Cryptography

Cetin Kaya Kog

http://koclab.cs.ucsb.edu

Cryptography Numbers

Number Systems and Sets

o We represent the set of integers as
Z2=4{..,-3,-2,-1,0,1,2,3,...}

@ We denote the set of positive integers modulo n as

Z,=10,1,...,n—1}

Elements of Z, can be thought of as equivalency classes, where, for

n > 2, every integer in a € Z maps into one of the elements r € Z,

using the division law a = g - n 4 r which is represented as a = r
(mod n)

The symbol Z; represents the set of positive integers that are less
than n and relatively prime to n; if a € Z}, then ged(a, n) =1

When n is prime, the set would be Z} = {1,2,...,n— 1}

@ When n is not a prime, the number of elements that are less than n
and relatively prime to n is given as ¢(n) = | 27|

©

©

©

Cetin Kaya Kog http://koclab.cs.ucsb.edu Winter 2016 2/18

http://koclab.cs.ucsb.edu

Cryptography Numbers

GCD and Euclidean Algorithm

o The greatest common divisor of two integers can be computed using
the Euclidean algorithm

o The Euclidean algorithm uses the property
gcd(a, b) = ged(b,a — g - b), where g = |a/b|

to reduce the numbers and finally obtains gcd(a, b) = ged(g,0) = g
o For example, to compute gecd(56,21) = 7, we perform the iterations

ged(56,21) = gcd(21,56 —2-21) since |56/21] =2
ged(21,14) = gcd(14,21 —1-14) since [21/14| =1
ged(14,7) = gcd(7,14—2-7) since |14/7] =2
ged(7,0) = 7

Cetin Kaya Kog http://koclab.cs.ucsb.edu Winter 2016 3/18

http://koclab.cs.ucsb.edu

Cryptography Numbers

GCD and Euclidean Algorithm

o Given the positive integers a and b with a > b, the Euclidean
algorithm computes the greatest common divisor g using the code
below:

while(b != 0) { q = a/b; r = a—g*b; a = b; b =1r }
g=a
where the division “a/b" operation is the integer division, ¢ = |a/b]
a b r newa newb

q
117 45 2 27 45 27
45 27 1 18 27 18
1
2

27 18 9 18 9
18 9 0 9 0
9 0

Cetin Kaya Kog http://koclab.cs.ucsb.edu Winter 2016 4/18

http://koclab.cs.ucsb.edu

Cryptography Numbers

Extended Euclidean Algorithm

@ Another important property of the GCD is that, if gcd(a, b) = g, then
there exists integers s and t such that

s-at+t-b=g

@ We can compute s and t using the extended Euclidean algorithm by
working back through the remainders in the Euclidean algorithm, for
example, to find gcd(833,301) = 7, we write

833 -2-301 = 231

301-1-231 = 70
231-3-70 = 21
70-3-21 = 7
21-3-7 =

Cetin Kaya Kog http://koclab.cs.ucsb.edu Winter 2016 5/18

http://koclab.cs.ucsb.edu

Cryptography Numbers

Extended Euclidean Algorithm

o Since g = 7, we start with the 4th equation and plug in the remainder
value from the previous equation to this equation, and then move up

70-3-(231-3-70) =
10-70 —3-231 =

10- (301 —1-231) —3-231
10-301 — 13- 231

10-301 —13-(833 —2-301) =
—13-833+36-301 =

Therefore, we find s = —13 and t =36 such that g=7=s-a+t-b

Cetin Kaya Kog http://koclab.cs.ucsb.edu Winter 2016 [At:]

http://koclab.cs.ucsb.edu

Cryptography Numbers

Computation of Multiplicative Inverse

@ The extended Euclidean algorithm allows us to compute the
multiplicative inverse of an integer a modulo another integer n, if
ged(a,n) =1

o The EEA obtains the identity g = s-a+ t - b which implies

srat+t-n =1
s-a = 1 (mod n)
al = s (mod n)

For example, gcd(23,25) = 1, and the extended Euclidean algorithm
returns s = 12 and t = 11, such that

1=12-23-11-25
therefore 2371 = 12 (mod 25)

Cetin Kaya Kog http://koclab.cs.ucsb.edu Winter 2016 7/18

http://koclab.cs.ucsb.edu

Cryptography Numbers

Fermat's Little Theorem

o Theorem: If p is prime and gcd(a, p) = 1, then a?~1 =1 (mod p)
o For example, p =7 and a = 2, we have a1 = 2% =64 = 1 (mod 7)

o FLT can be used to compute the multiplicative inverse if the modulus

is a prime number
al=a""2 (mod p)

lLa=aP2.a=a1=1modp

o The converse of the FLT is not true: If a”~* =1 (mod n) and
gcd(a, n) = 1, then n may or may not be a prime.

o Example: gcd(2,341) = 1 and 2340 =1 (mod 341), but 341 is not
prime: 341 =11-31

since a—

Cetin Kaya Kog http://koclab.cs.ucsb.edu Winter 2016 8 /18

http://koclab.cs.ucsb.edu

Cryptography Numbers

Euler's Phi Function

o Euler's Phi (totient) Function ¢(n) is defined as the number of

numbers in the range [1, n — 1] that are relatively prime to n

Let n =7, then ¢(7) = 6 since for all a € [1,6], we have gcd(a,7) =1
If pis a prime, ¢p(p) =p—1

For a positive power of prime, we have ¢(p¥) = pk — pk—1

If n .and m are relatively prime, then ¢(n- m) = ¢(n) - $(m)

¢ © ¢ ¢ ¢

If all prime factors of n is known, then ¢(n) is easily computed:

o= I0(1-)

Cetin Kaya Kog http://koclab.cs.ucsb.edu Winter 2016 9/18

http://koclab.cs.ucsb.edu

Cryptography Numbers

Euler’'s Theorem

o Theorem: If gcd(a, n) = 1, then a®(") =1 (mod n)
o Example: n =15 and a = 2, we have 2¢(13) = 28 — 256 = 1 mod 15

o Euler's theorem can be used to compute the multiplicative inverse for

any modulus:
a ' =2a’""1" (mod n)

however, this requires the computation of the ¢(n) and therefore the
factorization of n

o To compute 237! mod 25, we need ¢(25) = ¢(5%) = 52 — 51 = 20,
and therefore,

2371 = 232071 — 2319 — 12 (mod 25)

Cetin Kaya Kog http://koclab.cs.ucsb.edu Winter 2016 10 / 18

http://koclab.cs.ucsb.edu

Cryptography Numbers

Modular Arithmetic Operations

o Given a modulus (prime or composite), how does one compute
additions, subtractions, multiplications, and exponentiations?

©

s =a+ b (mod n) is computed in two steps: 1) add, 2) reduce

©

If a, b < n to start with, then the reduction step requires a subtraction

if s>n, then s=s—n

©

s =a— b (mod n) is computed similarly: 1) subtract, 2) reduce

©

Negative numbers are brought to the range [0, n — 1] since we use the
least positive representation, e.g., =5 = -5+ 11 =6 (mod 11)

Cetin Kaya Kog http://koclab.cs.ucsb.edu Winter 2016 11 /18

http://koclab.cs.ucsb.edu

Cryptography Numbers

Modular Multiplication

©

a-b (mod n) can be computed in two steps: 1) multiply, 2) reduce

@ The reduction step requires division by n to get the remainder
a-b=s=q-n+r

However, we do not need the quotient!

@ The division by n is an expensive operation

@ The modular multiplication operation is highly common in public-key
cryptography

o The Montgomery Multiplication: An new algorithm for performing
modular multiplication that does not require division by n

Cetin Kaya Kog http://koclab.cs.ucsb.edu Winter 2016 12 /18

http://koclab.cs.ucsb.edu

Cryptography Numbers

Modular Exponentiation

@ The computation of a¢ (mod n): Perform the steps of the
exponentiation a€, reducing numbers at each step modulo n

o Exponentiation algorithms: binary method, quaternary method, m-ary
methods, power method, sliding windows, addition chains

@ The binary method uses the binary expansion of the exponent
e = (ex_16x_2 - €1€)2, and performs squarings and multiplications
at each step

o For example, to compute a°°, we start with the most significant bit of
e =55 = (1 10111), and proceed by scanning the bits

S m S S m S m S m
al 5 a2 B g3 5 50 5 g12 M 13 5 526 M 27 5, 54 M 55

Cetin Kaya Kog http://koclab.cs.ucsb.edu Winter 2016 13 /18

http://koclab.cs.ucsb.edu

Cryptography Numbers

The Binary Method of Exponentiation

o Given the inputs a, n, and e = (ex_1€x_2 - - e1€p)2, the binary
method computes b = a® (mod n) as follows

if e[k-1]=1 then b = a else b = 1
for i = k-2 downto O

b=b * bmod n

if e[i] = 1 then b = b * a mod n
return b

o For e =55 = (110111), we have k =6

o Since es = 1, we start with b=a
epa=1 e3=0 e=1 e1=1 e=1
Step2a b’=a> b*=2a° b =a2 bp=a® p=23"
Step2b b-a=a> b=a% b-a=a® b-a=a" b-a=2a"

Cetin Kaya Kog http://koclab.cs.ucsb.edu Winter 2016 14 /18

http://koclab.cs.ucsb.edu

Cryptography Numbers

The Chinese Remainder Theorem

@ Some cryptographic algorithms work with two (such as RSA) or more
moduli (such as secret-sharing) — the Chinese Remainder Theorem
(CRT) and underlying algorithm allows to work with multiple moduli

o Theorem: Given k pairwise relatively prime moduli
{ni | i=1,2,... k}, a number X € [0, N — 1] is uniquely

representable using the remainders {r; | i =1,2,..., k} such that
ri=X (mod n;j) and N =ny - np---ng
Given the remainders ri, m,..., r, we can compute X using

k

X=> ri-c N (modN)
i=1

where N; = N/n; and ¢; = N;'' (mod n;)

Cetin Kaya Kog http://koclab.cs.ucsb.edu Winter 2016 15 /18

http://koclab.cs.ucsb.edu

Cryptography Numbers

A CRT Example

o Let the moduli set be {5,7,9}; note that they are pairwise relatively
prime gcd(5,7) = ged(5,9) = ged(7,9) = 1 (even though 9 is not
prime)

o We have ny =5, np=7,n3=29, and thus N =5-7-9 = 315,
therefore, all integers in the range [0, 314] are uniquely representable
using these moduli set

o Let X = 200, then we have

n = 200mod5: rn = 200mod7; rn = 200 mod9
n = 0 rp = 4 3 = 2

o The remainder set (0, 4,2) with respect to the moduli set (5,7,9)
uniquely represents the integer 200, as CRT(0, 4,2;5,7,9) = 200

Cetin Kaya Kog http://koclab.cs.ucsb.edu Winter 2016 16 / 18

http://koclab.cs.ucsb.edu

Cryptography Numbers

A CRT Example

o Compute Y = CRT(0,4,2;5,7,9)
N:nl-nz-n3:5-7-9=315
N1:N/n1:315/5:7~9:63
No = N/ny =315/7 =5-9 =45
Ns = N/n3 =315/9=5-7 =35
a=N1=63"1=3"1=2 (mod 5)
o=N,'=45"1=3"1=5 (mod 7)
ca=N;1=35"1=8"1=8 (mod9)

Y = n-ag-Ni+nrn-c-No+r3-c3-Njs (modN)
= 0:-2:-63+4-5-45+2-8-35 = 1460 (mod 315)
200 (mod 315)

Therefore, CRT(0,4,2;5,7,9) = 200

Cetin Kaya Kog http://koclab.cs.ucsb.edu Winter 2016 17 /18

http://koclab.cs.ucsb.edu

Cryptography Numbers

Another CRT Example

o Compute Y = CRT(2,1,1;7,9,11)
N:nl-nz-n3:7-9-11=693
Ny = N/ny =693/7=9-11 =99
Ny =N/np,=693/9 =7-11=77
N3 = N/n3 =693/11 =7-9 = 63
a=N1=99"1=1"1=1 (mod 7)
o=N,'=77"1=5"1=2 (mod 9)
o =N;1=63"1=8"1=7 (mod 11)

Y = n-aqg-Ni+nrn-c-No+r3-c3-Ns (modN)
— 2.1.9941-2-77+1-7-63 = 793 (mod 693)
— 100 (mod 693)

Therefore, CRT(2,1,1;7,9,11) = 100

Cetin Kaya Kog http://koclab.cs.ucsb.edu Winter 2016 18 / 18

http://koclab.cs.ucsb.edu

