
Elementary Number Theory

Çetin Kaya Koç

http://cs.ucsb.edu/~koc

koc@cs.ucsb.edu

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 1 / 1

http://cs.ucsb.edu/~koc
koc@cs.ucsb.edu
http://cs.ucsb.edu/~koc


Number Systems and Sets

We represent the set of integers as
Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

We denote the set of positive integers modulo n as
Zn = {0, 1, . . . , n − 1}

Elements of Zn can be thought of as equivalency classes, where, for
n ≥ 2, every integer in a ∈ Z maps into one of the elements r ∈ Zn

using the division law a = q · n+ r which is represented as a ≡ r

(mod n)

The symbol Z∗
n represents the set of positive integers that are less

than n and relatively prime to n; if a ∈ Z∗
n , then gcd(a, n) = 1

When n is prime, the set would be Z∗
n = {1, 2, . . . , n − 1}

When n is not a prime, the number of elements that are less than n

and relatively prime to n is given as φ(n) = |Z∗
n |

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 2 / 1

http://cs.ucsb.edu/~koc


GCD and Euclidean Algorithm

The greatest common divisor of two integers can be computed using
the Euclidean algorithm

The Euclidean algorithm uses the property

gcd(a, b) = gcd(b, a − q · b), where q = ⌊a/b⌋

to reduce the numbers and finally obtains gcd(a, b) = gcd(g , 0) = g

For example, to compute gcd(56, 21) = 7, we perform the iterations

gcd(56, 21) = gcd(21, 56 − 2 · 21) since ⌊56/21⌋ = 2
gcd(21, 14) = gcd(14, 21 − 1 · 14) since ⌊21/14⌋ = 1
gcd(14, 7) = gcd(7, 14 − 2 · 7) since ⌊14/7⌋ = 2
gcd(7, 0) = 7

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 3 / 1

http://cs.ucsb.edu/~koc


GCD and Euclidean Algorithm

Given the positive integers a and b with a > b, the Euclidean
algorithm computes the greatest common divisor g using the code
below:

while(b != 0) { q = a/b; r = a-q*b; a = b; b = r }

g = a

where the division “a/b” operation is the integer division, q = ⌊a/b⌋

a b q r new a new b

117 45 2 27 45 27
45 27 1 18 27 18
27 18 1 9 18 9
18 9 2 0 9 0
9 0

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 4 / 1

http://cs.ucsb.edu/~koc


Extended Euclidean Algorithm

Another important property of the GCD is that, if gcd(a, b) = g , then
there exists integers s and t such that

s · a + t · b = g

We can compute s and t using the extended Euclidean algorithm by
working back through the remainders in the Euclidean algorithm, for
example, to find gcd(833, 301) = 7, we write

833− 2 · 301 = 231

301− 1 · 231 = 70

231 − 3 · 70 = 21

70− 3 · 21 = 7

21− 3 · 7 = 0

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 5 / 1

http://cs.ucsb.edu/~koc


Extended Euclidean Algorithm

Since g = 7, we start with the 4th equation and plug in the remainder
value from the previous equation to this equation, and then move up

70 − 3 · (231− 3 · 70) = 7

10 · 70− 3 · 231 = 7

10 · (301− 1 · 231) − 3 · 231 = 7

10 · 301 − 13 · 231 = 7

10 · 301 − 13 · (833 − 2 · 301) = 7

−13 · 833 + 36 · 301 = 7

Therefore, we find s = −13 and t = 36 such that g = 7 = s · a+ t · b

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 6 / 1

http://cs.ucsb.edu/~koc


Computation of Multiplicative Inverse

The extended Euclidean algorithm allows us to compute the
multiplicative inverse of an integer a modulo another integer n, if
gcd(a, n) = 1

The EEA obtains the identity g = s · a + t · b which implies

s · a + t · n = 1

s · a = 1 (mod n)

a−1 = s (mod n)

For example, gcd(23, 25) = 1, and the extended Euclidean algorithm
returns s = 12 and t = 11, such that

1 = 12 · 23− 11 · 25

therefore 23−1 = 12 (mod 25)

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 7 / 1

http://cs.ucsb.edu/~koc


Fermat’s Little Theorem

Theorem: If p is prime and gcd(a, p) = 1, then ap−1 = 1 (mod p)

For example, p = 7 and a = 2, we have ap−1 = 26 = 64 = 1 (mod 7)

FLT can be used to compute the multiplicative inverse if the modulus
is a prime number

a−1 = ap−2 (mod p)

since a−1 · a = ap−2 · a = ap−1 = 1 mod p

The converse of the FLT is not true: If an−1 = 1 (mod n) and
gcd(a, n) = 1, then n may or may not be a prime.

Example: gcd(2, 341) = 1 and 2340 = 1 (mod 341), but 341 is not
prime: 341 = 11 · 31

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 8 / 1

http://cs.ucsb.edu/~koc


Euler’s Phi Function

Euler’s Phi (totient) Function φ(n) is defined as the number of
numbers in the range [1, n − 1] that are relatively prime to n

Let n = 7, then φ(7) = 6 since for all a ∈ [1, 6], we have gcd(a, 7) = 1

If p is a prime, φ(p) = p − 1

For a positive power of prime, we have φ(pk) = pk − pk−1

If n and m are relatively prime, then φ(n ·m) = φ(n) · φ(m)

If all prime factors of n is known, then φ(n) is easily computed:

φ(n) = n ·
∏

p|n

(

1−
1

p

)

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 9 / 1

http://cs.ucsb.edu/~koc


Euler’s Theorem

Theorem: If gcd(a, n) = 1, then aφ(n) = 1 (mod n)

Example: n = 15 and a = 2, we have 2φ(15) = 28 = 256 = 1 mod 15

Euler’s theorem can be used to compute the multiplicative inverse for
any modulus:

a−1 = aφ(n)−1 (mod n)

however, this requires the computation of the φ(n) and therefore the
factorization of n

To compute 23−1 mod 25, we need φ(25) = φ(52) = 52 − 51 = 20,
and therefore,

23−1 = 2320−1 = 2319 = 12 (mod 25)

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 10 / 1

http://cs.ucsb.edu/~koc


Modular Arithmetic Operations

Given a modulus (prime or composite), how does one compute
additions, subtractions, multiplications, and exponentiations?

s = a + b (mod n) is computed in two steps: 1) add, 2) reduce

If a, b < n to start with, then the reduction step requires a subtraction

if s > n , then s = s − n

s = a − b (mod n) is computed similarly: 1) subtract, 2) reduce

Negative numbers are brought to the range [0, n− 1] since we use the
least positive representation, e.g., −5 = −5 + 11 = 6 (mod 11)

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 11 / 1

http://cs.ucsb.edu/~koc


Modular Multiplication

a · b (mod n) can be computed in two steps: 1) multiply, 2) reduce

The reduction step requires division by n to get the remainder

a · b = s = q · n + r

However, we do not need the quotient!

The division by n is an expensive operation

The modular multiplication operation is highly common in public-key
cryptography

The Montgomery Multiplication: An new algorithm for performing
modular multiplication that does not require division by n

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 12 / 1

http://cs.ucsb.edu/~koc


Modular Exponentiation

The computation of ae (mod n): Perform the steps of the
exponentiation ae , reducing numbers at each step modulo n

Exponentiation algorithms: binary method, quaternary method, m-ary
methods, power method, sliding windows, addition chains

The binary method uses the binary expansion of the exponent
e = (ek−1ek−2 · · · e1e0)2, and performs squarings and multiplications
at each step

For example, to compute a55, we start with the most significant bit of
e = 55 = (1 10111), and proceed by scanning the bits

a1
s
→ a2

m
→ a3

s
→ a6

s
→ a12

m
→ a13

s
→ a26

m
→ a27

s
→ a54

m
→ a55

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 13 / 1

http://cs.ucsb.edu/~koc


The Binary Method of Exponentiation

Given the inputs a, n, and e = (ek−1ek−2 · · · e1e0)2, the binary
method computes b = ae (mod n) as follows

if e[k-1]=1 then b = a else b = 1

for i = k-2 downto 0

b = b * b mod n

if e[i] = 1 then b = b * a mod n

return b

For e = 55 = (110111), we have k = 6

Since e5 = 1, we start with b = a
e4 = 1 e3 = 0 e2 = 1 e1 = 1 e0 = 1

Step 2a b2 = a2 b2 = a6 b2 = a12 b2 = a26 b2 = a54

Step 2b b · a = a3 b = a6 b · a = a13 b · a = a27 b · a = a55

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 14 / 1

http://cs.ucsb.edu/~koc


The Chinese Remainder Theorem

Some cryptographic algorithms work with two (such as RSA) or more
moduli (such as secret-sharing) — the Chinese Remainder Theorem
(CRT) and underlying algorithm allows to work with multiple moduli

Theorem: Given k pairwise relatively prime moduli
{ni | i = 1, 2, . . . , k}, a number X ∈ [0,N − 1] is uniquely
representable using the remainders {ri | i = 1, 2, . . . , k} such that
ri = X (mod ni) and N = n1 · n2 · · · nk
Given the remainders r1, r2, . . . , rk , we can compute X using

X =

k
∑

i=1

ri · ci · Ni (mod N)

where Ni = N/ni and ci = N−1
i (mod ni)

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 15 / 1

http://cs.ucsb.edu/~koc


A CRT Example

Let the moduli set be {5, 7, 9}; note that they are pairwise relatively
prime gcd(5, 7) = gcd(5, 9) = gcd(7, 9) = 1 (even though 9 is not
prime)

We have n1 = 5, n2 = 7, n3 = 9, and thus N = 5 · 7 · 9 = 315,
therefore, all integers in the range [0, 314] are uniquely representable
using these moduli set

Let X = 200, then we have

r1 = 200 mod 5 ; r2 = 200 mod 7 ; r1 = 200 mod 9
r1 = 0 r2 = 4 r3 = 2

The remainder set (0, 4, 2) with respect to the moduli set (5, 7, 9)
uniquely represents the integer 200, as CRT(0, 4, 2; 5, 7, 9) = 200

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 16 / 1

http://cs.ucsb.edu/~koc


A CRT Example

Compute Y = CRT(0, 4, 2; 5, 7, 9)

N = n1 · n2 · n3 = 5 · 7 · 9 = 315

N1 = N/n1 = 315/5 = 7 · 9 = 63
N2 = N/n2 = 315/7 = 5 · 9 = 45
N3 = N/n3 = 315/9 = 5 · 7 = 35

c1 = N−1
1 = 63−1 = 3−1 = 2 (mod 5)

c2 = N−1
2 = 45−1 = 3−1 = 5 (mod 7)

c2 = N−1
3 = 35−1 = 8−1 = 8 (mod 9)

Y = r1 · c1 · N1 + r2 · c2 · N2 + r3 · c3 · N3 (mod N)

= 0 · 2 · 63 + 4 · 5 · 45 + 2 · 8 · 35 = 1460 (mod 315)

= 200 (mod 315)

Therefore, CRT(0, 4, 2; 5, 7, 9) = 200

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 17 / 1

http://cs.ucsb.edu/~koc


Another CRT Example

Compute Y = CRT(2, 1, 1; 7, 9, 11)

N = n1 · n2 · n3 = 7 · 9 · 11 = 693

N1 = N/n1 = 693/7 = 9 · 11 = 99
N2 = N/n2 = 693/9 = 7 · 11 = 77
N3 = N/n3 = 693/11 = 7 · 9 = 63

c1 = N−1
1 = 99−1 = 1−1 = 1 (mod 7)

c2 = N−1
2 = 77−1 = 5−1 = 2 (mod 9)

c2 = N−1
3 = 63−1 = 8−1 = 7 (mod 11)

Y = r1 · c1 · N1 + r2 · c2 · N2 + r3 · c3 · N3 (mod N)

= 2 · 1 · 99 + 1 · 2 · 77 + 1 · 7 · 63 = 793 (mod 693)

= 100 (mod 693)

Therefore, CRT(2, 1, 1; 7, 9, 11) = 100

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 18 / 1

http://cs.ucsb.edu/~koc

