Groups in Cryptography

Çetin Kaya Koç

<http://cs.ucsb.edu/~koc> <koc@cs.ucsb.edu>

Joseph Louis Lagrange

Joseph-Louis Lagrange, born Giuseppe Luigi Lagrancia was an Italian-born French mathematician and astronomer born in Turin, Piedmont, who lived part of his life in Prussia and part in France. Wikipedia

Born: January 25, 1736, Turin Died: April 10, 1813, Paris **Education: École Polytechnique** Parents: Maria Theresa Gros, Giuseppe Francesco Lodovico Lagrange

メロト メ何ト メミト メミト

 Ω

- A set S and a binary operation \oplus together is called a group $G = (S, \oplus)$ if the operation and the set satisfy the following rules
	- Closure: If $a, b \in S$ then $a \oplus b \in S$
	- Associativity: For $a, b, c \in S$, $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
	- **•** There exists a neutral element: $e \in S$ such that $a \oplus e = e \oplus a = a$
	- Every element $a \in S$ has an inverse inv(a) $\in S$:

$$
a \oplus inv(a) = inv(a) \oplus a = e
$$

- Commutativity: If $a \oplus b = b \oplus a$, then the group G is called an a commutative group or an Abelian group
- In cryptography we deal with Abelian groups
- The operation \oplus is a multiplication " \cdot " \bullet
- The neutral element is generally called the unit element $e = 1$
- Multiplication of an element k times by itself is denoted as \bullet

$$
a^k = \overbrace{a \cdot a \cdots a}^k
$$

- The inverse of an element *a* is denoted as a^{-1}
- Example: $(\mathcal{Z}_n^*$ $(n_n^*, * \mod n)$; note that \mathcal{Z}_n^* $n \atop n$ is the set $\{1, 2, ..., n-1\}$ \bullet when n is prime, and the operation is multiplication mod n
- When *n* is not a prime, \mathcal{Z}_n^* $n \atop n$ is the set of invertible elements modulo n, since $a \in \mathcal{Z}_n^*$ implies $\gcd(a,n) = 1$, and thus a is invertible mod n

ကြောင

Consider the multiplication tables mod 5 and 6, respectively, below

- Mod 5 multiplication operation on the set $\mathcal{Z}_5 = \{1, 2, 3, 4\}$ forms the \bullet group \mathcal{Z}_5^*
- Mod 6 multiplication operation on the set $\mathcal{Z}_6 = \{1, 2, 3, 4, 5\}$ does \bullet not form a group since 2, 3 and 4 are not invertible
- Mod 6 multiplication operation on the set of invertible elements forms a group: $(\mathcal{Z}_6^*, * \text{ mod } 6) = (\{1, 5\}, * \text{ mod } 6)$

- നഹുദ

イ何 ▶ イヨ ▶ イヨ ▶ │ ヨ

- The operation \oplus is an addition "+" \bullet
- The neutral element is generally called the zero element $e = 0$
- Addition of an element a k times by itself, denoted as \bullet

$$
[k] a = \overbrace{a + \cdots + a}^{k \text{ times}}
$$

- The inverse of an element a is denoted as $-a$ \bullet
- Example: $(\mathcal{Z}_n, + \text{ mod } n)$ is a group; the set is $\mathcal{Z}_n = \{0, 1, 2, \ldots, n-1\}$ and the operation is addition mod n

Additive Group Examples

Consider the addition tables mod 4 and 5, respectively, below \bullet

- Mod 4 addition operation on set $\mathcal{Z}_4 = \{0, 1, 2, 3\}$ forms the group \bullet $(\mathcal{Z}_4, + \text{ mod } 4)$
- Mod 5 addition operation on set $\mathcal{Z}_5 = \{0, 1, 2, 3, 4\}$ forms the group $(\mathcal{Z}_5, + \text{ mod } 5)$

 $209C$

- The order of a group is the number of elements in the set
- The order of $(\mathcal{Z}^*_{11}, * \text{ mod } 11)$ is 10, since the set \mathcal{Z}^*_{11} has 10 elements: $\{1, 2, ..., 10\}$
- The order of group (\mathcal{Z}_p^*) $_p^*, * \text{ mod } p)$ is equal to $p-1$; since p is prime, the group order $p-1$ is not prime
- The order of $(\mathcal{Z}_{11}, + \text{ mod } 11)$ is 11, since the set \mathcal{Z}_{11} has 11 elements: $\{0, 1, 2, \ldots, 10\}$
- The order of $(\mathcal{Z}_n, + \text{ mod } n)$ is n, since the set \mathcal{Z}_n has n elements: $\{0, 1, 2, \ldots, n-1\}$; here *n* could be prime or composite

ാഹ

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \subset \mathcal{B} \rightarrow \mathcal{A} \subset \mathcal{B} \rightarrow \mathcal{B} \quad \mathcal{B}$

• The order of an element a in a multiplicative group is the smallest integer k such that $a^k=1$ (where 1 is the unit element of the group) order $(3) = 5$ in $(\mathcal{Z}_{11}^{*}, * \text{ mod } 11)$ since

 $\{3^i \text{ mod } 11 \mid 1 \leq i \leq 10\} = \{3, 9, 5, 4, 1\}$

• order(2) = 10 in
$$
(\mathcal{Z}_{11}^*, * \mod 11)
$$
 since

 $\{ 2^i \text{ mod } 11 \mid 1 \leq i \leq 10 \} = \{2,4,8,5,10,9,7,3,6,1\}$

Note that order(1) = 1 \bullet

ကြောင

- The order of an element a in an additive group is the smallest integer k such that $[k]$ a = 0 (where 0 is the zero element of the group)
- order(3) in $(\mathcal{Z}_{11}, + \text{mod } 11)$ is computed by finding the smallest k such that $[k]$ 3 = 0, which is obtained by successively computing

 $3 = 3$, $3 + 3 = 6$, $3 + 3 + 3 = 9$, $3 + 3 + 3 + 3 = 1$, \cdots

until we obtain the zero element

If we proceed, we find order(3) = 11 in $(Z_{11}, + \text{ mod } 11)$

 $\{ [i] 3 \text{ mod } 11 \mid 1 \leq i \leq 11 \} = \{3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 0 \}$

Note that order(0) = 1 \bullet

KED KAP KED KED E MAA

- **•** Theorem: The order of an element divides the order of the group.
- **•** Lagrange's theorem applies to any group, and any element in the group
- The order of the group $(\mathcal{Z}^*_{11},*$ mod 11) is equal to 10, while order(3) = 5 in $(\overline{\mathcal{Z}_{11}^*}, * \text{ mod } 11)$, and 5 divides 10, i.e., 5|10
- order $(2) = 10$ in $(\mathcal{Z}_{11}^{*}, * \text{ mod } 11)$, and 10 divides 10, i.e., 10 $|10$
- Similarly, order $(1) = 1$ in $(\mathcal{Z}_{11}^{*}, * \text{ mod } 11)$, and 1 divides 10, i.e., 1 $|10\rangle$
- Since the order of the group $(\mathcal{Z}^*_{11},*$ mod $11)$ is 10, and the divisors of 10 are 1, 2, 5, and 10, the element orders can only be 1, 2, 5, or 10

 Ω

< 伊 > < ヨ > < ヨ > ヨ

- On the other hand, order(3) = 11 in $(\mathcal{Z}_{11}, + \text{ mod } 11)$, and 11|11
- Similarly, order(2) = 11 in $(\mathcal{Z}_{11}, + \text{ mod } 11)$
- We also found order $(0)=1$
- Since the order of the group $(\mathcal{Z}_{11}, + \text{ mod } 11)$ is 11, and 11 is a prime number (divisors are 1 and 11), the order of any element in this group can be either 1 or 11
- It turns out 0 is the only element in $(\mathcal{Z}_{11}, + \text{ mod } 11)$ whose order is 1; all other elements have the same order 11 which is the group order

ഹൈദര

- An element whose order is equal to the group order is called **primitive**
- The order of the group $(\mathcal{Z}^*_{11},* \text{ mod } 11)$ is 10 and order $(2)=10$, therefore, 2 is a primitive element of the group
- order(2) = 11 and order(3) = 11 in (\mathcal{Z}_{11} , + mod 11), which is the order of the group, therefore 2 and 3 are both primitive elements in fact all elements of $(\mathcal{Z}_{11}, + \text{ mod } 11)$ are primitive except 0
- Theorem: The number of primitive elements in (\mathcal{Z}_p^*) \mathcal{P}_{p}^{*},\ast mod $p)$ is $\phi(p-1)$
- There are $\phi(10)=4$ primitive elements in $(\mathcal{Z}^*_{11},*$ mod 11), they are: 2, 6, 7, 8; all of these elements are of order 10

 Ω

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ ○ 결

- We call a group cyclic if all elements of the group can be generated by repeated application of the group operation on a single element
- This element is called a generator
- **•** Any primitive element is a generator
- For example, 2 is a generator of $(\mathcal{Z}_{11}^{*},*$ mod 11) since \bullet

$$
\{2^i \mid 1 \leq i \leq 10\} = \{2, 4, 8, 5, 10, 9, 7, 3, 6, 1\} = \mathcal{Z}_{11}^*
$$

• Also, 2 is a generator of $(\mathcal{Z}_{11}, + \text{ mod } 11)$ since

 $\{ [i] 2 \text{ mod } 11 \mid 1 \le i \le 11 \} = \{2, 4, 6, 8, 10, 1, 3, 5, 7, 9, 0 \} = \mathcal{Z}_{11}$

 Ω

→ 何 → → モ → → モ → ニ ヨ