend on whether the right hand side is a QR mod 23
- Note that if (x, y) is a solution, so is $(x, -y)$ because $y^2 = (-y)^2$, i.e., the elliptic curve is symmetric with respect to the x axis

◆ロ→ ◆何→ ◆ミ→ →ミ→ → ミ

An Elliptic Curve over GF(23)

- Starting with $x=0$, we get $y^2=1 \pmod{23}$ which immediately gives two solutions as $(0, 1)$ and $(0, -1) = (0, 22)$
- Similarly, for $x=1$, we obtain $y^2=3$ (mod 23)
- **•** This is a quadratic equation, the solution will depend on whether 3 is QR, which turns out to be:

$$
3^{(p-1)/2} = 3^{11} = 1 \pmod{23}
$$

The solution for y is

$$
y = 3^{(p+1)/4} = 3^6 = 16 \pmod{23}
$$

and thus, we find a pair of coordinates: $(1, 16)$, $(1, -16) = (1, 7)$

∢ 伊 ▶ : ∢ ヨ ▶ : ∢ ヨ ▶ │ ヨ

An Elliptic Curve over GF(23)

Now, taking $x = 2$, we have $y^2 = 2^3 + 2 + 1 = 11 \pmod{23}$, however, 11 is a QNR since

$$
11^{(p-1)/2} = 11^{11} = -1
$$

therefore, there is no solution for $y^2=11 \,$ (mod 23), and this elliptic curve does not have any points whose x coordinate is 2

On the other hand, for $x = 3$, we have $y^2 = 3^3 + 3 + 1 = 31 = 8$ (mod 23), and 8 is a QR since

$$
8^{(p-1)/2} = 8^{11} = 1 \pmod{23}
$$

We solve for $y^2=8 \pmod{23}$ using

$$
y = 8^{(p+1)/4} = 8^6 = 13 \pmod{23}
$$

thus[,](#page-19-0) obtain the pair of coordinates: $(3, 13)$ $(3, 13)$ $(3, 13)$, $(3, -13) = (3, 10)$ $(3, -13) = (3, 10)$ $(3, -13) = (3, 10)$ $(3, -13) = (3, 10)$ $(3, -13) = (3, 10)$ $(3, -13) = (3, 10)$ $(3, -13) = (3, 10)$

Proceeding for the other values of $x \in \mathcal{Z}_{23}^*$, we find 27 solutions: \bullet

(0, 1) (0, 22) (1, 7) (1, 16) (3, 10) (3, 13) (4, 0) (5, 4) (5, 19) (6, 4) (6, 19) (7, 11) (7, 12) (9, 7) (9, 16) (11, 3) (11, 20) (12, 4) (12, 19) (13, 7) (13, 16) (17, 3) (17, 20) (18, 3) (18, 20) (19, 5) (19, 18)

 \bullet Note that the solutions come in pairs except one of them: $(4,0)$, since for $x = 4$, we have

$$
y^2 = 4^3 + 4 + 1 = 69 = 0 \pmod{23}
$$

which has only one solution $y = 0$ and thus one point (4,0)

An Elliptic Curve over GF(23)

Elliptic Curve Point Addition over GF(23)

- Given $P_1 = (3, 10)$ and $P_2 = (9, 7)$, compute $P_1 \oplus P_2 = P_3$
- Since $x_1 \neq x_2$, we have

$$
m = (y_2 - y_1) \cdot (x_2 - x_1)^{-1} \pmod{23}
$$

\n
$$
= (7 - 10) \cdot (9 - 3)^{-1} = (-3) \cdot 6^{-1} = 11 \pmod{23}
$$

\n
$$
x_3 = m^2 - x_1 - x_2 \pmod{23}
$$

\n
$$
= 11^2 - 3 - 9 = 17 \pmod{23}
$$

\n
$$
y_3 = m (x_1 - x_3) - y_1 \pmod{23}
$$

\n
$$
= 11 \cdot (3 - 17) - 10 = 20 \pmod{23}
$$

• Thus, we have $(x_3, y_3) = (3, 10) \oplus (9, 7) = (17, 20)$

• Question: Is the geometry of point addition still valid?

- ഗാ

∢ 伊 ▶ : ∢ ヨ ▶ : ∢ ヨ ▶ │ ヨ

Elliptic Curve Point Addition over GF(23)

Elliptic Curve Point Doubling over GF(23)

• Given
$$
P_1 = (3, 10)
$$
, compute $P_1 \oplus P_1 = P_3$

• Since $x_1 = x_2$ and $y_1 = y_2$, we have

$$
m = (3x_1^2 + a) \cdot (2y_1)^{-1} \pmod{23}
$$

\n
$$
= (3 \cdot 3^2 + 1) \cdot (20)^{-1} = 6 \pmod{23}
$$

\n
$$
x_3 = m^2 - x_1 - x_2 \pmod{23}
$$

\n
$$
= 6^2 - 3 - 3 = 7 \pmod{23}
$$

\n
$$
y_3 = m (x_1 - x_3) - y_1 \pmod{23}
$$

\n
$$
= 6 \cdot (3 - 7) - 10 = 12 \pmod{23}
$$

Thus, we have $(x_3, y_3) = (3, 10) \oplus (3, 10) = (7, 12)$ \bullet

• Question: Is the geometry of point addition still valid?

Elliptic Curve Point Doubling over GF(23)

The Weierstrass form of an elliptic curve over GF(2 k) is given as

$$
y^2 + xy = x^3 + ax^2 + b
$$

with parameters $a, b \in {\sf GF}(2^k)$ and $b \neq 0$, whose solutions are found in the field $\mathsf{GF}(2^k)$

- The addition law is based on this equation, and therefore, the rules of addition and doubling formulae are different
- The elements of the field $\mathsf{GF}(2^k)$ can be represented in several ways
- We studied the polynomial representation, where $a(x) \in {\sf GF}(2^k)$

$$
a(x)=a_{k-1}x^k+\cdots+a_1x+a_0
$$

is a polynomial of degree at most k , with coefficients in $GF(2)$

Elliptic Curve Addition and Doubling over $\mathsf{GF}(2^k)$

Given
$$
P_1 = (x_1, y_1)
$$
 and $P_2 = (x_2, y_2)$, the computation of $P_3 = (x_3, y_3)$:
\n• If $(x_1, y_1) = O$, then $(x_3, y_3) = (x_2, y_2)$ since $P_3 = O + P_2 = P_2$
\n• If $(x_2, y_2) = O$, then $(x_3, y_3) = (x_1, y_1)$ since $P_3 = P_1 + O = P_1$
\n• If $x_2 = x_1$ and $y_2 = x_1 + y_1$, then $(x_3, y_3) = O$ since
\n $P_3 = -P_1 + P_1 = O$
\n******

• Otherwise, (x_3, y_3) is computed using

$$
x_3 = m^2 - x_1 - x_2
$$

$$
y_3 = m (x_1 - x_3) - y_1
$$

where the slope is defined as

$$
m = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{for } x_1 \neq x_2 \\ \frac{3x_1^2 + a}{2y_1} & \text{for } x_1 = x_2 \text{ and } y_1 = y_2 \end{cases}
$$

やすび

メミメメミメー

Elliptic Curve Point Multiplication

 \bullet The elliptic curve point multiplication operation takes an integer k and a point on the curve P , and computes

$$
[k]P = \overbrace{P \oplus P \oplus \cdots \oplus P}^{k \text{ times}}
$$

- **•** This can be accomplished with the binary method, using the binary expansion of the integer $k = (k_{m-1} \cdots k_1 k_0)_2$
- For example $[17]P$ is computed using the addition chain

$$
P \stackrel{d}{\rightarrow} [2]P \stackrel{d}{\rightarrow} [4]P \stackrel{d}{\rightarrow} [8]P \stackrel{d}{\rightarrow} [16]P \stackrel{a}{\rightarrow} [17]P
$$

- The symbol $\stackrel{d}{\to}$ stands for doubling, such as $[2]P \oplus [2]P = [4]P$
- The symbol $\stackrel{a}{\rightarrow}$ stands for addition, such as $P \oplus [16]P = [17]P$

Number of Points on an Elliptic Curve

• The elliptic curve group $\mathcal{E}(1,1,23)$ had the following elements:

(0, 1) (0, 22) (1, 7) (1, 16) (3, 10) (3, 13) (4, 0) (5, 4) (5, 19) (6, 4) (6, 19) (7, 11) (7, 12) (9, 7) (9, 16) (11, 3) (11, 20) (12, 4) (12, 19) (13, 7) (13, 16) (17, 3) (17, 20) (18, 3) (18, 20) (19, 5) (19, 18)

- There are 27 points in the above list
- Including the point at infinity $\mathcal O$, the elliptic curve group $\mathcal E(1,1,23)$ \bullet has $27 + 1 = 28$ elements
- In other words, the order of the group $\mathcal{E}(1, 1, 23)$ is 28

Order of Elliptic Curve Groups

- **In** order to use an elliptic curve group $\mathcal E$ in cryptography, we need to know the order of the group, denoted as order(\mathcal{E})
- The order of $\mathcal{E}(a, b, p)$ is always less than $2p + 1$
- \bullet The finite field has p elements, and we solve the equation

$$
y^2 = x^3 + ax + b
$$

for values of $x = 0, 1, \ldots, p - 1$, and obtain a pair of solutions (x, y) and $(x, -y)$ for every x, we can have no more than 2p points

Including the point at infinity, the order is bounded as

$$
\mathsf{order}(\mathcal{E}(a,b,p)) \leq 2p+1
$$

• The order of $\mathcal{E}(1,1,23)$ is 28 which is less than $2 \cdot 23 + 1 = 47$

<何> <ミ> <ミ> = ミ

- However, this bound is not very precise
- As we discovered in finding the elements of $\mathcal{E}(1,1,23)$, not every x value yields a solution of the quadratic equation $y^2 = x^3 + x + 1$
- For a solution to exists, $u = x^3 + ax + b$ needs to be a QR mod p
- \bullet Only half of the elements in GF(p) are QRs
- As x takes values in $GF(p)$, depending on whether

$$
u=x^3+ax+b
$$

is a QR or QNR, we will have a solution for $y^2=u$ (mod $\rho)$ or not, respectively

 \bullet Therefore, the number of solutions will be less than $2p$

何 ▶ ∢ ヨ ▶ ∢ ヨ ▶ │ ヨ

• If we define $\chi(u)$ as

$$
\chi(u) = \begin{cases} +1 & \text{if } u \text{ is QR} \\ -1 & \text{if } u \text{ is QNR} \end{cases}
$$

we can write the number of solutions to $y^2=u\pmod{p}$ as $1+\chi(u)$ • Therefore, we find the size of the group including $\mathcal O$ as

$$
\begin{array}{rcl}\n\text{order}(\mathcal{E}) & = & 1 + \sum_{x \in \mathsf{GF}(p)} (1 + \chi(x^3 + ax + b)) \\
& = & p + 1 + \sum_{x \in \mathsf{GF}(p)} \chi(x^3 + ax + b)\n\end{array}
$$

which is a function of $\chi (\textsf{x}^{3} + \textsf{a} \textsf{x} + \textsf{b})$ as \textsf{x} takes values in $\mathsf{GF} (p)$

- As x takes values in GF(p), the value of $\chi(x^3+ax+b)$ will be equally likely as $+1$ and -1
- \bullet This is a random walk where we toss a coin p times, and take either a forward and backward step
- According to the probability theory, the sum $\sum \chi(x^3 + ax + b)$ is of order $\sqrt{\rho}$
- More precisely, this sum is bounded by $2\sqrt{\rho}$
- Thus, we have a bound on the order of $\mathcal{E}(a, b, p)$, due to Hasse:

Theorem

The order of an elliptic curve group over $GF(p)$ is bounded by

$$
p+1-2\sqrt{p}\leq \mathit{order}(\mathcal{E})\leq p+1+2\sqrt{p}
$$

 Ω

メロト メ何ト メミト メミト

• The order of an element P is the smallest integer k such that

$$
[k]P = \overbrace{P \oplus P \oplus \cdots \oplus P}^{k \text{ times}} = \mathcal{O}
$$

- According to the Lagrange Theorem, the order of any point divides the order of the group
- The primitive element is defined as the element $P \in \mathcal{E}$ whose order $n = \text{order}(P)$ is equal to the group order

$$
n = \operatorname{order}(P) = \operatorname{order}(\mathcal{E})
$$

According to the Hasse Theorem, we have \bullet

$$
p+1-2\sqrt{p} \leq \text{order}(\mathcal{E}(a,b,p)) \leq p+1+2\sqrt{p}
$$

For the group $\mathcal{E}(1,1,23)$, we have $\lceil\sqrt{23}\rceil=5$, and the bounds are \bullet

$$
14 \leq \text{order}(\mathcal{E}(1,1,23)) \leq 34
$$

Indeed, we found it as order $(\mathcal{E}(1,1,23)) = 28$

- According to the Lagrange Theorem, the element orders in $\mathcal{E}(1,1,23)$ can only be the divisors of 28 which are 1, 2, 4, 7, 14, 28
- The order of a primitive element is 28 \bullet
- The order of $\mathcal O$ is 1 since $[1]\mathcal O=\mathcal O$
- The order (4, 0) is 2 since $[2](4,0) = (4,0) \oplus (4,0) = \mathcal{O}$

• Compute the order of the point $P = (11, 3)$ in $\mathcal{E}(1, 1, 23)$

$$
\begin{array}{rcl}\n[2]P & = & (11,3) \oplus (11,3) & = & (4,0) \\
[3]P & = & (11,3) \oplus (4,0) & = & (11,20) \end{array} \leftarrow
$$

Note that \bullet

$$
[3]P = (11, 20) = (11, -3) = -P
$$

• This gives

$$
[4]P = [3]P \oplus P = (-P) \oplus P = \mathcal{O}
$$

• Therefore, the order of $(11, 3)$ is 4

 2040

Compute the order of the point $P = (1, 7)$ in $\mathcal{E}(1, 1, 23)$ \bullet

$$
[2]P = (1,7) \oplus (1,7) = (7,11)
$$

\n
$$
[3]P = (1,7) \oplus (7,11) = (18,20)
$$

\n
$$
[4]P = (7,11) \oplus (7,11) = (17,20)
$$

\n
$$
[7]P = (18,20) \oplus (17,20) = (11,3) \leftarrow
$$

\n
$$
[14]P = (11,3) \oplus (11,3) = (4,0)
$$

\n
$$
[21]P = (11,3) \oplus (4,0) = (11,20) \leftarrow
$$

Since the order of $(1, 7)$ is not 2, or 7, or 14, it must be 28 \bullet Indeed (11, 20) and (11, 3) are negatives of one another \bullet

 $[28]P = [7]P \oplus [21]P = (11, 3) \oplus (11, -3) = \mathcal{O}$

• Therefore, the order of $P = (1, 7)$ is 28 and $(1, 7)$ is primitive

 Ω

- **•** One remarkable property of the elliptic curve groups is that the order *n* can be a prime number, while the multiplicative group \mathcal{Z}_p^* order is always even: $p-1$
- When the group order is a prime, all elements of the group are primitive elements (except the neutral element $\mathcal O$ whose order is 1)
- As a small example, consider $\mathcal{E}(2,1,5)$: The equation

$$
y^2 = x^3 + 2x + 1 \pmod{5}
$$

has 6 finite solutions $(0, 1)$, $(0, 4)$, $(1, 2)$, $(1, 3)$, $(3, 2)$, and $(3, 3)$

• Including \mathcal{O} , this group has 7 elements, and thus, its order is a prime number and all elements (except \mathcal{O}) are primitive

→ 何 → → モ → → モ → ニ ヨ

Elliptic Curve Point Multiplication

The elliptic curve point multiplication operation is the computation of \bullet the point $Q = [k]P$ given an integer k and a point on the curve P

$$
Q = [k]P = \overbrace{P \oplus P \oplus \cdots \oplus P}^{k \text{ times}}
$$

- If the order of the point P is n, we have $[n]P = \mathcal{O}$ \bullet
- Thus, the computation of $[k]P$ effectively gives \bullet

 $[k]P = [k \mod n]P$

Similarly, we have

$$
[a]P \oplus [b]P = [a + b \mod n]P
$$

$$
[a][b]P = [a \cdot b \mod n]P
$$

- O Once we have a primitive element $P \in \mathcal{E}$ whose order n equal to the group order, we can execute the steps of the Diffie-Hellman key exchange algorithm using the elliptic curve group $\mathcal E$
- **•** Diffie-Hellman works over any group as long as the DLP in that group is a difficult problem
- \bullet The Elliptic Curve DLP is defined as the computation of the integer k given P and Q such that

$$
Q = [k]P = \overbrace{P \oplus P \oplus \cdots \oplus P}^{k \text{ times}}
$$

- \bullet The ECDLP requires an exhaustive search on the integer k
- No subexponential algorithm for the ECDLP exists as of yet

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{B}$

- \bullet A and B agree on the elliptic curve group $\mathcal E$ of order n and a primitive element $P \in \mathcal{E}$ (whose order is also *n*)
- **•** This is done in public: \mathcal{E} , n, and P are known to the adversary
- A selects integer $a \in [2, n-1]$, computes $Q = [a]P$, and sends Q to B \bullet
- B selects integer $b \in [2, n-1]$, computes $R = [b]P$, and sends R to A
- A receives R, and computes $S = [a]R$
- \bullet B receives Q, and computes $S = [b]Q$

$$
S = [a]R = [a][b]P = [a \cdot b \mod n]P
$$

$$
S = [b]Q = [b][a]P = [b \cdot a \mod n]P
$$

やすい

KEXKEX E

Elliptic Curve Diffie-Hellman

Koc (<http://cs.ucsb.edu/~koc>) [ucsb ccs 130h explore crypto](#page-0-0) fall 2014 42 / 53

- 로

 299

イロメ イ何 ト イヨメ イヨメ

- The ECDSA is the elliptic curve analogue of the DSA
- The SHA is used to compute the hash of the message: $H(m)$
- Instead of working in a subgroup of order q in \mathcal{Z}_p^* , we work in an elliptic curve group $\mathcal{E}(a, b, p)$ which is of order n
- The subgroup order q corresponds to $\mathcal{E}(a, b, p)$ of order n
- The *q*th root of 1 denoted by g corresponds to the primitive element P of order n in the elliptic curve group
- The private key in DSA is an integer $x < q$ while the private key in ECDSA is also an integer $d < n$
- The public key in DSA is an integer $y < p$ while the public key in ECDSA is Q which is a point on the curve $\mathcal E$

→ イラン イミン イヨン ニヨ

The correspondence of the variables and operations

4 0 8

GRAN

 Ω

- The elliptic curve group $\mathcal{E}(a, b, p)$ with parameters a, b, p
- The order of $\mathcal{E}(a, b, p)$ is either prime *n* or divisible by prime *n*
- The primitive element $P \in \mathcal{E}$, which is of order *n* \bullet
- \bullet The size of the prime p is 160 or larger
- The size of n is similar to that of p (due to Hasse theorem) \bullet
- The private key is a random integer $d \in [2, n-2]$
- The public key is a point on the curve $Q = [d]P$

• Generate a random integer
$$
r \in [2, n-2]
$$

$$
ext{Compute } [r]P = (x_1, y_1)
$$

- **3** Compute the integer $s_1 = x_1$ (mod *n*)
- If $s_1 = 0$, stop and go to Step 1
- 5 Compute $r^{−1}$ (mod $n)$
- **6** Compute $s_2 = r^{-1}(H(m) + d \cdot s_1)$ (mod *n*)
- **1** If $s_2 = 0$, stop and go to Step 1
- **8** The signature on the message m is the pair of integers (s_1, s_2)

 Ω

KATALEKTE

- The verifier receives the message and the signature: $[m, s_1, s_2]$
- The verifier knows the system parameters and the public key Q
- **3** The integers s_1, s_2 are in the range $[1, n 1]$

• Compute
$$
w = s_2^{-1}
$$
 (mod *n*)

- **5** Compute $u_1 = H(m) \cdot w$ (mod *n*)
- **6** Compute $u_2 = s_1 \cdot w$ (mod *n*)
- Compute $[u_1]P \oplus [u_2]Q = (x_2, y_2)$
- **8** Compute the integer $v = x_2$ (mod *n*)
- **9** The signature is valid if $v = s_1$

ഹൈദര

ECDSA Correctness

The signer computes $s_2 = r^{-1}(H(m) + d \cdot s_1)$ (mod *n*), which gives

$$
r = s_2^{-1} \cdot (H(m) + d \cdot s_1) \pmod{n}
$$

= $H(m) \cdot s_2^{-1} + d \cdot s_1 \cdot s_2^{-1} \pmod{n}$
= $H(m) \cdot w + d \cdot s_1 \cdot w \pmod{n}$

$$
r[P] = [H(m) \cdot w + d \cdot s_1 \cdot w]P
$$

=
$$
[H(m) \cdot w]P \oplus [s_1 \cdot w][d]P
$$

=
$$
[u_1]P \oplus [u_2]Q
$$

=
$$
(x_2, y_2)
$$

$$
v = x_2 \pmod{n}
$$

- The signer computes $r[P] = (x_1, y_1)$, which gives $s_1 = x_1 \pmod{n}$
- The equality of $v = s_1$ indeed verifies the signature

 Ω

◆ロ→ → 何→ → ヨ→ → ヨ→ → ヨ→

ECIES: Elliptic Curve Integrated Encryption Scheme

- The standard ECC encryption algorithm
- \bullet It works like the static Diffie-Hellman algorithm
- It employs a block cipher \bullet
- A block cipher $E_k(\cdot)$ and $D_k(\cdot)$
- Key space K_1
- \bullet A MAC function MAC_k
- Key space K_2
- A key derivation function V will map group elements to the key \bullet spaces K_1 and K_2

 Ω

- $d \in \{1, 2, \ldots p-1\}$
- $Q = [d]P$
- d is the private key of the User \bullet
- \bullet P is the generator of the elliptic curve group
- \bullet Q is the public key of the User

 Ω

∢ ⊞ ≯ -∢.

ECIES Encryption

- Generate a random number $r \in \{1, 2, \ldots p-1\}$
- $U = [r]P$
- \bullet T = $[r]Q$
- $(k_1, k_2) = V(T)$
- $C = E_{k_1}(M)$
- $D = MAC_{k_2}(C)$
- \bullet Send $U \parallel C \parallel D$
- \bullet The ciphertext: U, C, D
- \bullet U is used for key agreement
- \bullet C is the actual encrypted text

De la Car

 Ω

- • Receive and parse $U \parallel C \parallel D$ to obtain U, C, and D
- \bullet $T = [d]U$
- $(k_1, k_2) = V(T)$
- If $D \neq \mathit{MAC}_{k_2}(C)$ then return Invalid
- $M=D_{k_1}(C)$
- **•** Return M
- ECIES makes it easy to encrypt long messages
- **•** Standardized by several institutions: ANSI X9.63, IEEE P1363

- ഗാ

K 로 시 로 시 코 시 코