
Discrete Logarithm Problem

Çetin Kaya Koç

http://cs.ucsb.edu/~koc

koc@cs.ucsb.edu

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 1 / 1

http://cs.ucsb.edu/~koc
koc@cs.ucsb.edu
http://cs.ucsb.edu/~koc


Exponentiation and Logarithms in Z∗
p

Consider the multiplicative group Z∗

p of integers modulo a prime p

and a primitive element g ∈ Z∗

p

The exponentiation operation is the computation of y in

y = gx =

x times
︷ ︸︸ ︷

g × g × · · · × g (mod p)

for a positive integer x

On the other hand, the discrete logarithm problem (DLP) is defined
to be the computation of x , given y , g , and p

This is the discrete analogue of the logarithm function

x = logg (y) (mod p)

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 2 / 1

http://cs.ucsb.edu/~koc


Exponentiation and Logarithms in a General Group

In a multiplicative group (S ,⊗) with a primitive element g ∈ S , the
exponentiation operation for a positive x is the computation of y in

y = gx =

x times
︷ ︸︸ ︷

g ⊗ g ⊗ · · · ⊗ g

On the other hand, in an additive group (S ,⊕) with a primitive
element g ∈ S , the point multiplication operation is the computation
of y in

y = [x ]g =

x times
︷ ︸︸ ︷

g ⊕ g ⊕ · · · ⊕ g

In both cases, the discrete logarithm problem (DLP) is defined to be
the computation of x , given y and g

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 3 / 1

http://cs.ucsb.edu/~koc


Discrete Logarithms in Public-Key Cryptography

If the DLP is difficult in a given group, we can use it to implement
several public-key cryptographic algorithms, for example,
Diffie-Hellman key exchange method, ElGamal public-key encryption
method, and the Digital Signature Algorithm

Two types of groups are noteworthy:

The multiplicative group Z∗

p of integers modulo a prime p

The additive group of elliptic curves defined over GF(p) or GF(2k )

The DLP problem in these groups are known to be difficult

There may also be other groups worth considering, however, the DLP
in additive mod p group is trivial, while the DLP in the multiplicative
group of GF(2k) is also shown to be rather easy (but not trivial)

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 4 / 1

http://cs.ucsb.edu/~koc


Discrete Logarithms in Z∗
p

The discrete logarithm problem (DLP) is defined as the
computation of x ∈ Z∗

p in

y = gx (mod p)

given p, g , and y

Example: Given p = 23 and g = 5, find x such that

10 = 5x (mod 23)

Answer: x = 3

Example: Given p = 23 and g = 5, find x such that

11 = 5x (mod 23)

Answer: x = 9

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 5 / 1

http://cs.ucsb.edu/~koc


Discrete Logarithms in Z∗
p

Given p = 158(2800 + 25) + 1 =

1053546280395016975304616582933958731948871814925913489342
6087342587178835751858673003862877377055779373829258737624
5199045043066135085968269741025626827114728303489756321430
0237166369174066615907176472549470083113107138189921280884
003892629359

and g = 3, find x ∈ Z∗

p such that

2 = 3x (mod p)

Answer: ?

How difficult is it to find x?

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 6 / 1

http://cs.ucsb.edu/~koc


Exhaustive Search

Since x ∈ Z∗

p , we can perform search, and try all possible values of x :

for i = 1 to p − 1
if y = g i (mod p) return x = i

This would require p − 1 exponentiations

If p requires k bits, a single exponentiation takes O(k3) arithmetic
operations, and therefore, the number of arithmetic operations for
performing the above search would be exponential in k

O(pk3) = O(2kk3)

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 7 / 1

http://cs.ucsb.edu/~koc


Shanks’ Baby-Step-Giant-Step

In 1973, Shanks described an algorithm for computing discrete
logarithms that runs in O(

√
p) time and requires O(

√
p) space

Let y = gx (mod p), with m = ⌈√p⌉ and p < 2k

Shanks’ method is a deterministic algorithm and requires the
construction of two arrays S and T , which contains pairs of integers
(u, v)

The construction of S is called the giant-steps:

S = {(i , g im) | i = 0, 1, . . . ,m}

The construction of T is called the baby-steps:

T = {(j , y × g j) | j = 0, 1, . . . ,m}

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 8 / 1

http://cs.ucsb.edu/~koc


Shanks’ Baby-Step-Giant-Step

To compute the discrete logarithm, find a group element that appears
in both list, and get the indices i and j , and the solution x is then
equal to

x = i ×m − j (mod n)

To use this method in practice, one would typically only store the
giant-steps array and the lookup each successive group element from
the baby-steps array until a match is found

However, the algorithm requires enormous amount of space, and thus,
it is rarely used in practice

Another method, called Pollard Rho method, has the same time
complexity and requires negligible amount of space is preferred

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 9 / 1

http://cs.ucsb.edu/~koc


Shanks’ Baby-Step-Giant-Step

Consider the solution of y = 44 = 3x (mod 101)

m = ⌈
√
101⌉ = 11, therefore, the giant-steps and baby-steps tables:

S = {(i , 311i ) | i = 0, 1, . . . , 11}
i 0 1 2 3 4 5 6 7 8 9 10 11

311i 1 94 49 61 78 60 85 11 24 34 65 50

T = {(j , 44 × 3j) | j = 0, 1, . . . , 11}
j 0 1 2 3 4 5 6 7 8 9 10 11

44× 3j 44 31 93 77 29 87 59 76 26 78 32 96

The solution x = 4× 11− 9 = 35, i.e., 335 = 44 (mod 101)

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 10 / 1

http://cs.ucsb.edu/~koc


Pollard Rho Algorithm for DLP

Pollard Rho algorithm is also of O(
√
p) time complexity, however, it

does not require a large table

It forms a pseudorandom sequence of elements from the group, and
searches for a cycle to appear in the sequence

The sequence is defined deterministically and each successive element
is a function of only the previous element

If a group element appears a second time, every element of the
sequence after that will be a repeat of elements in the sequence

According to the birthday problem, a cycle should appear after
O(

√
p) elements of the sequence have been computed

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 11 / 1

http://cs.ucsb.edu/~koc


Pollard Rho Algorithm for DLP

The standard version of the Pollard Rho algorithm defines the
sequence

ai+1 =







y × ai for ai ∈ S1
a2i for ai ∈ S2
g × ai for ai ∈ S3

where S1, S2, and S3 are disjoint partitions of the group elements,
that are approximately the same size

The initial term is taken as a0 = gα for a random α

There is no need to keep all of the group elements; we compute the
sequences from ai to a2i until an equality is discovered

The equality of two terms in the sequence implies equality on
exponents modulo (p − 1) due to the Fermat’s Theorem, from which
we solve for x

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 12 / 1

http://cs.ucsb.edu/~koc


Pollard Rho Algorithm for DLP

Consider the solution of y = 44 = 3x (mod 101)

We divide the set {1, 2, . . . , 100} into 3 sets such that
S1 = {1, 2, . . . , 33}, S2 = {34, 35, . . . , 66}, and
S3 = {67, 68, . . . , 100}
Starting with the first term a0 = gα for a random α = 15, we get
a0 = 315 = 39, and first few following terms of the iteration as

ai S1 S2 S3 ai log(yu) log(gv )

i = 0 39 39 g15 0 15
i = 1 a20 = 392 6 g30 0 30
i = 2 y · a1 = 44 · 6 62 y · g30 1 30
i = 3 a22 = 622 6 y2 · g60 2 60
i = 4 y · a3 = 44 · 6 62 y3 · g60 3 60
i = 5 a24 = 622 6 y6 · g20 6 20

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 13 / 1

http://cs.ucsb.edu/~koc


Pollard Rho Algorithm for DLP

Therefore, we find a1 = a3 (also a2 = a4 and a3 = a5)

The discovery of an equality in the sequence implies that we found a
relationship between the exponent x and known powers of g

The equality a1 = a3 implies

g30 = y2 · g60 = (gx )2 · g60 = g2x+60

Using Fermat’s Little Theorem, we have an equality on the exponents

30 = 2x + 60 (mod 100) → 2x = 70 (mod 100)

Since gcd(2, 100) 6= 1, this equation has two solutions: x = {35, 85}

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 14 / 1

http://cs.ucsb.edu/~koc


Pollard Rho Algorithm for DLP

We can take each solution and check whether they verify:

3x
?
= 44 (mod 100)

We see that x = 35 is a solution since 335 = 44 (mod 101)

Similarly, the equality of a2 = a4 gives the same equation:

x + 30 = 3x + 60 (mod 100) → 2x = 70 (mod 100)

On the other hand, the equality of a3 = a5 implies

2x + 60 = 6x + 20 (mod 100) → 4x = 40 (mod 100)

We find 4 possible solutions x = {10, 35, 60, 85}

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 15 / 1

http://cs.ucsb.edu/~koc


Discrete Logarithm Problem

The Pollard Rho algorithm is generating a sequence and hoping to
find a match, due to the birthday problem

Its time complexity is O(
√
p) which is still exponential in terms of the

input size in bits: O(2k/2)

However, there are subexponential algorithms, for example the index
calculus method for the group Z∗

p has subexponential time complexity

On the hand, the discrete logarithm problem for the elliptic curve
groups remains to be a formidable problem

There is no subexponential algorithm for the elliptic curve discrete
logarithm problem (ECDLP) as of yet

Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 16 / 1

http://cs.ucsb.edu/~koc

