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Primes

Natural (counting) numbers: N = {1, 2, 3, . . .}
A number p ∈ N is called prime if it is divisible only by 1 and itself

p = 1 is not considered prime; 2 is the only even prime

Primes: 2, 3, 5, 7, 11, 13, ...

There are infinitely many primes

Every natural number n is factored into prime powers uniquely:

n = pk11 × pk22 × · · · × pkmm

For example: 1960 = 23 × 51 × 72
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Primes

The number of primes less than or equal to n is n
loge(n)

n n/ loge(n) exact

102 21.7 25
103 144.8 168
106 72382.4 78498
109 4.8 × 107 50847534

As we can see, primes are in abundance; we do not have scarcity

The odds of selecting a prime is high for small numbers: if we select a
2-digit integer, the probability that it is prime is 25/100 = 25%

The odds of selecting a prime less than 106 is 78498/106 ≈ 7.8%

If we make sure that this number is not divisible by 2 or 3, (which
makes up 2/3 of integers), the odds increase to 23.5%
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Primes

As the numbers get larger, which would be the case for cryptographic
applications, the ratio becomes less and less

The ratio of 1024-bit (308-digit) primes to the 308-digit numbers is

1

loge(2
1024)

≈ 1

714

Therefore, if we randomly select a 308-digit integer, the probability
that it is prime is 1/714

If we remove the multiples of 2 and 3 from this selected integer, the
odds of choosing a 308-digit prime at random is improved by a factor
of 3 to 1/238
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Checking for Primality vs Factoring

Primality testing: Is n ∈ N prime?
The answer is yes or no (we may not need the factors if n is
composite)

Factoring: What is the prime factorization of n ∈ N ?
The answer is n = pk11 × · · · × pkmm

Is 2101 + 81 = 2535301200456458802993406410833 prime?
The answer: Yes

Is 2101 + 71 = 2535301200456458802993406410823 prime?
The answer: No

Factor n = 2101 + 61 = 2535301200456458802993406410813
The answer: n = 3× 19× 1201 × 37034944570408560161757109
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Factorization by Trial Division

Trial division (exhaustive search): Find a prime factor of n ∈ N by
dividing n by numbers that are smaller than n

Observation 1: We do not need to divide n by composite numbers; it
is sufficient that we only try primes, for example, if n is divisible by 6,
then we could have discovered earlier that it was divisible by 2

Observation 2: One of the factors of n must be smaller than
√
n,

otherwise if n = pq and p >
√
n and q >

√
n implies pq > n

Trial division finds a prime factor of n ∈ N by dividing n by k for
k = 2, 3, . . . ,

√
n

Trial division requires O(
√
n) divisions (in the worst case); if n is a

k-bit number, then n = O(2k) and the number of divisions is O(2k/2)
which is exponential in k
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Factorization by Trial Division

For example, finding the factorization 2101 + 61 requires about 250

divisions; assuming one division requires 1 µs, this would take 35
years!

However, this is the worst case analysis, in the sense that a prime
divisor is as large as it can be ≈ √

n

If n has a small divisors, they will be found more quickly

For example, 2101 + 61 has smaller factors such as 3, 19, and 1201,
and thus, the trial division algorithm would quickly find them

Therefore, we conclude that if n = p × q such that p, q ≈ √
n, then

the trial division would take the longest time
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Factorization by Trial Division

The number of divisions for factoring n with large prime factors is
exponential in terms of the number of bits in n

Trial division starts from k = 2 and increases k until
√
n, and thus, it

is very successful on numbers which have small prime factors: these
factors would be found first, reducing the size of the number to be
factored

For example, given n = 122733106823002242862411, we would find
the smaller factors 17, 31, and 101 first, and divide them out

n

17× 31× 101
= m = 2305843027467304993

and then continue to factor m which is smaller in size than n
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Fermat’s Trial Division

Fermat’s idea was that if n can be written as the difference of two
perfect squares:

n = x2 − y2

then, we can write
n = (x − y)(x + y)

and therefore, we can find two factors of n

As opposed to the standard trial division algorithm, Fermat’s method
starts x ≈ ⌈√n⌉ and y = 1, and increases y until we find a y value
such that x2 − y2 = n

Since x ≈ ⌈√n⌉, Fermat’s methods finds a factor that is closer to the
size of

√
n before it finds a smaller factor
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Fermat’s Trial Division

For example, consider n = 302679949, we have ⌈√n⌉ = 17398

We start with x = 17398 and y = 1, increase y as long as x2− y2 ≤ n

We either find a y such that x2 − y2 = n or the selected value of x
does not work, i.e., we cannot find y such that x2 − y2 = n, then we
increase x as x = x + 1 and start with y = 1 again

It turns out for x = 19015, we find y = 7674 such that

x2 − y2 = 190152 − 76742 = 302679949 = n

therefore, n is factored as n = (x − y)(x + y) such that

n = (19015 − 7674)(19015 + 7674) = 11341 × 26689
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Kraitchik’s Method

Instead of looking for x and y satisfying x2 − y2 = n, we can also
search for “random” x and y such that

x2 = y2 (mod n)

For such a pair (x , y), factorization of n is not guaranteed; we only
know the difference of the squares is a multiple of n:

x2 − y2 = (x − y)(x + y) = 0 (mod n)

Since n divides (x − y)× (x + y), we have 1/2 chance that prime
divisors of n are distributed among the divisors of both of these factors

The GCD(n, x − y) will be a nontrivial factor, the GCD will be neither
1 nor n
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Kraitchik’s Method

For n = 221 = 13× 17, we find x = 4 and y = 30, such that 42 = 16
(mod 221) and 302 = 900 = 16 (mod 221), and therefore,

GCD(221, 30 − 4) = GCD(221, 26) = 13

In fact, there are many (x , y) such that x2 = y2 (mod 221), which
gives us a higher chance of finding a pair (x , y):

(2, 15), (3, 88), (5, 73), . . . , (11, 28), . . .

Note that we still perform an exhaustive search to find a pair (x , y)

There is an algorithm due to Dixon to find factors slightly more
efficiently by expressing them into small prime powers, and working
with the exponents, i.e., r = 28 × 36 × 52 × 70 × 118 implies that r is
a square
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Modern Factorization Methods

Factorization in general seems to require exhaustive search: modern
factorization algorithms differ from one another slightly in the way
this search is constructed

There is no known deterministic or randomized polynomial time
algorithm for finding the factors of a given composite integer n,
particularly, when n = p × q with size of p and q about half of the
size of n

The best integer factorization algorithm called GNFS (generalized
number field sieve) algorithm requires a time complexity of

O

(

exp

(

(

64

9
b

)
1
3

(log b)
2
3

))

where b is the number of bits in n
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Complexity of Factorization

It is not known exactly which complexity classes contain the decision
version of the integer factorization problem

It is known to be in NP since a YES answer can be verified in
polynomial time by multiplication: Are p and q factors of n?

However, it is not known to be in NP-complete; no such reduction
proof is discovered

Many people have looked for a polynomial time algorithm for integer
factorization, and failed

On the other hand, factorization problem can be solved in polynomial
time on a quantum computer, using Shor’s algorithm
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Primality Testing

The decision problem “Is n prime?” is called the primality testing

Primality testing is easier than factorization, as might be expected,
since we are not asking for the factors of n

There are two very efficient randomized polynomial-time algorithms:
Fermat’s method and Miller-Rabin method

There is also a deterministic polynomial-time algorithm invented in
2002: The AKS algorithm, due to three Indian computer scientists:
Manindra Agrawal, Neeraj Kayal, and Nitin Saxena at the IIT Kanpur

In the first version of their paper, time complexity was O(b12), which
was later improved to O(b10.5) and then to O(b7.5), where b = log(n)
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Fermat’s Method

Fermat’s Little Theorem: If p is prime and 1 ≤ a < p, then

ap−1 = 1 (mod p)

The contrapositive of Fermat’s Little Theorem: If a and n satisfy
1 ≤ a < n and an−1 6= 1 (mod n), then n is composite

Consider the list of 3n−1 (mod n) for n = 4, 5, . . . , 19

n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
3n−1 3 1 3 1 3 0 3 1 3 1 3 9 11 1 9 1

This shows that for all composite numbers in this range, 3n−1

(mod n) is distinct from 1, whereas all prime numbers satisfy
3n−1 = 1 (mod n)
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Fermat’s Witness and Fermat’s Liar

Fermat’s Little Theorem (and its contrapositive) provide good criteria
for checking primality

A number a in the range a ∈ [1, n) and gcd(a, n) = 1 is called a
Fermat’s witness for any n ≥ 2, if an−1 6= 1 (mod n)

Existence of a witness for n means n is a composite number

A number a in the range a ∈ [1, n) and gcd(a, n) = 1 is called a
Fermat’s liar for an odd composite number n ≥ 3, if an−1 = 1
(mod n)

Fermat’s liar a is lying to us that n is prime, even though n is an odd
composite number

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 17 / 1

http://cs.ucsb.edu/~koc


Fermat’s Witness and Fermat’s Liar

2 is a witness for all composite n in the range [2, 340] since if n is
composite then 2n−1 6= 1 (mod n), for n = 2, 3, . . . , 340

2 is a liar for n = 341, since 2340 = 1 (mod 341) even though it is not
a prime number: 341 = 11 · 31
3 is a witness for 341 since 3340 = 56 (mod 341)

Because of the existence of Fermat liars, the converse of Fermat’s
Little Theorem is not true: The condition that an−1 = 1 (mod n)
does not imply that n is prime

However, if n is a composite number, then there exists some Fermat’s
witness a for n
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The Fermat Test

FERMAT(n)
Input: n ≥ 3 is an odd integer
Step 1: Randomly choose a in the range a ∈ [2, n − 2]
Step 2: x := an−1 (mod n)
Step 2: if x 6= 1 (mod n) return “n is composite”

else return “n is prime”

Fermat’s test is a randomized algorithm

If the Fermat test gives the answer “n is composite”, the number n is
composite indeed

However, if the Fermat test gives the answer “n is prime”, the
number n may or may not be prime, as there are Fermat’s liars
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The Fermat Test

Consider n = 143 which is a composite number 143 = 11 · 13
The table below shows Fermat’s witnesses and liars for 143

Multiples of 11 11 22 33 44 55 66 77 88 99 110 121 132

Multiples of 13 13 26 39 52 65 78 91 104 117 130

Fermat witnesses 2 3 4 5 6 7 8 9 10 14 15 16

in Z∗143 17 18 19 20 21 23 24 25 27 28 29 30

31 32 34 35 36 37 38 40 41 42 43 45

46 47 48 49 50 51 53 54 56 57 58 59

60 61 62 63 64 67 68 69 70 71 72 73

74 75 76 79 80 81 82 83 84 85 86 87

89 90 92 93 94 95 96 97 98 100 101 102

103 105 106 107 108 109 111 112 113 114 115 116

118 119 120 122 123 124 125 126 127 128 129 133

134 135 136 137 138 139 140 141

Fermat liars 1 12 131 142

Table 7.4. Fermat witnesses and Fermat liars for n = 143
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The Fermat Test

If we run the Fermat test on 143, the probability that it answers “n is
composite” is 138/140 ≈ 0.9857, since there are only two (non
trivial) Fermat liars

In other words, the Fermat witnesses outnumber the Fermat liars
clearly in this example

If this were true for all odd composite numbers, we would have a
no-biased Monte Carlo algorithm for the primality problem

A no-biased Monte Carlo algorithm always gives correct “no”
answers, but perhaps incorrect “yes” answers

Unfortunately, if n is composite, the Fermat test does not say so with
probability at least 1/2 for each given n
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Carmichael Numbers

There exist composite numbers n for which all elements of Z∗

n are
Fermat liars

Such numbers are called Carmichael numbers

The smallest Carmichael number: 561 = 3 · 11 · 17
The next 6 Carmichael numbers are 1105, 1729, 2465, 2821, 6601,
8911

Note that Carmichael numbers have Fermat witnesses in Zn −Z∗

n

It was proven in 1994 by Alford, Granville, and Pomerance that there
are infinitely many Carmichael numbers: Specifically they proved that
there are at least

7
√
n2 Carmichael numbers between 1 and n

Carmichael numbers have at least 3 prime factors
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The Fermat Test

Theorem: If n ≥ 3 is an odd composite number that has at least one
Fermat witness in Z∗

n , then the Fermat test on input n gives the
correct answer “n is composite” with probability at least 1/2

This theorem says that for many composite numbers (except
Carmichael numbers) the Fermat test has a good probability bound

The reason why the Fermat test is not a Monte Carlo algorithm for
“is n prime?” problem is that Z∗

n contains too many Fermat liars for
infinitely many numbers n, namely Carmichael numbers

Given a Carmichael number n as input, the Fermat test gives the
wrong answer “n is prime” with probability

φ(n)

n
≈
∏

(1 − 1

p
) . 1
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The Miller-Rabin Test

MILLER-RABIN(n)
Input: n ≥ 3 is odd, such that n − 1 = 2k ·m, for odd m

Step 1: Randomly a in the range a ∈ [1, n − 1]
Step 2: x := am (mod n)
Step 3: if x = 1 (mod n) return “n is prime” and halt

Step 4: for j = 0, 1, . . . , k − 1
Step 5: if x = −1 (mod n), return “n is prime” and halt

else x := x2 (mod n)
Step 6: return “n is composite” and halt
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The Miller-Rabin Example

n = 561 implies n − 1 = 560 = 24 · 35, thus k = 4 and m = 35

Pick a = 2 and compute x := 235 = 263 (mod 561) ; x 6= 1

j = 0 → x 6= −1 (mod 561) ; x := 2632 = 166 (mod 561)

j = 1 → x 6= −1 (mod 561) ; x := 1662 = 67 (mod 561)

j = 2 → x 6= −1 (mod 561) ; x := 672 = 1 (mod 561)

j = 3 → x 6= −1 (mod 561) ; x := 12 = 1 (mod 561)

Therefore, n is composite
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Square Roots of 1 Mod n

An element x ∈ Zn is a quadratic residue mod n if and only if there is
some a ∈ [1, n) such that x = a2 (mod n)

For example, 3 is quadratic residue mod 11 since 3 = 52 (mod 11)

If x = 1, then a is said to be square root of 1 mod n

Trivially, 1 and −1 are always square roots of 1 mod m since 12 = 1
(mod n) and (n − 1)2 = (−1)2 = 1 (mod n)

The prime number 23 has 2 square roots of 1, namely 1 and 22

The composite number 143 = 11 · 13 has 4 square roots of 1, namely
1, 12, 131, and 142
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Square Roots of 1 Mod n

Theorem: Every prime number n has only two trivial square roots of 1
mod n, namely ±1 (mod n)

Hence, if n has a nontrivial (other than ±1) square root of 1, then n

must be composite

If n = p1p2 · · · pk is composite, where pi > 2 are prime numbers then
the Chinese Remainder Theorem can be used to show that n has
exactly 2k square roots of 1 mod n

The square roots of 1 mod n are all numbers a ∈ [1, n) such that
a = ±1 (mod pi) for i = 1, 2, . . . , k

Unless n has extraordinarily many prime factors, we cannot find
nontrivial square roots of 1 mod n by picking random numbers a
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Miller-Rabin Witnesses and Miller-Rabin Liars

Let n ≥ 3 be any odd number and a ∈ Z∗

n , and express n− 1 = 2k ·m
with m is odd

We say a is a Miller-Rabin witness for n if and only if none of the
following are true

am = 1 (mod n)

a2
jm = −1 (mod n) for ∃j ∈ {0, 1, . . . , k − 1}

We say a is a Miller-Rabin liar for n if and only if n is a composite
number and a is not a Miller-Rabin witness
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Miller-Rabin Witnesses and Miller-Rabin Liars

Consider the Carmichael number n = 561 = 3 · 11 · 17
We have n − 1 = 560 = 24 · 35, and thus k = 4 and m = 35

By enumeration, we can show that 561 has 4 Miller-Rabin liars: 1, 50,
101, and 460, i.e., for each one of these numbers a either the first
condition or the second condition is satisfied

a a35 a70 a140 a280 a560

1 1 1 1 1 1
50 −1 1 1 1 1
101 −1 1 1 1 1
460 1 1 1 1 1

The rest of numbers in Z∗

561 are all Miller-Rabin witnesses
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The Miller-Rabin Test

Theorem: If there exists a Miller-Rabin witness for n, then n is
composite

Theorem: If n ≥ 3 is an odd composite number, then there are at
most n−1

4 Miller-Rabin liars

Theorem: The Miller-Rabin Test has an error probability of at most
1/4

The Miller-Rabin test is very efficient and has a very good probability
bound — it is the preferred algorithm for generating large primes used
in the RSA algorithm, the Diffie-Hellman key exchange algorithm, or
any of the public-key cryptographic protocols where large primes are
needed

There is another probabilistic algorithm for primality testing, called
Solovay-Strassen test, however, it is less efficient and less accurate,
and therefore, less popular
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