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Groups in Cryptography

@ The security of the Diffie-Hellman key exchange, ElGamal public-key
encryption algorithm, ElGamal signature scheme, and Digital
Signature Algorithm depends on the difficulty of the DLP in Z7

o Another type of group for which the DLP is difficult is the elliptic
curve group over a finite field

o In fact, the Elliptic Curve Discrete Logarithm Problem (ECDLP)
seems to be a much more difficult problem than the DLP

o There is no subexponential algorithm for the ECDLP as of yet

o Furthermore, the elliptic curve variants of the Diffie-Hellman and the
DSA require significantly smaller group size for the same amount of
security, as compared to that of Z; groups
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Elliptic Curves

o An elliptic curve is the solution set of a nonsingular cubic polynomial
equation in two unknowns over a field F

£={(xy) e FxF|[f(xy)=0}
o The general equation of a cubic in two variables is given by
3 3 2 2 2 2 ; P
ax® + by® + exy +dxy  +ex +fy +gxy+ hx+iy+j=0

o When char(F) # {2,3}, we can convert the above equation to the
Weierstrass form
v =x3+ax+b
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Elliptic Curves over R

o The field in which this equation solved can be an infinite field, such
as C (complex numbers), R (real numbers), or Q (rational numbers)

@ The point at infinity, represented by O, is also considered a solution
of the equation

@ The discriminant is defined as
A =433 +27p°

which is nonzero for nonsingular curves

o The elliptic curves over R for different values of a and b make
continuous curves on the plane, which have either one or two parts
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Elliptic Curves over R

]
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Elliptic Curves over R
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Bezout Theorem

A linear line that intersects an elliptic curve at 2 points also crosses at a
third point.

o Consider the elliptic curve and the linear equation together:

y2 = xX3+ax+0b

y = ox+d
o Substituting either y or x from the second equation to the first one,
we obtain one of the following cubic equations
(ex+d)? = x3+ax+b
v} = (y—dP/S +aly —d)/c+b
o A cubic equation has either 1 or 3 real roots; since we already have
two points on the curve (2 real roots), the third one must be real
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Elliptic Curve Chord and Tangent

o For example, by solving y? = x3 — 4x with three different linear
equations, as given below, we find the following points on the curve:

(0,0) (-Z. %) | (-3.%%)
(A 3+ 9 | (-Z,44) | (-3 -2
A3+ | (535
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Elliptic Curve Chord and Tangent
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Elliptic Curve Chord and Tangent

@ In the first case we have (x1,y1), (x2,)2), (x3,y3), where all three
coordinates are different

@ In the second case, we have (xi,y1), (x1,y1), (x3,¥3), where the first
two coordinates are same, but the third one different

o Finally, in the third case we have (x1,y1), (x1, —y1), where the x
coordinates are equal and the y coordinates are equal with different
sign

@ By including the point at infinity O as one of points (neutral element)
of the curve, we can introduce an operation @ which “adds” three
points Py, P», and Ps to get neutral element O

ProP,dP3=0
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Elliptic Curve Point Addition

Q1eQ19Qs=0 PeP®P;=0
Q10Q1=-Q3 v PooP,=—P;

Ri®(-R)a0=0
R1EB(—R1)=O
RieO=R
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Elliptic Curve Point Addition

@ The “point addition” is a geometric operation: a linear line that
connects P; and P, also crosses the elliptic curve at a third point,
which we will name as P;

o The new “sum” point —P3 = P; & P» is the mirror image of P; with
respect to the x axis:

if P3=(x3,y3) then —P3=(x3,—y3)
@ The point at infinity O acts as the neutral (zero) element

POO = OGP =P
P&(-P) = (-P)@aP = O
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Elliptic Curve Groups

o The set of points (x,y) on elliptic curve together with the point at
infinity O

€=1{(x,y) | (x,y) € F* and y* = x* + ax + b} U {O}

forms an Abelian group with respect to the addition operation &

o The addition operation computes the coordinates (x3, y3) of —P;3 for
—P3=P1® Py = (x1,51) @ (x2, y2)

o The addition rule for —P3 = P; & P, can be algebraically obtained by
first computing the slope m of the straight line that connects
P1 = (x1,y1) and P, = (x2,y2) using

Yo—Wn
m =
X2 — X1
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Elliptic Curve Addition and Doubling Rule

@ Then, the linear equation y — y; = m(x — x1) is solved together with
the elliptic curve equation y? = x3 4 ax + b to obtain the coordinates
of the third point —P3 = (x3, y3)

@ In the case of doubling

—Q3=Q1® Q1 = (x1,51) ® (x1,0)

the slope m of the linear line is equal to the derivative of the elliptic
curve equation y? = x3 + ax + b evaluated at point x; as

3x2 + a

2y =3x° +a — y =
2y

o Once the slope m is obtained, the linear equation can be written, and
solved together with the elliptic curve equation to find x3 and y3
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Elliptic Curve Addition and Doubling over GF(p)

Given P; = (x1,y1) and P = (x2,y2), the computation of —P3 = (x3, y3):

o If (Xl,yl) = (O, then (X3,y3) = (Xg,yg) since —P3 =0+ P2 = P2
o If (Xz,yz) = O, then (X3,y3) = (X]_,y]_) since —P3 = P1 +0 = P]_
o If Xo = X1 & Yo = —¥1., then (X3,y3) = O since —P3 = —P]_ + P]_ =0
@ Otherwise, first compute the slope using
% for x1 # xo

3x12+a
2y

for x1 =xxand y1 = y»

o Then, (x3,y3) is computed using

X3 = m2—x1—x2

y3 = m(x1—x3)—y
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Elliptic Curves over Finite Fields

o The field in which the Weierstrass equation solved can also be a finite
field, which is of interest in cryptography
@ Most common cases of finite fields are:

o Characteristic p: GF(p), where p is a large prime
o Characteristic 2: GF(2k), where k is a small prime
o Characteristic p: GF(p¥), where p and k are small primes

o In GF(p) for a prime p # 2,3, we can use the Weierstrass equation
yv2=x3+ax+b

with the understanding that the solution of this equation and all field
operations are performed in the finite field GF(p)

o We will denote this group by &(a, b, p)
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An Elliptic Curve over GF(23)

9
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Consider the elliptic curve group £(1,1,23): The solutions of the
equation with a=1and b=1

yv2=x34+x+1

over the finite field GF(23)

We obtain the elements of the group by solving this equation in
GF(23) for all values of x € 255

As we give a particular value for x, we obtain a quadratic equation in
y modulo 23, whose solution will depend on whether the right hand
side is a QR mod 23

Note that if (x,y) is a solution, so is (x, —y) because y? = (—y)?,
i.e., the elliptic curve is symmetric with respect to the x axis
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An Elliptic Curve over GF(23)

o Starting with x = 0, we get y> = 1 (mod 23) which immediately
gives two solutions as (0,1) and (0, —1) = (0,22)

o Similarly, for x = 1, we obtain y? = 3 (mod 23)

o This is a quadratic equation, the solution will depend on whether 3 is
QR, which turns out to be:

3(P~1)/2 =311 =1 (mod 23)
The solution for y is
y =30/% =30 =16 (mod 23)

and thus, we find a pair of coordinates: (1,16), (1,—-16) = (1,7)
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An Elliptic Curve over GF(23)

o Now, taking x = 2, we have y2 =23 +2 +1 =11 (mod 23),
however, 11 is a QNR since

11(p-1/2 — 111 — 4

therefore, there is no solution for y? = 11 (mod 23), and this elliptic
curve does not have any points whose x coordinate is 2

@ On the other hand, for x = 3, we have y2 =334+34+1=31=38
(mod 23), and 8 is a QR since

g(P~1)/2 =gt =1 (mod 23)
o We solve for y?> = 8 (mod 23) using
y =8PtD/4 =85 =13 (mod 23)

thus, obtain the pair of coordinates: (3,13), (3,—13) = (3,10)
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An Elliptic Curve over GF(23)

o Proceeding for the other values of x € ZJ;, we find 27 solutions:

(0,1) (0,22) (1,7) (1,16) (3,10) (3,13) (4,0)
(5,4) (5,19) (6,4) (6,19) (7,11) (7,12)
(9,7) (9,16) (11,3) (11,20) (12,4) (12,19)
(13,7) (13,16) (17,3) (17,20) (18,3) (18,20)
(19,5) (19,18)

o Note that the solutions come in pairs except one of them: (4,0),
since for x = 4, we have

¥ =4#444+1=69=0 (mod 23)

which has only one solution y = 0 and thus one point (4, 0)
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An Elliptic Curve over GF(23)

O N W U oY ®
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Elliptic Curve Point Addition over GF(23)

o Given P; =(3,10) and P, = (9,7), compute P; & P, = P;

@ Since x; # xz, we have

m = (y2—y1) (2 —x)"" (mod 23)
(7-10)-(9—3)' =(-3)-67' =11 (mod 23)
m? — x; — xo (mod 23)
112 =3 -9 = 17 (mod 23)
y3 = m(x1 —x3)—y1 (mod 23)

= 11-(3—-17)—10 = 20 (mod 23)

X3

o Thus, we have (x3,y3) = (3,10) © (9,7) = (17,20)
o Question: Is the geometry of point addition still valid?
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Elliptic Curve Point Addition over GF(23)

(3,10) + (9,7) = (17,20)

(17,20)

(17,3)

O N W U o ®

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
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Elliptic Curve Point Doubling over GF(23)

o Given P; = (3,10), compute P; & P, = P;3

o Since x; = x» and y; = y», we have

m = (3x2+a)-(21)"! (mod 23)

(3-32+1)-(20)7! = 6 (mod 23)

m? — x; — xo (mod 23)

62 -3 -3 = 7 (mod 23)

y3 = m(x1—x3)—y1 (mod 23)
6-(3—7)—10 = 12 (mod 23)

X3

@ Thus, we have (x3,y3) = (3,10) & (3,10) = (7,12)
o Question: Is the geometry of point addition still valid?
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Elliptic Curve Point Doubling over GF(23)

O N W U o ®

Kog (http://cs.ucsb.edu/~koc)
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Elliptic Curves over GF(2)

o The Weierstrass form of an elliptic curve over GF(2¥) is given as
V4xy=x3+ax*+b

with parameters a, b € GF(2X) and b # 0, whose solutions are found
in the field GF(2¥)

o The addition law is based on this equation, and therefore, the rules of
addition and doubling formulae are different

o The elements of the field GF(2¥) can be represented in several ways

o We studied the polynomial representation, where a(x) € GF(2¥)
a(x) = ak_lxk +---+a1x+ ag

is a polynomial of degree at most k, with coefficients in GF(2)
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Elliptic Curve Addition and Doubling over GF(2)

Given P; = (x1,y1) and P = (x2, y2), the computation of P3 = (x3, y3):
o If (x1,y1) = O, then (x3,y3) = (x2,¥2) since P3 =0 + P, = P,
o If (Xg,yg) = O, then (X3,y3) = (Xl,yl) since 3=P1 +0 =P
o If xo =x3 and y» = x; + y1, then (x3,y3) = O since
P3=—P+P1 =0

kokkkkok
o Otherwise, (x3,y3) is computed using
X3 = m? — X1 — Xo
3. = m(xa—x3) =y

where the slope is defined as

yo—y1
o for x; # x»
m =
3 2
EITJlra for xy =xand y1 = y»»

*k3kok kkokk
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Elliptic Curve Point Multiplication

o The elliptic curve point multiplication operation takes an integer k
and a point on the curve P, and computes

k times

KP=Po&Ps---®P

@ This can be accomplished with the binary method, using the binary
expansion of the integer k = (km—1-- - kiko)2

o For example [17]P is computed using the addition chain

P 2P S [41P S [8]P % [16]P 2 [17]P

@ The symbol % stands for doubling, such as [2]P & [2]P = [4]P
o The symbol % stands for addition, such as P @ [16]P = [17]P
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Number of Points on an Elliptic Curve

o The elliptic curve group £(1,1,23) had the following elements:

(0,1) (0,22) (1,7) (1,16)
(5,4) (5,19) (6.4) (6,19)
(9,7) (9,16) (11,3) (11,20)
(13,7) (13,16) (17,3) (17,20)
(19,5) (19,18)

3,10) (3,13) (4,0)
7.11)  (7,12)
12,4) (12,19)
18,3) (18,20)

~ A~~~

@ There are 27 points in the above list

o Including the point at infinity O, the elliptic curve group £(1,1,23)
has 27 + 1 = 28 elements

@ In other words, the order of the group £(1,1,23) is 28
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Order of Elliptic Curve Groups

o In order to use an elliptic curve group &£ in cryptography, we need to
know the order of the group, denoted as order(&)

o The order of £(a, b, p) is always less than 2p + 1

o The finite field has p elements, and we solve the equation
v =x3+ax+b

for values of x =0,1,...,p — 1, and obtain a pair of solutions (x, y)
and (x, —y) for every x, we can have no more than 2p points

o Including the point at infinity, the order is bounded as
order(E(a, b,p)) <2p+1

o The order of £(1,1,23) is 28 which is less than 2-23 + 1 = 47
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Order of Elliptic Curve Groups

o However, this bound is not very precise

o As we discovered in finding the elements of £(1,1,23), not every x
value yields a solution of the quadratic equation y? = x3 4+ x + 1

o For a solution to exists, u = x3 + ax + b needs to be a QR mod p
@ Only half of the elements in GF(p) are QRs
o As x takes values in GF(p), depending on whether

u=x>+ax+b

is a QR or QNR, we will have a solution for y?> = u (mod p) or not,
respectively

o Therefore, the number of solutions will be less than 2p

Kog (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 31 /53


http://cs.ucsb.edu/~koc

Order of Elliptic Curve Groups

o If we define x(u) as

[ 41 if u isQR
XU =1 1 i 4 isQNR

we can write the number of solutions to y? = u (mod p) as 1 + x(uv)

o Therefore, we find the size of the group including O as

order(€) = 1+ > (1+x(+ax+b))
x€ GF(p)

= p+1+ Z x(x* + ax + b)
x € GF(p)

which is a function of x(x3 + ax + b) as x takes values in GF(p)
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Hasse Theorem

o As x takes values in GF(p), the value of x(x3 + ax + b) will be
equally likely as +1 and —1

@ This is a random walk where we toss a coin p times, and take either a
forward and backward step

o According to the probability theory, the sum 3~ x(x3 + ax + b) is of

order /p
@ More precisely, this sum is bounded by 2,/p

@ Thus, we have a bound on the order of £(a, b, p), due to Hasse:

The order of an elliptic curve group over GF(p) is bounded by

p+1—-2/p<order(E) <p+1+2p
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Order of Elements

o The order of an element P is the smallest integer k such that

k times

KP=PoP®---®P=0

o According to the Lagrange Theorem, the order of any point divides
the order of the group

@ The primitive element is defined as the element P € £ whose order
n = order(P) is equal to the group order

n = order(P) = order(&)
o According to the Hasse Theorem, we have

p+1—2yp<order(é(a,b,p)) <p+1+2p
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Order of Elements

For the group £(1,1,23), we have [v/23] = 5, and the bounds are

©

14 < order(£(1,1,23)) < 34

Indeed, we found it as order(&(1,1,23)) =28

According to the Lagrange Theorem, the element orders in £(1,1,23)
can only be the divisors of 28 which are 1,2,4,7,14,28

The order of a primitive element is 28
The order of O is 1 since [1]O = O
The order (4,0) is 2 since [2](4,0) = (4,0) @ (4,0) = O

©

©

©

©
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Order of Elements

o Compute the order of the point P = (11,3) in £(1,1,23)

2P = (11,3)®(11,3) = (4,0)
BIP = (11,3) @ (4,0) (11,20) <«

o Note that
[3]P = (11,20) = (11,-3) = —P

o This gives
dP=RBIPeP=(—P)aP=0

o Therefore, the order of (11,3) is 4
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Order of Elements

o Compute the order of the point P = (1,7) in £(1,1,23)

2P = (L,7)®(1,7) =

BIP = (1,7)®(7,11)

4P = (7,11)e(7,11) =

[71P = (18,20) & (17,20) =
[14P = (11,3)® (11,3) =
[21]P = (11,3)® (4,0) =

(7,11)
(18,20)
(17,20)
(11,3) «
(4,0)
(11,20) «

o Since the order of (1,7) is not 2, or 7, or 14, it must be 28
o Indeed (11,20) and (11,3) are negatives of one another

[28]P = [7]P & [21]P = (11,3) & (11,-3) = O

o Therefore, the order of P = (1,7) is 28 and (1,
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Elliptic Curve Group Order

o One remarkable property of the elliptic curve groups is that the order
n can be a prime number, while the multiplicative group Z; order is
always even: p—1

@ When the group order is a prime, all elements of the group are
primitive elements (except the neutral element O whose order is 1)

o As a small example, consider £(2,1,5): The equation
y?=x342x+1 (mod 5)

has 6 finite solutions (0,1), (0,4), (1,2), (1,3), (3,2), and (3,3)
o Including O, this group has 7 elements, and thus, its order is a prime
number and all elements (except O) are primitive
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Elliptic Curve Point Multiplication

o The elliptic curve point multiplication operation is the computation of
the point @ = [k]P given an integer k and a point on the curve P

k times

Q=[KP=PaP®---®P

o If the order of the point P is n, we have [n]P = O
o Thus, the computation of [k]P effectively gives

[k]P = [k mod n]P
o Similarly, we have

[a]P & [b]P = [a-+ bmod n]P
[a][p]P = [a-bmod n]P
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Elliptic Curve DLP

@ Once we have a primitive element P € £ whose order n equal to the
group order, we can execute the steps of the Diffie-Hellman key
exchange algorithm using the elliptic curve group &

o Diffie-Hellman works over any group as long as the DLP in that group
is a difficult problem

o The Elliptic Curve DLP is defined as the computation of the integer k
given P and @ such that

k times

Q=[KP=PaP®---®P

o The ECDLP requires an exhaustive search on the integer k
o No subexponential algorithm for the ECDLP exists as of yet
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Elliptic Curve Diffie-Hellman

A and B agree on the elliptic curve group & of order n and a primitive
element P € £ (whose order is also n)

©

This is done in public: £, n, and P are known to the adversary

A selects integer a € [2, n — 1], computes Q = [a]P, and sends Q to B
B selects integer b € [2,n— 1], computes R = [b]P, and sends R to A
A receives R, and computes S = [a]R

¢ © ¢ ¢ ¢

B receives Q, and computes S = [b]Q

S =[a]R = [a][b]P = [a- b mod n]P
S = [b]Q = [b][a]P = [b- a mod n]P
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Elliptic Curve Diffie-Hellman
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DSA vs ECDSA

o The ECDSA is the elliptic curve analogue of the DSA
@ The SHA is used to compute the hash of the message: H(m)

o Instead of working in a subgroup of order q in Z7, we work in an
elliptic curve group £(a, b, p) which is of order n

o The subgroup order g corresponds to &(a, b, p) of order n

o The gth root of 1 denoted by g corresponds to the primitive element
P of order n in the elliptic curve group

@ The private key in DSA is an integer x < g while the private key in
ECDSA is also an integer d < n

@ The public key in DSA is an integer y < p while the public key in
ECDSA is @ which is a point on the curve £
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DSA vs ECDSA

The correspondence of the variables and operations

‘ Group Z; ‘ E(a, b, p) ‘
Elements | Integers: {1,2,...,p— 1} | Points (x,y) € &(a, b, p)
Operation | Multiplication mod p Point addition @ in £
Notation Elements: g and h Elements: P and @

Multiplication: g - h Addition: P& Q

Inverse: g~1 Negative: —P

Division: g - h™! Subtraction: P — Q

Exponentiation g? Point multiplication: [a]P
DLP Given g € Z; and Given P € &(a, b, p) and

h = g? (mod p), find a Q = [a]P, find a
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ECDSA Setup

The elliptic curve group £(a, b, p) with parameters a, b, p

The order of £(a, b, p) is either prime n or divisible by prime n
The primitive element P € &£, which is of order n

The size of the prime p is 160 or larger

The size of n is similar to that of p (due to Hasse theorem)

The private key is a random integer d € [2,n — 2]
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The public key is a point on the curve Q = [d]P
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ECDSA Signing

Q Generate a random integer r € [2,n — 2]

Q Compute [r]P = (x1,¥1)

© Compute the integer s; = x; (mod n)

Q If s1 =0, stop and go to Step 1

© Compute r=1 (mod n)

@ Compute s = r }(H(m) +d - s;1) (mod n)

Q If s, =0, stop and go to Step 1

Q The signature on the message m is the pair of integers (s1,52)
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ECDSA Verification

Q The verifier receives the message and the signature: [m, s1, s3]
Q The verifier knows the system parameters and the public key @
O The integers s, s, are in the range [1,n — 1]

Q Compute w = s, (mod n)

Q Compute u; = H(m) - w (mod n)

Q Compute up = 51 - w (mod n)

Q@ Compute [t1]P @ [12]Q = (2, y2)

O Compute the integer v = x, (mod n)

© The signature is valid if v = 51
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ECDSA Correctness

o The signer computes s, = r~1(H(m) +d - s1) (mod n), which gives

r = syt (H(m)+d-s) (mod n)
= H(m) -s;'+d-s1-s, ' (mod n)
= H(m) -w+d-s;-w (mod n)

r[Pl = [H(m)-w+d-s;-w]P

= [H(m)-w]P @ [s1 - w][d]P
= [u]P®[w]Q
= (%)

v = x2 (mod n)

o The signer computes r[P] = (x1, y1), which gives s; = x; (mod n)

o The equality of v = s; indeed verifies the signature
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ECIES: Elliptic Curve Integrated Encryption Scheme

o The standard ECC encryption algorithm
o It works like the static Diffie-Hellman algorithm

o It employs a block cipher
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ECIES Setup

©

A block cipher Ex(-) and Di(-)
Key space K3

©

©

A MAC function MAC,
Key space K>

©

©

A key derivation function V will map group elements to the key
spaces Ki and K,
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ECIES Key Generation

o de{l,2,...p—1}
°o Q=I[dP
o d is the private key of the User

©

P is the generator of the elliptic curve group
Q is the public key of the User

©
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ECIES Encryption

o Generate a random number r € {1,2,...p — 1}
o U=[r]P

o T=1[r]Q

o (ki, ko) = V(T)

o C=EL(M)

o D= MAC,(C)

oSend U || C|| D

©

The ciphertext: U, C,D

U is used for key agreement

©

©

C is the actual encrypted text
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ECIES Decryption

Receive and parse U || C || D to obtain U, C, and D
T =[d]U

(ki, ko) = V(T)

If D # MAC,(C) then return Invalid

M = Dy, (C)

Return M
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©

ECIES makes it easy to encrypt long messages
Standardized by several institutions: ANSI X9.63, IEEE P1363

©
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