Elliptic Curve Cryptography

Çetin Kaya Koç

http://cs.ucsb.edu/~koc koc@cs.ucsb.edu

- The security of the Diffie-Hellman key exchange, ElGamal public-key encryption algorithm, ElGamal signature scheme, and Digital Signature Algorithm depends on the difficulty of the DLP in Z^{*}_p
- Another type of group for which the DLP is difficult is the elliptic curve group over a finite field
- In fact, the Elliptic Curve Discrete Logarithm Problem (ECDLP) seems to be a much more difficult problem than the DLP
- There is no subexponential algorithm for the ECDLP as of yet
- Furthermore, the elliptic curve variants of the Diffie-Hellman and the DSA require significantly smaller group size for the same amount of security, as compared to that of Z^{*}_p groups

• An elliptic curve is the solution set of a nonsingular cubic polynomial equation in two unknowns over a field ${\cal F}$

$$\mathcal{E} = \{(x, y) \in \mathcal{F} \times \mathcal{F} \mid f(x, y) = 0\}$$

• The general equation of a cubic in two variables is given by

$$ax^{3} + by^{3} + cx^{2}y + dxy^{2} + ex^{2} + fy^{2} + gxy + hx + iy + j = 0$$

• When char(\mathcal{F}) \neq {2,3}, we can convert the above equation to the Weierstrass form

$$y^2 = x^3 + ax + b$$

- The field in which this equation solved can be an infinite field, such as C (complex numbers), R (real numbers), or Q (rational numbers)
- The point at infinity, represented by \mathcal{O} , is also considered a solution of the equation
- The discriminant is defined as

$$\Delta = 4a^3 + 27b^2$$

which is nonzero for nonsingular curves

• The elliptic curves over \mathcal{R} for different values of *a* and *b* make continuous curves on the plane, which have either one or two parts

Elliptic Curves over \mathcal{R}

Elliptic Curves over \mathcal{R}

Koç (http://cs.ucsb.edu/~koc)

fall 2014 6 / 5

Bezout Theorem

Theorem

A linear line that intersects an elliptic curve at 2 points also crosses at a third point.

• Consider the elliptic curve and the linear equation together:

$$y^2 = x^3 + ax + b$$

$$y = cx + d$$

• Substituting either y or x from the second equation to the first one, we obtain one of the following cubic equations

$$(cx + d)^2 = x^3 + ax + b$$

 $y^2 = (y - d)^3/c^3 + a(y - d)/c + b$

• A cubic equation has either 1 or 3 real roots; since we already have two points on the curve (2 real roots), the third one must be real

Elliptic Curve Chord and Tangent

• For example, by solving $y^2 = x^3 - 4x$ with three different linear equations, as given below, we find the following points on the curve:

y = x	$y = \frac{4}{\sqrt[4]{27}}$	$x = -\frac{1}{2}$
(0,0)	$\left(-\frac{2}{\sqrt{3}},\frac{4}{\sqrt[4]{27}}\right)$	$\left(-\frac{1}{2},\frac{\sqrt{15}}{2\sqrt{2}}\right)$
$\big(\tfrac{1-\sqrt{17}}{2},-\sqrt{\tfrac{9}{2}+\tfrac{\sqrt{17}}{2}}\big)$	$\left(-\frac{2}{\sqrt{3}},\frac{4}{\sqrt[4]{27}}\right)$	$\left(-\frac{1}{2},-\frac{\sqrt{15}}{2\sqrt{2}}\right)$
$\big(\tfrac{1+\sqrt{17}}{2},\sqrt{\tfrac{9}{2}+\tfrac{\sqrt{17}}{2}}\big)$	$\left(\frac{4}{\sqrt{3}},\frac{4}{\sqrt[4]{27}}\right)$	

Elliptic Curve Chord and Tangent

Koç (http://cs.ucsb.edu/~koc)

ucsb ccs 130h explore crypto

Elliptic Curve Chord and Tangent

- In the first case we have (x1, y1), (x2, y2), (x3, y3), where all three coordinates are different
- In the second case, we have (x1, y1), (x1, y1), (x3, y3), where the first two coordinates are same, but the third one different
- Finally, in the third case we have (x₁, y₁), (x₁, -y₁), where the x coordinates are equal and the y coordinates are equal with different sign
- By including the point at infinity O as one of points (neutral element) of the curve, we can introduce an operation ⊕ which "adds" three points P₁, P₂, and P₃ to get neutral element O

$$P_1 \oplus P_2 \oplus P_3 = \mathcal{O}$$

Elliptic Curve Point Addition

fall 2014 11 / 53

- The "point addition" is a geometric operation: a linear line that connects P_1 and P_2 also crosses the elliptic curve at a third point, which we will name as P_3
- The new "sum" point −P₃ = P₁ ⊕ P₂ is the mirror image of P₃ with respect to the x axis:

if
$$P_3 = (x_3, y_3)$$
 then $-P_3 = (x_3, -y_3)$

• The point at infinity \mathcal{O} acts as the neutral (zero) element

$$P \oplus \mathcal{O} = \mathcal{O} \oplus P = P$$
$$P \oplus (-P) = (-P) \oplus P = \mathcal{O}$$

 The set of points (x, y) on elliptic curve together with the point at infinity O

$$\mathcal{E} = \{(x,y) \mid (x,y) \in \mathcal{F}^2 \text{ and } y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$$

forms an Abelian group with respect to the addition operation \oplus

- The addition operation computes the coordinates (x₃, y₃) of −P₃ for −P₃ = P₁ ⊕ P₂ = (x₁, y₁) ⊕ (x₂, y₂)
- The addition rule for −P₃ = P₁ ⊕ P₂ can be algebraically obtained by first computing the slope *m* of the straight line that connects P₁ = (x₁, y₁) and P₂ = (x₂, y₂) using

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Elliptic Curve Addition and Doubling Rule

- Then, the linear equation $y y_1 = m(x x_1)$ is solved together with the elliptic curve equation $y^2 = x^3 + ax + b$ to obtain the coordinates of the third point $-P_3 = (x_3, y_3)$
- In the case of doubling

$$-Q_3 = Q_1 \oplus Q_1 = (x_1, y_1) \oplus (x_1, y_1)$$

the slope *m* of the linear line is equal to the derivative of the elliptic curve equation $y^2 = x^3 + ax + b$ evaluated at point x_1 as

$$2yy' = 3x^2 + a \quad \rightarrow \quad y' = \frac{3x^2 + a}{2y}$$

 Once the slope *m* is obtained, the linear equation can be written, and solved together with the elliptic curve equation to find x₃ and y₃

Elliptic Curve Addition and Doubling over GF(p)

Given $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$, the computation of $-P_3 = (x_3, y_3)$:

- If $(x_1, y_1) = O$, then $(x_3, y_3) = (x_2, y_2)$ since $-P_3 = O + P_2 = P_2$
- If $(x_2, y_2) = O$, then $(x_3, y_3) = (x_1, y_1)$ since $-P_3 = P_1 + O = P_1$
- If $x_2 = x_1 \& y_2 = -y_1$, then $(x_3, y_3) = O$ since $-P_3 = -P_1 + P_1 = O$
- Otherwise, first compute the slope using

$$m = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{for } x_1 \neq x_2 \\ \frac{3x_1^2 + a}{2y_1} & \text{for } x_1 = x_2 \text{ and } y_1 = y_2 \end{cases}$$

Then, (x₃, y₃) is computed using

$$\begin{array}{rcl} x_3 & = & m^2 - x_1 - x_2 \\ y_3 & = & m \left(x_1 - x_3 \right) - y_1 \end{array}$$

- The field in which the Weierstrass equation solved can also be a finite field, which is of interest in cryptography
- Most common cases of finite fields are:
 - Characteristic p: GF(p), where p is a large prime
 - Characteristic 2: $GF(2^k)$, where k is a small prime
 - Characteristic p: $GF(p^k)$, where p and k are small primes
- In GF(p) for a prime $p \neq 2, 3$, we can use the Weierstrass equation

$$y^2 = x^3 + ax + b$$

with the understanding that the solution of this equation and all field operations are performed in the finite field GF(p)

• We will denote this group by $\mathcal{E}(a, b, p)$

• Consider the elliptic curve group $\mathcal{E}(1, 1, 23)$: The solutions of the equation with a = 1 and b = 1

$$y^2 = x^3 + x + 1$$

over the finite field GF(23)

- We obtain the elements of the group by solving this equation in GF(23) for all values of x ∈ Z^{*}₂₃
- As we give a particular value for x, we obtain a quadratic equation in y modulo 23, whose solution will depend on whether the right hand side is a QR mod 23
- Note that if (x, y) is a solution, so is (x, -y) because y² = (-y)², i.e., the elliptic curve is symmetric with respect to the x axis

An Elliptic Curve over GF(23)

- Starting with x = 0, we get y² = 1 (mod 23) which immediately gives two solutions as (0, 1) and (0, -1) = (0, 22)
- Similarly, for x = 1, we obtain $y^2 = 3 \pmod{23}$
- This is a quadratic equation, the solution will depend on whether 3 is QR, which turns out to be:

$$3^{(p-1)/2} = 3^{11} = 1 \pmod{23}$$

The solution for y is

$$y = 3^{(p+1)/4} = 3^6 = 16 \pmod{23}$$

and thus, we find a pair of coordinates: (1, 16), (1, -16) = (1, 7)

An Elliptic Curve over GF(23)

Now, taking x = 2, we have y² = 2³ + 2 + 1 = 11 (mod 23), however, 11 is a QNR since

$$11^{(p-1)/2} = 11^{11} = -1$$

therefore, there is no solution for $y^2 = 11 \pmod{23}$, and this elliptic curve does not have any points whose x coordinate is 2

On the other hand, for x = 3, we have y² = 3³ + 3 + 1 = 31 = 8 (mod 23), and 8 is a QR since

$$8^{(p-1)/2} = 8^{11} = 1 \pmod{23}$$

• We solve for $y^2 = 8 \pmod{23}$ using

$$y = 8^{(p+1)/4} = 8^6 = 13 \pmod{23}$$

thus, obtain the pair of coordinates: (3, 13), (3, -13) = (3, 10)

• Proceeding for the other values of $x \in \mathbb{Z}_{23}^*$, we find 27 solutions:

Note that the solutions come in pairs except one of them: (4,0), since for x = 4, we have

$$y^2 = 4^3 + 4 + 1 = 69 = 0 \pmod{23}$$

which has only one solution y = 0 and thus one point (4, 0)

An Elliptic Curve over GF(23)

Koç (http://cs.ucsb.edu/~koc)

ucsb ccs 130h explore crypto

fall 2014 21 / 5

Elliptic Curve Point Addition over GF(23)

- Given $P_1 = (3, 10)$ and $P_2 = (9, 7)$, compute $P_1 \oplus P_2 = P_3$
- Since $x_1 \neq x_2$, we have

$$m = (y_2 - y_1) \cdot (x_2 - x_1)^{-1} \pmod{23}$$

= $(7 - 10) \cdot (9 - 3)^{-1} = (-3) \cdot 6^{-1} = 11 \pmod{23}$
 $x_3 = m^2 - x_1 - x_2 \pmod{23}$
= $11^2 - 3 - 9 = 17 \pmod{23}$
 $y_3 = m (x_1 - x_3) - y_1 \pmod{23}$
= $11 \cdot (3 - 17) - 10 = 20 \pmod{23}$

• Thus, we have $(x_3, y_3) = (3, 10) \oplus (9, 7) = (17, 20)$

Question: Is the geometry of point addition still valid?

Elliptic Curve Point Addition over GF(23)

Koç (http://cs.ucsb.edu/~koc)

fall 2014 23 / 5

Elliptic Curve Point Doubling over GF(23)

• Given
$$P_1 = (3, 10)$$
, compute $P_1 \oplus P_1 = P_3$

• Since $x_1 = x_2$ and $y_1 = y_2$, we have

$$m = (3x_1^2 + a) \cdot (2y_1)^{-1} \pmod{23}$$

= $(3 \cdot 3^2 + 1) \cdot (20)^{-1} = 6 \pmod{23}$
 $x_3 = m^2 - x_1 - x_2 \pmod{23}$
= $6^2 - 3 - 3 = 7 \pmod{23}$
 $y_3 = m (x_1 - x_3) - y_1 \pmod{23}$
= $6 \cdot (3 - 7) - 10 = 12 \pmod{23}$

• Thus, we have $(x_3, y_3) = (3, 10) \oplus (3, 10) = (7, 12)$

• Question: Is the geometry of point addition still valid?

Elliptic Curve Point Doubling over GF(23)

Koç (http://cs.ucsb.edu/~koc)

ucsb ccs 130h explore crypto

fall 2014 25 / 5

Elliptic Curves over $GF(2^k)$

• The Weierstrass form of an elliptic curve over $GF(2^k)$ is given as

$$y^2 + xy = x^3 + ax^2 + b$$

with parameters $a, b \in GF(2^k)$ and $b \neq 0$, whose solutions are found in the field $GF(2^k)$

- The addition law is based on this equation, and therefore, the rules of addition and doubling formulae are different
- The elements of the field $GF(2^k)$ can be represented in several ways
- We studied the polynomial representation, where $a(x) \in GF(2^k)$

$$a(x) = a_{k-1}x^k + \cdots + a_1x + a_0$$

is a polynomial of degree at most k, with coefficients in GF(2)

Elliptic Curve Addition and Doubling over $GF(2^k)$

Given
$$P_1 = (x_1, y_1)$$
 and $P_2 = (x_2, y_2)$, the computation of $P_3 = (x_3, y_3)$:
• If $(x_1, y_1) = O$, then $(x_3, y_3) = (x_2, y_2)$ since $P_3 = O + P_2 = P_2$
• If $(x_2, y_2) = O$, then $(x_3, y_3) = (x_1, y_1)$ since $P_3 = P_1 + O = P_1$
• If $x_2 = x_1$ and $y_2 = x_1 + y_1$, then $(x_3, y_3) = O$ since $P_3 = -P_1 + P_1 = O$

• Otherwise, (x_3, y_3) is computed using

$$\begin{array}{rcl} x_3 & = & m^2 - x_1 - x_2 \\ y_3 & = & m \left(x_1 - x_3 \right) - y_1 \end{array}$$

where the slope is defined as

$$m = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{for } x_1 \neq x_2 \\ \frac{3x_1^2 + a}{2y_1} & \text{for } x_1 = x_2 \text{ and } y_1 = y_2 \end{cases}$$

Koç (http://cs.ucsb.edu/~koc)

Elliptic Curve Point Multiplication

• The elliptic curve point multiplication operation takes an integer k and a point on the curve P, and computes

$$[k]P = \overbrace{P \oplus P \oplus \cdots \oplus P}^{k \text{ times}}$$

- This can be accomplished with the binary method, using the binary expansion of the integer $k = (k_{m-1} \cdots k_1 k_0)_2$
- For example [17] *P* is computed using the addition chain

$$P \xrightarrow{d} [2]P \xrightarrow{d} [4]P \xrightarrow{d} [8]P \xrightarrow{d} [16]P \xrightarrow{a} [17]P$$

- The symbol $\stackrel{d}{\rightarrow}$ stands for doubling, such as $[2]P \oplus [2]P = [4]P$
- The symbol $\stackrel{a}{\rightarrow}$ stands for addition, such as $P \oplus [16]P = [17]P$

Number of Points on an Elliptic Curve

• The elliptic curve group $\mathcal{E}(1,1,23)$ had the following elements:

- There are 27 points in the above list
- Including the point at infinity O, the elliptic curve group E(1,1,23) has 27 + 1 = 28 elements
- In other words, the order of the group $\mathcal{E}(1,1,23)$ is 28

Order of Elliptic Curve Groups

- In order to use an elliptic curve group *E* in cryptography, we need to know the order of the group, denoted as order(*E*)
- The order of $\mathcal{E}(a, b, p)$ is always less than 2p + 1
- The finite field has p elements, and we solve the equation

$$y^2 = x^3 + ax + b$$

for values of x = 0, 1, ..., p - 1, and obtain a pair of solutions (x, y) and (x, -y) for every x, we can have no more than 2p points

• Including the point at infinity, the order is bounded as

$$\operatorname{order}(\mathcal{E}(a, b, p)) \leq 2p + 1$$

• The order of $\mathcal{E}(1,1,23)$ is 28 which is less than $2 \cdot 23 + 1 = 47$

- However, this bound is not very precise
- As we discovered in finding the elements of $\mathcal{E}(1, 1, 23)$, not every x value yields a solution of the quadratic equation $y^2 = x^3 + x + 1$
- For a solution to exists, $u = x^3 + ax + b$ needs to be a QR mod p
- Only half of the elements in GF(p) are QRs
- As x takes values in GF(p), depending on whether

$$u = x^3 + ax + b$$

is a QR or QNR, we will have a solution for $y^2 = u \pmod{p}$ or not, respectively

• Therefore, the number of solutions will be less than 2p

Order of Elliptic Curve Groups

• If we define $\chi(u)$ as

$$\chi(u) = \begin{cases} +1 & \text{if } u \text{ is } QR \\ -1 & \text{if } u \text{ is } QNR \end{cases}$$

we can write the number of solutions to $y^2 = u \pmod{p}$ as $1 + \chi(u)$ • Therefore, we find the size of the group including \mathcal{O} as

order(
$$\mathcal{E}$$
) = 1 + $\sum_{x \in GF(p)} (1 + \chi(x^3 + ax + b))$
= $p + 1 + \sum_{x \in GF(p)} \chi(x^3 + ax + b)$

which is a function of $\chi(x^3 + ax + b)$ as x takes values in GF(p)

- As x takes values in GF(p), the value of $\chi(x^3 + ax + b)$ will be equally likely as +1 and -1
- This is a random walk where we toss a coin *p* times, and take either a forward and backward step
- According to the probability theory, the sum ∑ χ(x³ + ax + b) is of order √p
- More precisely, this sum is bounded by $2\sqrt{p}$
- Thus, we have a bound on the order of $\mathcal{E}(a, b, p)$, due to Hasse:

Theorem

The order of an elliptic curve group over GF(p) is bounded by

$$p+1-2\sqrt{p} \leq order(\mathcal{E}) \leq p+1+2\sqrt{p}$$

• The order of an element P is the smallest integer k such that

$$[k]P = \overbrace{P \oplus P \oplus \cdots \oplus P}^{k \text{ times}} = \mathcal{O}$$

- According to the Lagrange Theorem, the order of any point divides the order of the group
- The primitive element is defined as the element P ∈ E whose order
 n = order(P) is equal to the group order

$$n = \operatorname{order}(P) = \operatorname{order}(\mathcal{E})$$

• According to the Hasse Theorem, we have

$$p+1-2\sqrt{p} \leq \operatorname{order}(\mathcal{E}(a,b,p)) \leq p+1+2\sqrt{p}$$

• For the group $\mathcal{E}(1,1,23)$, we have $\lceil \sqrt{23} \rceil = 5$, and the bounds are

$$14 \leq \operatorname{order}(\mathcal{E}(1, 1, 23)) \leq 34$$

Indeed, we found it as $\operatorname{order}(\mathcal{E}(1,1,23)) = 28$

- According to the Lagrange Theorem, the element orders in *E*(1,1,23) can only be the divisors of 28 which are 1,2,4,7,14,28
- The order of a primitive element is 28
- The order of \mathcal{O} is 1 since $[1]\mathcal{O} = \mathcal{O}$
- The order (4,0) is 2 since $[2](4,0) = (4,0) \oplus (4,0) = \mathcal{O}$

• Compute the order of the point P = (11,3) in $\mathcal{E}(1,1,23)$

$$\begin{array}{rcl} [2]P & = & (11,3) \oplus (11,3) & = & (4,0) \\ [3]P & = & (11,3) \oplus (4,0) & = & (11,20) & \leftarrow \end{array}$$

Note that

$$[3]P = (11, 20) = (11, -3) = -P$$

This gives

$$[4]P = [3]P \oplus P = (-P) \oplus P = \mathcal{O}$$

• Therefore, the order of (11,3) is 4

• Compute the order of the point P = (1,7) in $\mathcal{E}(1,1,23)$

$$\begin{array}{rcl} [2]P &=& (1,7) \oplus (1,7) &=& (7,11) \\ [3]P &=& (1,7) \oplus (7,11) &=& (18,20) \\ [4]P &=& (7,11) \oplus (7,11) &=& (17,20) \\ [7]P &=& (18,20) \oplus (17,20) &=& (11,3) \leftarrow \\ [14]P &=& (11,3) \oplus (11,3) &=& (4,0) \\ [21]P &=& (11,3) \oplus (4,0) &=& (11,20) \leftarrow \end{array}$$

Since the order of (1,7) is not 2, or 7, or 14, it must be 28
Indeed (11,20) and (11,3) are negatives of one another

$$[28]P = [7]P \oplus [21]P = (11,3) \oplus (11,-3) = O$$

• Therefore, the order of P = (1,7) is 28 and (1,7) is primitive

- One remarkable property of the elliptic curve groups is that the order n can be a prime number, while the multiplicative group \mathcal{Z}_p^* order is always even: p-1
- When the group order is a prime, all elements of the group are primitive elements (except the neutral element O whose order is 1)
- As a small example, consider $\mathcal{E}(2,1,5)$: The equation

$$y^2 = x^3 + 2x + 1 \pmod{5}$$

has 6 finite solutions (0, 1), (0, 4), (1, 2), (1, 3), (3, 2), and (3, 3)

 Including O, this group has 7 elements, and thus, its order is a prime number and all elements (except O) are primitive

Elliptic Curve Point Multiplication

 The elliptic curve point multiplication operation is the computation of the point Q = [k]P given an integer k and a point on the curve P

$$Q = [k]P = \overbrace{P \oplus P \oplus \cdots \oplus P}^{k \text{ times}}$$

- If the order of the point P is n, we have [n]P = O
- Thus, the computation of [k]P effectively gives

$$[k]P = [k \mod n]P$$

Similarly, we have

$$[a]P \oplus [b]P = [a + b \mod n]P$$
$$[a][b]P = [a \cdot b \mod n]P$$

- Once we have a primitive element P ∈ E whose order n equal to the group order, we can execute the steps of the Diffie-Hellman key exchange algorithm using the elliptic curve group E
- Diffie-Hellman works over any group as long as the DLP in that group is a difficult problem
- The Elliptic Curve DLP is defined as the computation of the integer k given P and Q such that

$$Q = [k]P = \overbrace{P \oplus P \oplus \cdots \oplus P}^{k \text{ times}}$$

- The ECDLP requires an exhaustive search on the integer k
- No subexponential algorithm for the ECDLP exists as of yet

- A and B agree on the elliptic curve group E of order n and a primitive element P ∈ E (whose order is also n)
- This is done in public: *E*, *n*, and *P* are known to the adversary
- A selects integer $a \in [2, n-1]$, computes Q = [a]P, and sends Q to B
- B selects integer $b \in [2, n-1]$, computes R = [b]P, and sends R to A
- A receives R, and computes S = [a]R
- B receives Q, and computes S = [b]Q

$$S = [a]R = [a][b]P = [a \cdot b \mod n]P$$
$$S = [b]Q = [b][a]P = [b \cdot a \mod n]P$$

Elliptic Curve Diffie-Hellman

Koç (http://cs.ucsb.edu/~koc)

ucsb ccs 130h explore crypto

fall 2014 42 / 53

- The ECDSA is the elliptic curve analogue of the DSA
- The SHA is used to compute the hash of the message: H(m)
- Instead of working in a subgroup of order q in \mathbb{Z}_p^* , we work in an elliptic curve group $\mathcal{E}(a, b, p)$ which is of order n
- The subgroup order q corresponds to $\mathcal{E}(a, b, p)$ of order n
- The *q*th root of 1 denoted by *g* corresponds to the primitive element *P* of order *n* in the elliptic curve group
- The private key in DSA is an integer x < q while the private key in ECDSA is also an integer d < n
- The public key in DSA is an integer y ECDSA is Q which is a point on the curve E

The correspondence of the variables and operations

Group	\mathcal{Z}_p^*	$\mathcal{E}(a, b, p)$
Elements	Integers: $\{1, 2, \dots, p-1\}$	Points $(x, y) \in \mathcal{E}(a, b, p)$
Operation	Multiplication mod p	Point addition \oplus in ${\mathcal E}$
Notation	Elements: g and h	Elements: P and Q
	Multiplication: $g \cdot h$	Addition: $P \oplus Q$
	Inverse: g^{-1}	Negative: $-P$
	Division: $g \cdot h^{-1}$	Subtraction: $P - Q$
	Exponentiation g ^a	Point multiplication: [a]P
DLP	Given $g \in \mathcal{Z}_p^*$ and	Given $P \in \mathcal{E}(a, b, p)$ and
	$h = g^a \pmod{p}$, find a	Q = [a]P, find a

- The elliptic curve group $\mathcal{E}(a, b, p)$ with parameters a, b, p
- The order of $\mathcal{E}(a, b, p)$ is either prime *n* or divisible by prime *n*
- The primitive element $P \in \mathcal{E}$, which is of order *n*
- The size of the prime p is 160 or larger
- The size of n is similar to that of p (due to Hasse theorem)
- The private key is a random integer $d \in [2, n-2]$
- The public key is a point on the curve Q = [d]P

() Generate a random integer
$$r \in [2, n-2]$$

Or Compute
$$[r]P = (x_1, y_1)$$

- Sompute the integer $s_1 = x_1 \pmod{n}$
- ${igsidel{0}}$ If $s_1=0$, stop and go to Step 1
- Ompute $r^{-1} \pmod{n}$
- **O** Compute $s_2 = r^{-1}(H(m) + d \cdot s_1) \pmod{n}$
- If $s_2 = 0$, stop and go to Step 1
- **()** The signature on the message m is the pair of integers (s_1, s_2)

- **()** The verifier receives the message and the signature: $[m, s_1, s_2]$
- ${f Q}\,$ The verifier knows the system parameters and the public key Q
- ${ig 0}$ The integers ${\it s}_1, {\it s}_2$ are in the range [1,n-1]

• Compute
$$w = s_2^{-1} \pmod{n}$$

- Sompute $u_1 = H(m) \cdot w \pmod{n}$
- Compute $u_2 = s_1 \cdot w \pmod{n}$
- $\bigcirc \quad \mathsf{Compute} \ [u_1]P \oplus [u_2]Q = (x_2, y_2)$
- **Oracle 1** Compute the integer $v = x_2 \pmod{n}$
- ${igodot}$ The signature is valid if $v=s_1$

ECDSA Correctness

• The signer computes $s_2 = r^{-1}(H(m) + d \cdot s_1) \pmod{n}$, which gives

$$r = s_2^{-1} \cdot (H(m) + d \cdot s_1) \pmod{n} = H(m) \cdot s_2^{-1} + d \cdot s_1 \cdot s_2^{-1} \pmod{n} = H(m) \cdot w + d \cdot s_1 \cdot w \pmod{n}$$

$$r[P] = [H(m) \cdot w + d \cdot s_1 \cdot w]P$$

= $[H(m) \cdot w]P \oplus [s_1 \cdot w][d]P$
= $[u_1]P \oplus [u_2]Q$
= (x_2, y_2)

$$v = x_2 \pmod{n}$$

- The signer computes $r[P] = (x_1, y_1)$, which gives $s_1 = x_1 \pmod{n}$
- The equality of $v = s_1$ indeed verifies the signature

ECIES: Elliptic Curve Integrated Encryption Scheme

- The standard ECC encryption algorithm
- It works like the static Diffie-Hellman algorithm
- It employs a block cipher

- A block cipher $E_k(\cdot)$ and $D_k(\cdot)$
- Key space K₁
- A MAC function *MAC_k*
- Key space K₂
- A key derivation function V will map group elements to the key spaces K_1 and K_2

- $d \in \{1, 2, \dots p 1\}$
- Q = [d]P
- d is the private key of the User
- *P* is the generator of the elliptic curve group
- Q is the public key of the User

ECIES Encryption

- Generate a random number $r \in \{1, 2, \dots p-1\}$
- *U* = [*r*]*P*
- T = [r]Q
- $(k_1, k_2) = V(T)$
- $C = E_{k_1}(M)$
- $D = MAC_{k_2}(C)$
- Send *U* || *C* || *D*
- The ciphertext: U, C, D
- U is used for key agreement
- C is the actual encrypted text

- Receive and parse $U \parallel C \parallel D$ to obtain U, C, and D
- T = [d]U
- $(k_1, k_2) = V(T)$
- If $D \neq MAC_{k_2}(C)$ then return Invalid
- $M = D_{k_1}(C)$
- Return M
- ECIES makes it easy to encrypt long messages
- Standardized by several institutions: ANSI X9.63, IEEE P1363