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Exponentiation and Logarithms in Z]

o Consider the multiplicative group Z of integers modulo a prime p
and a primitive element g € Z;

o The exponentiation operation is the computation of y in
x times

——
y=g"=gxgx---xg (modp)

for a positive integer x

@ On the other hand, the discrete logarithm problem (DLP) is defined
to be the computation of x, given y, g, and p

o This is the discrete analogue of the logarithm function

x = logg(y) (mod p)
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Exponentiation and Logarithms in a General Group

o In a multiplicative group (S, ®) with a primitive element g € S, the
exponentiation operation for a positive x is the computation of y in

x times
——
y=8"=8g0g®---®g
@ On the other hand, in an additive group (S, ®) with a primitive

element g € S, the point multiplication operation is the computation
of y in

x times
——l
y=lg=gdgd g

@ In both cases, the discrete logarithm problem (DLP) is defined to be
the computation of x, given y and g
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Discrete Logarithms in Public-Key Cryptography

o If the DLP is difficult in a given group, we can use it to implement
several public-key cryptographic algorithms, for example,
Diffie-Hellman key exchange method, ElGamal public-key encryption
method, and the Digital Signature Algorithm

o Two types of groups are noteworthy:

o The multiplicative group Z7 of integers modulo a prime p
o The additive group of elliptic curves defined over GF(p) or GF(2¥)

© The DLP problem in these groups are known to be difficult

o There may also be other groups worth considering, however, the DLP
in additive mod p group is trivial, while the DLP in the multiplicative
group of GF(2X) is also shown to be rather easy (but not trivial)
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Discrete Logarithms in Z]

o The discrete logarithm problem (DLP) is defined as the
computation of x € Z in

y=g" (modp)

given p, g, and y
o Example: Given p =23 and g =5, find x such that

10 =5% (mod 23)

Answer: x =3

o Example: Given p =23 and g =5, find x such that
11 =5 (mod 23)

Answer: x =9
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Discrete Logarithms in Z]

o Given p = 158(2800 + 25) + 1 =

1053546280395016975304616582933958731948871814925913489342
6087342587178835751858673003862877377055779373829258737624
5199045043066135085968269741025626827114728303489756321430
0237166369174066615907176472549470083113107138189921280884
003892629359

and g =3, find x € Z such that
2=3% (mod p)

Answer: ?
o How difficult is it to find x?
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Exhaustive Search

@ Since x € Z5, we can perform search, and try all possible values of x:

fori=1ltop—1
if y =g’ (mod p) return x =

o This would require p — 1 exponentiations

o If p requires k bits, a single exponentiation takes O(k3) arithmetic
operations, and therefore, the number of arithmetic operations for
performing the above search would be exponential in k

O(pk®) = 0(2Kk3)
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Shanks’ Baby-Step-Giant-Step

o In 1973, Shanks described an algorithm for computing discrete
logarithms that runs in O(,/p) time and requires O(,/p) space

o Let y =g~ (mod p), with m = [/p] and p < 2
o Shanks’' method is a deterministic algorithm and requires the
construction of two arrays S and T, which contains pairs of integers

(u;v)

@ The construction of S is called the giant-steps:
S={(i,g™) |i=0,1,...,m}
o The construction of T is called the baby-steps:

T={(,yxg)|ji=01,..,m}
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Shanks’ Baby-Step-Giant-Step

o To compute the discrete logarithm, find a group element that appears
in both list, and get the indices / and j, and the solution x is then
equal to

x=ixm—j (mod n)

o To use this method in practice, one would typically only store the
giant-steps array and the lookup each successive group element from
the baby-steps array until a match is found

o However, the algorithm requires enormous amount of space, and thus,
it is rarely used in practice

o Another method, called Pollard Rho method, has the same time
complexity and requires negligible amount of space is preferred
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Shanks’ Baby-Step-Giant-Step

o Consider the solution of y = 44 = 3* (mod 101)
o m = [v/101] = 11, therefore, the giant-steps and baby-steps tables:

S={(3")]i=0,1,...,11}
i 0o 1 2 3 4 5 6 7 8 9 10 11
3L 1 94 49 61 78 60 85 11 24 34 65 50

T={(,44x3)|j=0,1,...,11}
j o 1 2 3 4 5 6 7 8 9 10 11
44 %3 [44 31 93 77 29 87 59 76 26 78 32 96

o The solution x =4 x 11 — 9 = 35, i.e., 3% = 44 (mod 101)
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Pollard Rho Algorithm for DLP

o Pollard Rho algorithm is also of O(,/p) time complexity, however, it
does not require a large table

o It forms a pseudorandom sequence of elements from the group, and
searches for a cycle to appear in the sequence

o The sequence is defined deterministically and each successive element
is a function of only the previous element

o If a group element appears a second time, every element of the
sequence after that will be a repeat of elements in the sequence

o According to the birthday problem, a cycle should appear after
O(+/p) elements of the sequence have been computed
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Pollard Rho Algorithm for DLP

o The standard version of the Pollard Rho algorithm defines the
sequence
y xa; for aj €S
2

ajy1 = a; for a; € S,

g xa; for aj€ S3
where 51, S,, and S3 are disjoint partitions of the group elements,
that are approximately the same size
o The initial term is taken as ag = g® for a random «

o There is no need to keep all of the group elements; we compute the
sequences from a; to ap; until an equality is discovered

o The equality of two terms in the sequence implies equality on
exponents modulo (p — 1) due to the Fermat's Theorem, from which
we solve for x
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Pollard Rho Algorithm for DLP

o Consider the solution of y = 44 = 3* (mod 101)

o We divide the set {1,2,...,100} into 3 sets such that
S1={1,2,...,33}, S, = {34,35,...,66}, and
S; ={67,68,...,100}

o Starting with the first term ag = g® for a random « = 15, we get
ap = 3% = 39, and first few following terms of the iteration as

aj 51 S S3 aj log(yY) log(g")
i=0 39 39 g 0 15
i=1] a2=239° 6 g0 0 30
i=2|y-ag=44-6 62 y- g0 1 30
i=3| a3=622 6 y2. g% 2 60
i=4|y-a3=144-6 62 y3 . g% 3 60
i=5| a3 =622 6 y6. g2 6 20
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Pollard Rho Algorithm for DLP

o Therefore, we find a; = a3 (also ay = a4 and a3z = as)

o The discovery of an equality in the sequence implies that we found a
relationship between the exponent x and known powers of g

o The equality a; = a3 implies
g30 = 2. g% — (g¥)2. g0 — g2x+60
Using Fermat's Little Theorem, we have an equality on the exponents

30 =2x+60 (mod 100) — 2x =70 (mod 100)

Since gcd(2,100) # 1, this equation has two solutions: x = {35,85}
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Pollard Rho Algorithm for DLP

o We can take each solution and check whether they verify:
3244 (mod 100)

We see that x = 35 is a solution since 3%° = 44 (mod 101)

o Similarly, the equality of a, = a4 gives the same equation:
x+30=3x+60 (mod100) — 2x =70 (mod 100)
@ On the other hand, the equality of as = as implies
2x+60 = 6x +20 (mod 100) — 4x =40 (mod 100)

We find 4 possible solutions x = {10, 35,60, 85}
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Discrete Logarithm Problem

@ The Pollard Rho algorithm is generating a sequence and hoping to
find a match, due to the birthday problem

o lts time complexity is O(,/p) which is still exponential in terms of the
input size in bits: O(2/?)

o However, there are subexponential algorithms, for example the index
calculus method for the group Z7 has subexponential time complexity

@ On the hand, the discrete logarithm problem for the elliptic curve
groups remains to be a formidable problem

o There is no subexponential algorithm for the elliptic curve discrete
logarithm problem (ECDLP) as of yet
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