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Groups in Cryptography

The security of the Diffie-Hellman key exchange, ElGamal public-key
encryption algorithm, ElGamal signature scheme, and Digital
Signature Algorithm depends on the difficulty of the DLP in Z∗

p

Another type of group for which the DLP is difficult is the elliptic
curve group over a finite field

In fact, the Elliptic Curve Discrete Logarithm Problem (ECDLP)
seems to be a much more difficult problem than the DLP

There is no subexponential algorithm for the ECDLP as of yet

Furthermore, the elliptic curve variants of the Diffie-Hellman and the
DSA require significantly smaller group size for the same amount of
security, as compared to that of Z∗

p groups
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Elliptic Curves

An elliptic curve is the solution set of a nonsingular cubic polynomial
equation in two unknowns over a field F

E = {(x , y) ∈ F ×F | f (x , y) = 0}

The general equation of a cubic in two variables is given by

ax3 + by3 + cx2y + dxy2 + ex2 + fy2 + gxy + hx + iy + j = 0

When char(F) 6= {2, 3}, we can convert the above equation to the
Weierstrass form

y2 = x3 + ax + b
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Elliptic Curves over R

The field in which this equation solved can be an infinite field, such
as C (complex numbers), R (real numbers), or Q (rational numbers)

The point at infinity, represented by O, is also considered a solution
of the equation

The discriminant is defined as

∆ = 4a3 + 27b2

which is nonzero for nonsingular curves

The elliptic curves over R for different values of a and b make
continuous curves on the plane, which have either one or two parts
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Elliptic Curves over R
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Elliptic Curves over R
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Bezout Theorem

Theorem

A linear line that intersects an elliptic curve at 2 points also crosses at a

third point.

Consider the elliptic curve and the linear equation together:

y2 = x3 + ax + b

y = cx + d

Substituting either y or x from the second equation to the first one,
we obtain one of the following cubic equations

(cx + d)2 = x3 + ax + b

y2 = (y − d)3/c3 + a(y − d)/c + b

A cubic equation has either 1 or 3 real roots; since we already have
two points on the curve (2 real roots), the third one must be real
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Elliptic Curve Chord and Tangent

For example, by solving y2 = x3 − 4x with three different linear
equations, as given below, we find the following points on the curve:
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Elliptic Curve Chord and Tangent
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Elliptic Curve Chord and Tangent

In the first case we have (x1, y1), (x2, y2), (x3, y3), where all three
coordinates are different

In the second case, we have (x1, y1), (x1, y1), (x3, y3), where the first
two coordinates are same, but the third one different

Finally, in the third case we have (x1, y1), (x1,−y1), where the x

coordinates are equal and the y coordinates are equal with different
sign

By including the point at infinity O as one of points (neutral element)
of the curve, we can introduce an operation ⊕ which “adds” three
points P1, P2, and P3 to get neutral element O

P1 ⊕ P2 ⊕ P3 = O
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Elliptic Curve Point Addition

R1 ⊕ (−R1)⊕O = O
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Elliptic Curve Point Addition

The “point addition” is a geometric operation: a linear line that
connects P1 and P2 also crosses the elliptic curve at a third point,
which we will name as P3

The new “sum” point −P3 = P1 ⊕ P2 is the mirror image of P3 with
respect to the x axis:

if P3 = (x3, y3) then − P3 = (x3,−y3)

The point at infinity O acts as the neutral (zero) element

P ⊕O = O ⊕ P = P

P ⊕ (−P) = (−P)⊕ P = O
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Elliptic Curve Groups

The set of points (x , y) on elliptic curve together with the point at
infinity O

E = {(x , y) | (x , y) ∈ F2 and y2 = x3 + ax + b} ∪ {O}

forms an Abelian group with respect to the addition operation ⊕
The addition operation computes the coordinates (x3, y3) of −P3 for
−P3 = P1 ⊕ P2 = (x1, y1)⊕ (x2, y2)

The addition rule for −P3 = P1 ⊕ P2 can be algebraically obtained by
first computing the slope m of the straight line that connects
P1 = (x1, y1) and P2 = (x2, y2) using

m =
y2 − y1

x2 − x1

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 13 / 53

http://cs.ucsb.edu/~koc


Elliptic Curve Addition and Doubling Rule

Then, the linear equation y − y1 = m(x − x1) is solved together with
the elliptic curve equation y2 = x3 + ax + b to obtain the coordinates
of the third point −P3 = (x3, y3)

In the case of doubling

−Q3 = Q1 ⊕Q1 = (x1, y1)⊕ (x1, y1)

the slope m of the linear line is equal to the derivative of the elliptic
curve equation y2 = x3 + ax + b evaluated at point x1 as

2yy ′ = 3x2 + a → y ′ =
3x2 + a

2y

Once the slope m is obtained, the linear equation can be written, and
solved together with the elliptic curve equation to find x3 and y3
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Elliptic Curve Addition and Doubling over GF(p)

Given P1 = (x1, y1) and P2 = (x2, y2), the computation of −P3 = (x3, y3):

If (x1, y1) = O, then (x3, y3) = (x2, y2) since −P3 = O + P2 = P2

If (x2, y2) = O, then (x3, y3) = (x1, y1) since −P3 = P1 +O = P1

If x2 = x1 & y2 = −y1, then (x3, y3) = O since −P3 = −P1 +P1 = O
Otherwise, first compute the slope using

m =







y2−y1
x2−x1

for x1 6= x2

3x21+a

2y1
for x1 = x2 and y1 = y2

Then, (x3, y3) is computed using

x3 = m2 − x1 − x2

y3 = m (x1 − x3)− y1
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Elliptic Curves over Finite Fields

The field in which the Weierstrass equation solved can also be a finite
field, which is of interest in cryptography

Most common cases of finite fields are:

Characteristic p: GF(p), where p is a large prime
Characteristic 2: GF(2k ), where k is a small prime
Characteristic p: GF(pk ), where p and k are small primes

In GF(p) for a prime p 6= 2, 3, we can use the Weierstrass equation

y2 = x3 + ax + b

with the understanding that the solution of this equation and all field
operations are performed in the finite field GF(p)

We will denote this group by E(a, b, p)
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An Elliptic Curve over GF(23)

Consider the elliptic curve group E(1, 1, 23): The solutions of the
equation with a = 1 and b = 1

y2 = x3 + x + 1

over the finite field GF(23)

We obtain the elements of the group by solving this equation in
GF(23) for all values of x ∈ Z∗

23

As we give a particular value for x , we obtain a quadratic equation in
y modulo 23, whose solution will depend on whether the right hand
side is a QR mod 23

Note that if (x , y) is a solution, so is (x ,−y) because y2 = (−y)2,
i.e., the elliptic curve is symmetric with respect to the x axis
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An Elliptic Curve over GF(23)

Starting with x = 0, we get y2 = 1 (mod 23) which immediately
gives two solutions as (0, 1) and (0,−1) = (0, 22)

Similarly, for x = 1, we obtain y2 = 3 (mod 23)

This is a quadratic equation, the solution will depend on whether 3 is
QR, which turns out to be:

3(p−1)/2 = 311 = 1 (mod 23)

The solution for y is

y = 3(p+1)/4 = 36 = 16 (mod 23)

and thus, we find a pair of coordinates: (1, 16), (1,−16) = (1, 7)
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An Elliptic Curve over GF(23)

Now, taking x = 2, we have y2 = 23 + 2 + 1 = 11 (mod 23),
however, 11 is a QNR since

11(p−1)/2 = 1111 = −1

therefore, there is no solution for y2 = 11 (mod 23), and this elliptic
curve does not have any points whose x coordinate is 2

On the other hand, for x = 3, we have y2 = 33 + 3 + 1 = 31 = 8
(mod 23), and 8 is a QR since

8(p−1)/2 = 811 = 1 (mod 23)

We solve for y2 = 8 (mod 23) using

y = 8(p+1)/4 = 86 = 13 (mod 23)

thus, obtain the pair of coordinates: (3, 13), (3,−13) = (3, 10)
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An Elliptic Curve over GF(23)

Proceeding for the other values of x ∈ Z∗
23, we find 27 solutions:

(0, 1) (0, 22) (1, 7) (1, 16) (3, 10) (3, 13) (4, 0)
(5, 4) (5, 19) (6, 4) (6, 19) (7, 11) (7, 12)
(9, 7) (9, 16) (11, 3) (11, 20) (12, 4) (12, 19)
(13, 7) (13, 16) (17, 3) (17, 20) (18, 3) (18, 20)
(19, 5) (19, 18)

Note that the solutions come in pairs except one of them: (4, 0),
since for x = 4, we have

y2 = 43 + 4 + 1 = 69 = 0 (mod 23)

which has only one solution y = 0 and thus one point (4, 0)
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An Elliptic Curve over GF(23)
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y^2 = x^3 + x + 1
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Elliptic Curve Point Addition over GF(23)

Given P1 = (3, 10) and P2 = (9, 7), compute P1 ⊕ P2 = P3

Since x1 6= x2, we have

m = (y2 − y1) · (x2 − x1)
−1 (mod 23)

= (7− 10) · (9− 3)−1 = (−3) · 6−1 = 11 (mod 23)

x3 = m2 − x1 − x2 (mod 23)

= 112 − 3− 9 = 17 (mod 23)

y3 = m (x1 − x3)− y1 (mod 23)

= 11 · (3− 17) − 10 = 20 (mod 23)

Thus, we have (x3, y3) = (3, 10) ⊕ (9, 7) = (17, 20)

Question: Is the geometry of point addition still valid?
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Elliptic Curve Point Addition over GF(23)
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Elliptic Curve Point Doubling over GF(23)

Given P1 = (3, 10), compute P1 ⊕ P1 = P3

Since x1 = x2 and y1 = y2, we have

m = (3x21 + a) · (2y1)−1 (mod 23)

= (3 · 32 + 1) · (20)−1 = 6 (mod 23)

x3 = m2 − x1 − x2 (mod 23)

= 62 − 3− 3 = 7 (mod 23)

y3 = m (x1 − x3)− y1 (mod 23)

= 6 · (3− 7)− 10 = 12 (mod 23)

Thus, we have (x3, y3) = (3, 10) ⊕ (3, 10) = (7, 12)

Question: Is the geometry of point addition still valid?
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Elliptic Curve Point Doubling over GF(23)
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Elliptic Curves over GF(2k)

The Weierstrass form of an elliptic curve over GF(2k) is given as

y2 + xy = x3 + ax2 + b

with parameters a, b ∈ GF(2k) and b 6= 0, whose solutions are found
in the field GF(2k)

The addition law is based on this equation, and therefore, the rules of
addition and doubling formulae are different

The elements of the field GF(2k) can be represented in several ways

We studied the polynomial representation, where a(x) ∈ GF(2k)

a(x) = ak−1x
k + · · · + a1x + a0

is a polynomial of degree at most k , with coefficients in GF(2)
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Elliptic Curve Addition and Doubling over GF(2k)

Given P1 = (x1, y1) and P2 = (x2, y2), the computation of P3 = (x3, y3):

If (x1, y1) = O, then (x3, y3) = (x2, y2) since P3 = O + P2 = P2

If (x2, y2) = O, then (x3, y3) = (x1, y1) since P3 = P1 +O = P1

If x2 = x1 and y2 = x1 + y1, then (x3, y3) = O since
P3 = −P1 + P1 = O
******
Otherwise, (x3, y3) is computed using

x3 = m2 − x1 − x2

y3 = m (x1 − x3)− y1

where the slope is defined as

m =







y2−y1
x2−x1

for x1 6= x2

3x21+a

2y1
for x1 = x2 and y1 = y2

*******
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Elliptic Curve Point Multiplication

The elliptic curve point multiplication operation takes an integer k
and a point on the curve P , and computes

[k]P =

k times
︷ ︸︸ ︷

P ⊕ P ⊕ · · · ⊕ P

This can be accomplished with the binary method, using the binary
expansion of the integer k = (km−1 · · · k1k0)2
For example [17]P is computed using the addition chain

P
d→ [2]P

d→ [4]P
d→ [8]P

d→ [16]P
a→ [17]P

The symbol
d→ stands for doubling, such as [2]P ⊕ [2]P = [4]P

The symbol
a→ stands for addition, such as P ⊕ [16]P = [17]P
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Number of Points on an Elliptic Curve

The elliptic curve group E(1, 1, 23) had the following elements:

(0, 1) (0, 22) (1, 7) (1, 16) (3, 10) (3, 13) (4, 0)
(5, 4) (5, 19) (6, 4) (6, 19) (7, 11) (7, 12)
(9, 7) (9, 16) (11, 3) (11, 20) (12, 4) (12, 19)
(13, 7) (13, 16) (17, 3) (17, 20) (18, 3) (18, 20)
(19, 5) (19, 18)

There are 27 points in the above list

Including the point at infinity O, the elliptic curve group E(1, 1, 23)
has 27 + 1 = 28 elements

In other words, the order of the group E(1, 1, 23) is 28
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Order of Elliptic Curve Groups

In order to use an elliptic curve group E in cryptography, we need to
know the order of the group, denoted as order(E)
The order of E(a, b, p) is always less than 2p + 1

The finite field has p elements, and we solve the equation

y2 = x3 + ax + b

for values of x = 0, 1, . . . , p − 1, and obtain a pair of solutions (x , y)
and (x ,−y) for every x , we can have no more than 2p points

Including the point at infinity, the order is bounded as

order(E(a, b, p)) ≤ 2p + 1

The order of E(1, 1, 23) is 28 which is less than 2 · 23 + 1 = 47
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Order of Elliptic Curve Groups

However, this bound is not very precise

As we discovered in finding the elements of E(1, 1, 23), not every x

value yields a solution of the quadratic equation y2 = x3 + x + 1

For a solution to exists, u = x3 + ax + b needs to be a QR mod p

Only half of the elements in GF(p) are QRs

As x takes values in GF(p), depending on whether

u = x3 + ax + b

is a QR or QNR, we will have a solution for y2 = u (mod p) or not,
respectively

Therefore, the number of solutions will be less than 2p
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Order of Elliptic Curve Groups

If we define χ(u) as

χ(u) =

{
+1 if u is QR
−1 if u is QNR

we can write the number of solutions to y2 = u (mod p) as 1 + χ(u)

Therefore, we find the size of the group including O as

order(E) = 1 +
∑

x ∈GF(p)

(1 + χ(x3 + ax + b))

= p + 1 +
∑

x ∈GF(p)

χ(x3 + ax + b)

which is a function of χ(x3 + ax + b) as x takes values in GF(p)
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Hasse Theorem

As x takes values in GF(p), the value of χ(x3 + ax + b) will be
equally likely as +1 and −1
This is a random walk where we toss a coin p times, and take either a
forward and backward step

According to the probability theory, the sum
∑

χ(x3 + ax + b) is of
order

√
p

More precisely, this sum is bounded by 2
√
p

Thus, we have a bound on the order of E(a, b, p), due to Hasse:

Theorem

The order of an elliptic curve group over GF(p) is bounded by

p + 1− 2
√
p ≤ order(E) ≤ p + 1 + 2

√
p

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 33 / 53

http://cs.ucsb.edu/~koc


Order of Elements

The order of an element P is the smallest integer k such that

[k]P =

k times
︷ ︸︸ ︷

P ⊕ P ⊕ · · · ⊕ P = O

According to the Lagrange Theorem, the order of any point divides
the order of the group

The primitive element is defined as the element P ∈ E whose order
n = order(P) is equal to the group order

n = order(P) = order(E)

According to the Hasse Theorem, we have

p + 1− 2
√
p ≤ order(E(a, b, p)) ≤ p + 1 + 2

√
p
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Order of Elements

For the group E(1, 1, 23), we have ⌈
√
23⌉ = 5, and the bounds are

14 ≤ order(E(1, 1, 23)) ≤ 34

Indeed, we found it as order(E(1, 1, 23)) = 28

According to the Lagrange Theorem, the element orders in E(1, 1, 23)
can only be the divisors of 28 which are 1, 2, 4, 7, 14, 28

The order of a primitive element is 28

The order of O is 1 since [1]O = O
The order (4, 0) is 2 since [2](4, 0) = (4, 0) ⊕ (4, 0) = O
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Order of Elements

Compute the order of the point P = (11, 3) in E(1, 1, 23)

[2]P = (11, 3) ⊕ (11, 3) = (4, 0)
[3]P = (11, 3) ⊕ (4, 0) = (11, 20) ←

Note that
[3]P = (11, 20) = (11,−3) = −P

This gives
[4]P = [3]P ⊕ P = (−P)⊕ P = O

Therefore, the order of (11, 3) is 4

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 36 / 53

http://cs.ucsb.edu/~koc


Order of Elements

Compute the order of the point P = (1, 7) in E(1, 1, 23)

[2]P = (1, 7) ⊕ (1, 7) = (7, 11)
[3]P = (1, 7) ⊕ (7, 11) = (18, 20)
[4]P = (7, 11) ⊕ (7, 11) = (17, 20)
[7]P = (18, 20) ⊕ (17, 20) = (11, 3) ←

[14]P = (11, 3) ⊕ (11, 3) = (4, 0)
[21]P = (11, 3) ⊕ (4, 0) = (11, 20) ←

Since the order of (1, 7) is not 2, or 7, or 14, it must be 28

Indeed (11, 20) and (11, 3) are negatives of one another

[28]P = [7]P ⊕ [21]P = (11, 3) ⊕ (11,−3) = O

Therefore, the order of P = (1, 7) is 28 and (1, 7) is primitive

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 37 / 53

http://cs.ucsb.edu/~koc


Elliptic Curve Group Order

One remarkable property of the elliptic curve groups is that the order
n can be a prime number, while the multiplicative group Z∗

p order is
always even: p − 1

When the group order is a prime, all elements of the group are
primitive elements (except the neutral element O whose order is 1)

As a small example, consider E(2, 1, 5): The equation

y2 = x3 + 2x + 1 (mod 5)

has 6 finite solutions (0, 1), (0, 4), (1, 2), (1, 3), (3, 2), and (3, 3)

Including O, this group has 7 elements, and thus, its order is a prime
number and all elements (except O) are primitive
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Elliptic Curve Point Multiplication

The elliptic curve point multiplication operation is the computation of
the point Q = [k]P given an integer k and a point on the curve P

Q = [k]P =

k times
︷ ︸︸ ︷

P ⊕ P ⊕ · · · ⊕ P

If the order of the point P is n, we have [n]P = O
Thus, the computation of [k]P effectively gives

[k]P = [k mod n]P

Similarly, we have

[a]P ⊕ [b]P = [a + b mod n]P

[a][b]P = [a · b mod n]P
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Elliptic Curve DLP

Once we have a primitive element P ∈ E whose order n equal to the
group order, we can execute the steps of the Diffie-Hellman key
exchange algorithm using the elliptic curve group E
Diffie-Hellman works over any group as long as the DLP in that group
is a difficult problem

The Elliptic Curve DLP is defined as the computation of the integer k
given P and Q such that

Q = [k]P =

k times
︷ ︸︸ ︷

P ⊕ P ⊕ · · · ⊕ P

The ECDLP requires an exhaustive search on the integer k

No subexponential algorithm for the ECDLP exists as of yet
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Elliptic Curve Diffie-Hellman

A and B agree on the elliptic curve group E of order n and a primitive
element P ∈ E (whose order is also n)

This is done in public: E , n, and P are known to the adversary

A selects integer a ∈ [2, n− 1], computes Q = [a]P , and sends Q to B

B selects integer b ∈ [2, n− 1], computes R = [b]P , and sends R to A

A receives R , and computes S = [a]R

B receives Q, and computes S = [b]Q

S = [a]R = [a][b]P = [a · b mod n]P

S = [b]Q = [b][a]P = [b · a mod n]P
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Elliptic Curve Diffie-Hellman

User A

a

[a]P

[a][b]P

S = [ab]P

User B

b

[b]P

[b][a]P

S = [ab]P

Adversary

E, n, P

[a]P

[b]P
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DSA vs ECDSA

The ECDSA is the elliptic curve analogue of the DSA

The SHA is used to compute the hash of the message: H(m)

Instead of working in a subgroup of order q in Z∗
p , we work in an

elliptic curve group E(a, b, p) which is of order n

The subgroup order q corresponds to E(a, b, p) of order n
The qth root of 1 denoted by g corresponds to the primitive element
P of order n in the elliptic curve group

The private key in DSA is an integer x < q while the private key in
ECDSA is also an integer d < n

The public key in DSA is an integer y < p while the public key in
ECDSA is Q which is a point on the curve E
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DSA vs ECDSA

The correspondence of the variables and operations

Group Z∗
p E(a, b, p)

Elements Integers: {1, 2, . . . , p − 1} Points (x , y) ∈ E(a, b, p)
Operation Multiplication mod p Point addition ⊕ in E
Notation Elements: g and h Elements: P and Q

Multiplication: g · h Addition: P ⊕ Q

Inverse: g−1 Negative: −P
Division: g · h−1 Subtraction: P − Q

Exponentiation ga Point multiplication: [a]P

DLP Given g ∈ Z∗
p and Given P ∈ E(a, b, p) and

h = ga (mod p), find a Q = [a]P , find a
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ECDSA Setup

The elliptic curve group E(a, b, p) with parameters a, b, p

The order of E(a, b, p) is either prime n or divisible by prime n

The primitive element P ∈ E , which is of order n

The size of the prime p is 160 or larger

The size of n is similar to that of p (due to Hasse theorem)

The private key is a random integer d ∈ [2, n − 2]

The public key is a point on the curve Q = [d ]P
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ECDSA Signing

1 Generate a random integer r ∈ [2, n − 2]

2 Compute [r ]P = (x1, y1)

3 Compute the integer s1 = x1 (mod n)

4 If s1 = 0, stop and go to Step 1

5 Compute r−1 (mod n)

6 Compute s2 = r−1(H(m) + d · s1) (mod n)

7 If s2 = 0, stop and go to Step 1

8 The signature on the message m is the pair of integers (s1, s2)
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ECDSA Verification

1 The verifier receives the message and the signature: [m, s1, s2]

2 The verifier knows the system parameters and the public key Q

3 The integers s1, s2 are in the range [1, n − 1]

4 Compute w = s−1
2 (mod n)

5 Compute u1 = H(m) · w (mod n)

6 Compute u2 = s1 · w (mod n)

7 Compute [u1]P ⊕ [u2]Q = (x2, y2)

8 Compute the integer v = x2 (mod n)

9 The signature is valid if v = s1
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ECDSA Correctness

The signer computes s2 = r−1(H(m) + d · s1) (mod n), which gives

r = s−1
2 · (H(m) + d · s1) (mod n)

= H(m) · s−1
2 + d · s1 · s−1

2 (mod n)

= H(m) · w + d · s1 · w (mod n)

r [P ] = [H(m) · w + d · s1 · w ]P

= [H(m) · w ]P ⊕ [s1 · w ][d ]P

= [u1]P ⊕ [u2]Q

= (x2, y2)

v = x2 (mod n)

The signer computes r [P ] = (x1, y1), which gives s1 = x1 (mod n)

The equality of v = s1 indeed verifies the signature
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ECIES: Elliptic Curve Integrated Encryption Scheme

The standard ECC encryption algorithm

It works like the static Diffie-Hellman algorithm

It employs a block cipher
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ECIES Setup

A block cipher Ek(·) and Dk(·)
Key space K1

A MAC function MACk

Key space K2

A key derivation function V will map group elements to the key
spaces K1 and K2
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ECIES Key Generation

d ∈ {1, 2, . . . p − 1}
Q = [d ]P

d is the private key of the User

P is the generator of the elliptic curve group

Q is the public key of the User
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ECIES Encryption

Generate a random number r ∈ {1, 2, . . . p − 1}
U = [r ]P

T = [r ]Q

(k1, k2) = V (T )

C = Ek1(M)

D = MACk2(C )

Send U || C || D

The ciphertext: U,C ,D

U is used for key agreement

C is the actual encrypted text
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ECIES Decryption

Receive and parse U || C || D to obtain U, C , and D

T = [d ]U

(k1, k2) = V (T )

If D 6= MACk2(C ) then return Invalid

M = Dk1(C )

Return M

ECIES makes it easy to encrypt long messages

Standardized by several institutions: ANSI X9.63, IEEE P1363
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