Fields in Cryptography

Çetin Kaya Koç

<http://cs.ucsb.edu/~koc> <koc@cs.ucsb.edu>

 299

ミメスミメ

∢ ロ ▶ - ∢ 何 ▶ - ∢

- A field $\mathcal F$ consists of a set S and two operations which we will call addition and multiplication, and denote them by ⊕ and ⊗
- The set S has two special elements, denoted by 0 and 1
- **•** The set S and the addition operation \oplus form an additive group denoted by $G_a = (S, \oplus)$ such that 0 is the neutral (identity) element of G_{2}
- Also the set $S^* = S \{0\}$ and the multiplication operation \otimes form a multiplicative group denoted by $G_m = (S^*, \otimes)$ such that 1 is the neutral (identity) element of G_m
- Furthermore, the distributivity of multiplication over addition holds: \bullet

$$
a\otimes (b\oplus c)=(a\otimes b)\oplus (a\otimes c) \text{ for } a,b,c\in S
$$

 2090

→ イラン イミン イヨン ニヨ

- **•** The number of elements in a field is the **size** of the field, which can be finite or infinite
- \bullet The characteristic k of a field is the smallest number of times one must use 1 (the identity element of G_m) in a sum (using the addition operation \oplus) to obtain 0 (the identity element of G_a)

$$
\overbrace{1 \oplus 1 \oplus \cdots \oplus 1}^{k \text{ 1s}} = 0
$$

The characteristic is said to be zero, if the repeated sum never reaches the additive identity element 0

- The set of integers $\mathcal Z$ and the integer addition $+$ and multiplication operation \times does not form a field
- We can easily verify that $(\mathcal{Z}, +)$ is an additive group with identity 0
- However, $(Z \{0\}, \times)$ is not a multiplicative group; for example, the element $2 \in \mathcal{Z} - \{0\}$, however, it does not have an inverse: There is no such $x \in \mathcal{Z} - \{0\}$ that would give $2 \times x = 1$
- In fact, $(\mathcal{Z}, +, \times)$ forms a ring, another mathematical structure similar to field, which does not require a multiplicative group
- In a ring, the distributivity of multiplication over addition holds

ഹൈദര

< 向 > < E > < E > _ E

- A rational number is defined to be a number of the form $\frac{a}{b}$ such that $b \neq 0$ and $a, b \in \mathcal{Z}$
- The set of rational numbers Q together with the usual addition $+$ and multiplication \times operations, with additive and multiplicative identities 0 and 1, respectively, forms a field
- Indeed, $(Q, +)$ is an additive group with identity 0; the additive inverse of $\frac{a}{b}$ is found as $-\frac{a}{b}$ b
- Also, (Q, \times) is a multiplicative group with identity 1; the multiplicative inverse of $\frac{a}{b}$ with with $a\neq 0$ is found as $\frac{b}{a}$
- The size of the field Q is infinity; the characteristic of Q is zero since the sum $1 + 1 + \cdots + 1$ can never be equal to 0

 Ω

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B}$

- \bullet Similarly, the set of real numbers R together with the usual addition $+$ and multiplication \times operations, with additive and multiplicative identities 0 and 1, respectively, form a field
- Also, the set of complex numbers C together with the usual addition $+$ and multiplication \times operations, with additive and multiplicative identities 0 and 1, respectively, forms a field
- **•** Both of these fields have infinite size and zero characteristic
- In cryptography, we deal with computable objects, and we have finite memory, therefore, infinite fields are not suitable
- In cryptography, we deal with finite fields, a branch of mathematics where the name of Évariste Galois has a special place

 2040

- Evariste Galois (1811-1832) was a French mathematician born in ´ Bourg-la-Reine
- While still in his teens, he was able to determine a necessary and sufficient condition for a polynomial to be solvable by radicals, thereby solving a long-standing problem
- **•** His work laid the foundations for Galois theory and group theory, two major branches of abstract algebra, and the subfield of Galois connections
- He was the first person to use the word "group" (French: groupe) as a technical term in mathematics to represent a group of permutations
- **•** A radical Republican during the monarchy of Louis Philippe in France, he died from wounds suffered in a duel under questionable circumstances at the age of twenty

Finite Fields

- First we observe that for a prime p the set \mathcal{Z}_p together with the addition and multiplication mod p operations forms a finite field of p elements: we will denote this field by $GF(p)$, the Galois field of p elements
- The additive group $(\mathcal{Z}_p, +)$ has the elements $\mathcal{Z}_p = \{0, 1, 2, \ldots, p - 1\}$, the operation is addition mod p, and the additive identity element is 0
- The multiplicative group (\mathcal{Z}_p^*) $\binom{*}{p}, \times$) has the elements $\mathcal{Z}_p^* = \{1, 2, \ldots, p-1\}$, the operation is multiplication mod p, and the multiplicative identity element is 1
- The size of $GF(p)$ is p, while the characteristic is also p since

$$
\overbrace{1+1+1+\cdots+1}^{p} = 0
$$

ഹൈദര

→ 何 → → ミ → → ヨ → ニ ヨ

The Smallest Field: GF(2)

- Since 2 is a prime, GF(2) is a Galois field of 2 elements
- The set is given as $\{0,1\}$; the size is 2, and the characteristic is 2 \bullet
- The additive identity is 0 while the multiplicative identity is 1 \bullet
- **•** The addition and multiplication operations are as follows:

$$
\begin{array}{c|cc} + & 0 & 1 & \times & 0 & 1 \\ \hline 0 & 0 & 1 & & 0 & 0 & 0 \\ 1 & 1 & 0 & & 1 & 0 & 1 \end{array}
$$

In other words, the addition operation in $GF(2)$ is equivalent to the \bullet Boolean exclusive OR operation, while the multiplication operation in GF(2) is the Boolean AND operation

- 3 is also a prime, and thus, GF(3) is a Galois field of 3 elements
- The set is given as $\{0, 1, 2\}$; the size is 3, and the characteristic is 3 \bullet
- The additive identity is 0 while the multiplicative identity is 1 the additive group: $({0, 1, 2}, +)$, the multiplicative group: $({1, 2}, \times)$
- The addition and multiplication operations in GF(3) are defined as mod 3 addition and mod 3 multiplication, respectively:

$$
\begin{array}{c|ccccc} + & 0 & 1 & 2 & & \times & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 2 & & & 0 & 0 & 0 \\ 1 & 1 & 2 & 0 & & & 1 & 0 & 1 & 2 \\ 2 & 2 & 0 & 1 & & & 2 & 0 & 2 & 1 \end{array}
$$

 2040

Finite Fields with Composite Number Size

- Since the size p of $GF(p)$ is a prime, a question one can pose is whether there are fields of size other than a prime
- **•** For example, is there a field with 6 elements?
- We can try to see if mod 6 arithmetic works, however, we already know that multiplicative inverse of certain elements mod 6 do not exist
- **•** For example, 3 does not have a multiplicative inverse in mod 6, since there is no number a that satisfies

$$
3 \cdot a = a \cdot 3 = 1 \pmod{6}
$$

• So, our question remains: Is there a field with 6 elements?

- **•** Galois showed that the size of a finite field can only be a power of a prime number, in other words, p^k for $k = 1, 2, 3, ...$
- **•** There is a particular construction of such fields, in fact, we already know how to construct $GF(p)$, it is simply mod p arithmetic over \mathcal{Z}_p
- How does one construct $\mathsf{GF}(\rho^2)$ or $\mathsf{GF}(\rho^3)$, etc.
- For example, what is the set and the arithmetic of $GF(7^3)$? \bullet
- First we show how to construct the Galois field of $\mathsf{GF}(2^k)$
- In order to construct and the Galois field of 2^k elements, we need to represent the elements of $\mathsf{GF}(2^k)$, and we also need to show how we can perform the field operations: addition, subtraction, multiplication, and division (inversion) operations using this representation
- It turns out there are more than one way to do that, for example, polynomial representation and normal representation
- **•** First we will show how to represent field elements using polynomials, and its associated arithmetic

Representing the Elements of $\mathsf{GF}(2^k)$

- The polynomial representation of the Galois field of $\mathsf{GF}(2^k)$ is based on the arithmetic of polynomials whose coefficients are from the base field GF(2) and whose degree is at most $k - 1$
- The elements of GF(2 k) is polynomials whose degree is at most $k-1$ and coefficients from $GF(2)$, that is $\{0, 1\}$
- Let $a(x)$, $b(x) \in GF(2^k)$, then they are written as

$$
a(x) = a_{k-1}x^{k-1} + \cdots + a_1x + a_0
$$

$$
b(x) = b_{k-1}x^{k-1} + \cdots + b_1x + b_0
$$

such that $a_i, b_i \in \{0, 1\}$

Addition and Multiplication in GF (2^k)

• The field addition $c(x) = a(x) + b(x)$ is performed by polynomial addition, where the coefficients are added in GF(2), therefore,

$$
c(x) = a(x) + b(x) = c_{k-1}x^{k-1} + \cdots + c_1x + c_0
$$

where $c_i = a_i + b_i \pmod{2}$

- **•** On the other hand, the field multiplication is performed by first multiplying the polynomials, which would give a polynomial of degree at most $2k - 2$
- **•** Then, we reduce the product polynomial modulo an **irreducible polynomial** of degree k

◆ロ ▶ ◆何 ▶ ◆ヨ ▶ →ヨ ▶ │ヨ

- Therefore, in order to construct a Galois field $\mathsf{GF}(2^k)$, we need an irreducible polynomial of degree k
- Irreducible polynomials of any degree exist, in fact, usually there are more than one for a given k
- \bullet We can use any one of these degree k irreducible polynomials, and construct the field $\mathsf{GF}(2^k)$
- \bullet It does not matter which one we choose we just have to choose one and use that one only
- All such GF (2^k) fields are isomorphic to one another

- 로

◀ ロ ▶ ◀ @ ▶ ◀ 듣 ▶ ◀ 듣 ▶

Irreducible Polynomials over GF(2)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Construction of $GF(2^2)$

- GF(2²) has $2^2 = 4$ elements: $\{0, 1, x, x + 1\}$
- The field addition is performed by adding the field elements, where the coefficients are added in GF(2)

- To perform field multiplication in $GF(2^2)$, we need an irreducible polynomial of degree 2
- **•** There exists only one irreducible polynomial of degree 2 which is $p(x) = x^2 + x + 1$

ഹഹ

∢ 伊 ▶ : ∢ ヨ ▶ : ∢ ヨ ▶ │ ヨ

Multiplication in $GF(2^2)$

- Multiplication in $GF(2^2)$ is performed by first multiplying the given input polynomials, where the coefficient arithmetic is performed in GF(2), and reducing the result mod $p(x) = x^2 + x + 1$
- For example, if $a(x) = x$ and $b(x) = x + 1$, then we have

$$
c(x) = x \cdot (x+1) = x^2 + x
$$

• We now divide $c(x)$ by $p(x)$ and find the remainder $r(x)$ as

$$
\begin{array}{c|c}\nx^2 + x & x^2 + x + 1 \\
\hline\nx^2 + x + 1 & 1\n\end{array}
$$

Since $r(x) = 1$, the product of x and $x + 1$ in $GF(2^2)$ is equal to 1

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ │ 결

- We only need perform reduction mod $p(x)$ if the degree of the resulting polynomial is more than 1
- Reduction mod $p(x)$ brings down the degree to k, and therefore, finding an element of GF (2^k) which are polynomials whose coefficients are in GF(2) and the degree at most $k - 1$
- **If we continue with the construction of the multiplication table for** $GF(2²)$, we find the following

Representing the Elements of $\mathsf{GF}(2^k)$

An element $a(x)$ of GF(2 k) is a polynomial of degree at most $k-1,$ with coefficients from GF(2), as

$$
a(x)=a_{k-1}x^{k-1}+\cdots+a_1x+a_0
$$

- While the polynomial representation is the natural representation of the elements of GF(2 k), we can also represent $a(\mathsf{x})$ using the coefficient vector as $(a_{k-1} \cdots a_1 a_0)$
- **•** This is a binary vector, but it should not be confused with binary numbers
- Whenever we perform arithmetic with these vectors, we need to make sure that they are correctly operated on, for example, addition of $a(x)$ and $b(x)$ using their binary vector representation is performed by adding the individual vector bits mod 2

メタメメ きょくきょうき

 $GF(2^3)$ has $2^3 = 8$ elements:

$$
\{0, 1, x, x+1, x^2, x^2+1, x^2+x, x^2+x+1\}
$$

- We can represent the field elements more compactly using the binary vectors as {000, 001, 010, 011, 100, 101, 110, 111}, for example, 011 represents $x + 1$, 100 represents x^2 , and so on
- \bullet The field addition is performed by adding coefficients in GF(2), which corresponds to bitwise XOR operation

$$
\begin{array}{c|cc}\n011 & x+1 \\
\oplus & 110 \\
\hline\n101 & x^2+1\n\end{array}
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Multiplication Table in $\mathsf{GF}(2^3)$

To perform multiplication in GF (2^3) , we need a polynomial of degree 3 over GF(2), which we select from the list as $p(x) = x^3 + x + 1$

An example: $101 \cdot 100 \rightarrow (x^2 + 1) \cdot x^2 = x^4 + x^2$, then the reduction gives the product as $x^4 + x^2 = x \pmod{x^3 + x + 1}$ which is 010

The Galois Field $GF(3^2)$

- We have seen that the elements of $GF(3)$ are $\{0, 1, 2\}$ while its arithmetic is addition and multiplication modulo 3
- Similar to the GF (2^k) case, in order to construct the Galois field GF(3 k), we need polynomials degree at most $k-1$ whose coefficients are in GF(3)
- For example, $GF(3^2)$ has 9 elements and they are of the form $a_1x + a_0$, where $a_1, a_0 \in \{0, 1, 2\}$, which is given as

$$
\{0, 1, 2, x, x+1, x+2, 2x, 2x+1, 2x+2\}
$$

• The addition is performed by polynomial addition, where the coefficient arithmetic is mod 3, for example:

$$
(x+1)+(x+2)=2x
$$

- In order to perform multiplication in $GF(3^2)$, we need an irreducible polynomial of degree 2 over GF(3)
- This polynomial will be of the form $x^2 + ax + b$ such that $a, b \in \{0, 1, 2\}$
- Note that $b \neq 0$ (otherwise, we would have $x^2 + ax$ which is reducible)
- Therefore, all possible irreducible candidates are

 $x^{2} + 1$, $x^{2} + 2$, $x^{2} + x + 1$, $x^{2} + x + 2$, $x^{2} + 2x + 1$, $x^{2} + 2x + 2$

- A quick check shows that x^2+1 is irreducible
- The other two irreducible polynomials are $x^2 + x + 2$ and $x^2 + 2x + 2$

೧೩೧

イロン イ部ン イ君ン イ君ン 一君

Multiplication of $a(x)$ and $b(x)$ in GF(3²) can be performed using \bullet

$$
c(x) = a(x) \cdot b(x) \pmod{x^2 + 1}
$$

For example, $a(x) = x + 1$ and $b = 2x + 1$ gives \bullet

$$
c(x) = (x + 1) \cdot (2x + 1) \pmod{x^2 + 1}
$$

= 2x² + 3x + 1 \pmod{x^2 + 1}
= 2x² + 1 \pmod{x^2 + 1}
= 2

Note in the construction of a Galois field, we select and use only one \bullet of the irreducible polynomials

The Galois field $GF(2^8)$ has $2^8 = 256$ elements:

 $\{0, 1, x, x + 1, x^2, x^2 + 1, \dots, x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1\}$

- We can represent the field elements using the binary vectors of length 8 (or simply bytes) as $\{00000000, 00000001, \ldots, 11111110, 11111111\}$
- **•** The addition and multiplication tables are quite large, each of which has 256 rows and 256 columns, and each entry is 8 bits (1 byte), requiring $256 \times 256 = 64k$ bytes of memory space for each table
- $GF(2^8)$ is the building block of the Advanced Encryption Standard

• The irreducible polynomial is
$$
p(x) = x^8 + x^4 + x^3 + x + 1
$$

→ 何 → → ミ → → ヨ → ニ ヨ