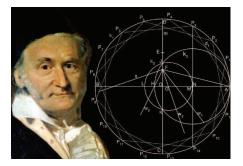
Elementary Number Theory

Çetin Kaya Koç

http://cs.ucsb.edu/~koc koc@cs.ucsb.edu



Number Systems and Sets

- We represent the set of integers as $\mathcal{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$
- We denote the set of positive integers modulo n as $\mathcal{Z}_n = \{0, 1, \dots, n-1\}$
- Elements of Z_n can be thought of as equivalency classes, where, for n ≥ 2, every integer in a ∈ Z maps into one of the elements r ∈ Z_n using the division law a = q · n + r which is represented as a ≡ r (mod n)
- The symbol Z_n^* represents the set of positive integers that are less than *n* and relatively prime to *n*; if $a \in Z_n^*$, then gcd(a, n) = 1
- When *n* is prime, the set would be $\mathcal{Z}_n^* = \{1, 2, \dots, n-1\}$
- When n is not a prime, the number of elements that are less than n and relatively prime to n is given as φ(n) = |Z^{*}_n|

- The greatest common divisor of two integers can be computed using the Euclidean algorithm
- The Euclidean algorithm uses the property

$$gcd(a, b) = gcd(b, a - q \cdot b)$$
, where $q = \lfloor a/b \rfloor$

to reduce the numbers and finally obtains gcd(a, b) = gcd(g, 0) = g• For example, to compute gcd(56, 21) = 7, we perform the iterations

$$\begin{array}{rcl} \gcd(56,21) &=& \gcd(21,56-2\cdot21) & \text{since} & \lfloor 56/21 \rfloor = 2 \\ \gcd(21,14) &=& \gcd(14,21-1\cdot14) & \text{since} & \lfloor 21/14 \rfloor = 1 \\ \gcd(14,7) &=& \gcd(7,14-2\cdot7) & \text{since} & \lfloor 14/7 \rfloor = 2 \\ \gcd(7,0) &=& 7 \end{array}$$

• Given the positive integers *a* and *b* with *a* > *b*, the Euclidean algorithm computes the greatest common divisor *g* using the code below:

while(b != 0) { q = a/b; r = a-q*b; a = b; b = r } g = a

where the division "a/b" operation is the integer division, $q = \lfloor a/b \rfloor$

а	b	q	r	new a	new b
117	45	2	27	45	27
45	27	1	18	27	18
27	18	1	9	18	9
18	9	2	0	9	0
9	0				

Extended Euclidean Algorithm

 Another important property of the GCD is that, if gcd(a, b) = g, then there exists integers s and t such that

$$s \cdot a + t \cdot b = g$$

 We can compute s and t using the extended Euclidean algorithm by working back through the remainders in the Euclidean algorithm, for example, to find gcd(833, 301) = 7, we write

$$833 - 2 \cdot 301 = 231$$

$$301 - 1 \cdot 231 = 70$$

$$231 - 3 \cdot 70 = 21$$

$$70 - 3 \cdot 21 = 7$$

$$21 - 3 \cdot 7 = 0$$

• Since *g* = 7, we start with the 4th equation and plug in the remainder value from the previous equation to this equation, and then move up

$$70 - 3 \cdot (231 - 3 \cdot 70) = 7$$

 $10 \cdot 70 - 3 \cdot 231 - 7$

$$10 \cdot (301 - 1 \cdot 231) - 3 \cdot 231 = 7$$

$$10 \cdot 301 - 13 \cdot 231 = 7$$

$$10 \cdot 301 - 13 \cdot (833 - 2 \cdot 301) = 7$$

$$-13 \cdot 833 + 36 \cdot 301 = 7$$

Therefore, we find s = -13 and t = 36 such that $g = 7 = s \cdot a + t \cdot b$

Computation of Multiplicative Inverse

- The extended Euclidean algorithm allows us to compute the multiplicative inverse of an integer *a* modulo another integer *n*, if gcd(*a*, *n*) = 1
- The EEA obtains the identity $g = s \cdot a + t \cdot b$ which implies

$$s \cdot a + t \cdot n = 1$$

$$s \cdot a = 1 \pmod{n}$$

$$a^{-1} = s \pmod{n}$$

For example, gcd(23, 25) = 1, and the extended Euclidean algorithm returns s = 12 and t = 11, such that

$$1 = 12 \cdot 23 - 11 \cdot 25$$

therefore $23^{-1} = 12 \pmod{25}$

- Theorem: If p is prime and gcd(a, p) = 1, then $a^{p-1} = 1 \pmod{p}$
- For example, p = 7 and a = 2, we have $a^{p-1} = 2^6 = 64 = 1 \pmod{7}$
- FLT can be used to compute the multiplicative inverse if the modulus is a prime number

$$a^{-1} = a^{p-2} \pmod{p}$$

since $a^{-1} \cdot a = a^{p-2} \cdot a = a^{p-1} = 1 \mod p$

- The converse of the FLT is not true: If $a^{n-1} = 1 \pmod{n}$ and gcd(a, n) = 1, then n may or may not be a prime.
- Example: gcd(2, 341) = 1 and $2^{340} = 1 \pmod{341}$, but 341 is not prime: $341 = 11 \cdot 31$

- Euler's Phi (totient) Function φ(n) is defined as the number of numbers in the range [1, n − 1] that are relatively prime to n
- Let n = 7, then $\phi(7) = 6$ since for all $a \in [1, 6]$, we have gcd(a, 7) = 1

• If
$$p$$
 is a prime, $\phi(p)=p-1$

- For a positive power of prime, we have $\phi(p^k) = p^k p^{k-1}$
- If *n* and *m* are relatively prime, then $\phi(n \cdot m) = \phi(n) \cdot \phi(m)$
- If all prime factors of *n* is known, then $\phi(n)$ is easily computed:

$$\phi(n) = n \cdot \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

Koç (http://cs.ucsb.edu/~koc)

fall 2014 9 / 1

- Theorem: If gcd(a, n) = 1, then $a^{\phi(n)} = 1 \pmod{n}$
- Example: n = 15 and a = 2, we have $2^{\phi(15)} = 2^8 = 256 = 1 \mod 15$
- Euler's theorem can be used to compute the multiplicative inverse for any modulus:

$$a^{-1} = a^{\phi(n)-1} \pmod{n}$$

however, this requires the computation of the $\phi(n)$ and therefore the factorization of n

• To compute $23^{-1} \mod 25$, we need $\phi(25) = \phi(5^2) = 5^2 - 5^1 = 20$, and therefore,

$$23^{-1} = 23^{20-1} = 23^{19} = 12 \pmod{25}$$

- Given a modulus (prime or composite), how does one compute additions, subtractions, multiplications, and exponentiations?
- $s = a + b \pmod{n}$ is computed in two steps: 1) add, 2) reduce
- If a, b < n to start with, then the reduction step requires a subtraction

if
$$s > n$$
, then $s = s - n$

- $s = a b \pmod{n}$ is computed similarly: 1) subtract, 2) reduce
- Negative numbers are brought to the range [0, n-1] since we use the least positive representation, e.g., $-5 = -5 + 11 = 6 \pmod{11}$

- $a \cdot b \pmod{n}$ can be computed in two steps: 1) multiply, 2) reduce
- The reduction step requires division by *n* to get the remainder

$$a \cdot b = s = q \cdot n + r$$

However, we do not need the quotient!

- The division by *n* is an expensive operation
- The modular multiplication operation is highly common in public-key cryptography
- The Montgomery Multiplication: An new algorithm for performing modular multiplication that does not require division by *n*

- The computation of $a^e \pmod{n}$: Perform the steps of the exponentiation a^e , reducing numbers at each step modulo n
- Exponentiation algorithms: binary method, quaternary method, *m*-ary methods, power method, sliding windows, addition chains
- The binary method uses the binary expansion of the exponent $e = (e_{k-1}e_{k-2}\cdots e_1e_0)_2$, and performs squarings and multiplications at each step
- For example, to compute a^{55} , we start with the most significant bit of $e = 55 = (1 \ 10111)$, and proceed by scanning the bits

 $a^1 \xrightarrow{s} a^2 \xrightarrow{m} a^3 \xrightarrow{s} a^6 \xrightarrow{s} a^{12} \xrightarrow{m} a^{13} \xrightarrow{s} a^{26} \xrightarrow{m} a^{27} \xrightarrow{s} a^{54} \xrightarrow{m} a^{55}$

The Binary Method of Exponentiation

• Given the inputs *a*, *n*, and $e = (e_{k-1}e_{k-2}\cdots e_1e_0)_2$, the binary method computes $b = a^e \pmod{n}$ as follows

if
$$e[k-1]=1$$
 then $b = a$ else $b = 1$
for $i = k-2$ downto 0
 $b = b * b \mod n$
if $e[i] = 1$ then $b = b * a \mod n$
return b
• For $e = 55 = (110111)$, we have $k = 6$
• Since $e_5 = 1$, we start with $b = a$
 $\frac{e_4 = 1}{2} e_3 = 0 e_2 = 1 e_1 = 1 e_0 = 1}{e_1 = 1} e_2 = a^{26} b^2 = a^{26$

- Some cryptographic algorithms work with two (such as RSA) or more moduli (such as secret-sharing) — the Chinese Remainder Theorem (CRT) and underlying algorithm allows to work with multiple moduli
- Theorem: Given k pairwise relatively prime moduli $\{n_i \mid i = 1, 2, ..., k\}$, a number $X \in [0, N 1]$ is uniquely representable using the remainders $\{r_i \mid i = 1, 2, ..., k\}$ such that $r_i = X \pmod{n_i}$ and $N = n_1 \cdot n_2 \cdots n_k$ Given the remainders $r_1, r_2, ..., r_k$, we can compute X using

$$X = \sum_{i=1}^{k} r_i \cdot c_i \cdot N_i \pmod{N}$$

where $N_i = N/n_i$ and $c_i = N_i^{-1} \pmod{n_i}$

A CRT Example

- Let the moduli set be {5,7,9}; note that they are pairwise relatively prime gcd(5,7) = gcd(5,9) = gcd(7,9) = 1 (even though 9 is not prime)
- We have $n_1 = 5$, $n_2 = 7$, $n_3 = 9$, and thus $N = 5 \cdot 7 \cdot 9 = 315$, therefore, all integers in the range [0, 314] are uniquely representable using these moduli set
- Let X = 200, then we have

 $r_1 = 200 \mod 5$; $r_2 = 200 \mod 7$; $r_1 = 200 \mod 9$ $r_1 = 0$ $r_2 = 4$ $r_3 = 2$

The remainder set (0,4,2) with respect to the moduli set (5,7,9) uniquely represents the integer 200, as CRT(0,4,2;5,7,9) = 200

A CRT Example

• Compute
$$Y = CRT(0, 4, 2; 5, 7, 9)$$

 $N = n_1 \cdot n_2 \cdot n_3 = 5 \cdot 7 \cdot 9 = 315$
 $N_1 = N/n_1 = 315/5 = 7 \cdot 9 = 63$
 $N_2 = N/n_2 = 315/7 = 5 \cdot 9 = 45$
 $N_3 = N/n_3 = 315/9 = 5 \cdot 7 = 35$
 $c_1 = N_1^{-1} = 63^{-1} = 3^{-1} = 2 \pmod{5}$
 $c_2 = N_2^{-1} = 45^{-1} = 3^{-1} = 5 \pmod{7}$
 $c_2 = N_3^{-1} = 35^{-1} = 8^{-1} = 8 \pmod{9}$
 $Y = r_1 \cdot c_1 \cdot N_1 + r_2 \cdot c_2 \cdot N_2 + r_3 \cdot c_3 \cdot N_3 \pmod{N}$
 $= 0 \cdot 2 \cdot 63 + 4 \cdot 5 \cdot 45 + 2 \cdot 8 \cdot 35 = 1460 \pmod{315}$

 $= 200 \pmod{315}$

Therefore, CRT(0, 4, 2; 5, 7, 9) = 200

Another CRT Example

• Compute
$$Y = CRT(2, 1, 1; 7, 9, 11)$$

 $N = n_1 \cdot n_2 \cdot n_3 = 7 \cdot 9 \cdot 11 = 693$
 $N_1 = N/n_1 = 693/7 = 9 \cdot 11 = 99$
 $N_2 = N/n_2 = 693/9 = 7 \cdot 11 = 77$
 $N_3 = N/n_3 = 693/11 = 7 \cdot 9 = 63$
 $c_1 = N_1^{-1} = 99^{-1} = 1^{-1} = 1 \pmod{7}$
 $c_2 = N_2^{-1} = 77^{-1} = 5^{-1} = 2 \pmod{9}$
 $c_2 = N_3^{-1} = 63^{-1} = 8^{-1} = 7 \pmod{11}$
 $Y = r_1 \cdot c_1 \cdot N_1 + r_2 \cdot c_2 \cdot N_2 + r_3 \cdot c_3 \cdot N_3 \pmod{N}$
 $= 2 \cdot 1 \cdot 99 + 1 \cdot 2 \cdot 77 + 1 \cdot 7 \cdot 63 = 793 \pmod{693}$
 $= 100 \pmod{693}$

Therefore, CRT(2, 1, 1; 7, 9, 11) = 100