Numbers

Number Systems and Sets

- We represent the set of integers as

$$
\mathcal{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

- We denote the set of positive integers modulo n as $\mathcal{Z}_{n}=\{0,1, \ldots, n-1\}$
- Elements of \mathcal{Z}_{n} can be thought of as equivalency classes, where, for $n \geq 2$, every integer in $a \in \mathcal{Z}$ maps into one of the elements $r \in \mathcal{Z}_{n}$ using the division law $a=q \cdot n+r$ which is represented as $a \equiv r$ $(\bmod n)$
- The symbol \mathcal{Z}_{n}^{*} represents the set of positive integers that are less than n and relatively prime to n; if $a \in \mathcal{Z}_{n}^{*}$, then $\operatorname{gcd}(a, n)=1$
- When n is prime, the set would be $\mathcal{Z}_{n}^{*}=\{1,2, \ldots, n-1\}$
- When n is not a prime, the number of elements that are less than n and relatively prime to n is given as $\phi(n)=\left|\mathcal{Z}_{n}^{*}\right|$

GCD and Euclidean Algorithm

- The greatest common divisor of two integers can be computed using the Euclidean algorithm
- The Euclidean algorithm uses the property

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a-q \cdot b), \text { where } q=\lfloor a / b\rfloor
$$

to reduce the numbers and finally obtains $\operatorname{gcd}(a, b)=\operatorname{gcd}(g, 0)=g$

- For example, to compute $\operatorname{gcd}(56,21)=7$, we perform the iterations

$$
\begin{aligned}
\operatorname{gcd}(56,21) & =\operatorname{gcd}(21,56-2 \cdot 21) & \text { since } & \lfloor 56 / 21\rfloor=2 \\
\operatorname{gcd}(21,14) & =\operatorname{gcd}(14,21-1 \cdot 14) & \text { since } & \lfloor 21 / 14\rfloor=1 \\
\operatorname{gcd}(14,7) & =\operatorname{gcd}(7,14-2 \cdot 7) & \text { since } & \lfloor 14 / 7\rfloor=2 \\
\operatorname{gcd}(7,0) & =7 & &
\end{aligned}
$$

GCD and Euclidean Algorithm

- Given the positive integers a and b with $a>b$, the Euclidean algorithm computes the greatest common divisor g using the code below:

$$
\begin{aligned}
& \text { while }(b \quad!=0)\{q=a / b ; r=a-q * b ; a=b ; b=r\} \\
& g=a
\end{aligned}
$$

where the division " a / b " operation is the integer division, $q=\lfloor a / b\rfloor$

a	b	q	r	new a	new b
117	45	2	27	45	27
45	27	1	18	27	18
27	18	1	9	18	9
18	9	2	0	9	0
9	0				

Extended Euclidean Algorithm

- Another important property of the GCD is that, if $\operatorname{gcd}(a, b)=g$, then there exists integers s and t such that

$$
s \cdot a+t \cdot b=g
$$

- We can compute s and t using the extended Euclidean algorithm by working back through the remainders in the Euclidean algorithm, for example, to find $\operatorname{gcd}(833,301)=7$, we write

$$
\begin{aligned}
833-2 \cdot 301 & =231 \\
301-1 \cdot 231 & =70 \\
231-3 \cdot 70 & =21 \\
70-3 \cdot 21 & =7 \\
21-3 \cdot 7 & =0
\end{aligned}
$$

Extended Euclidean Algorithm

- Since $g=7$, we start with the 4th equation and plug in the remainder value from the previous equation to this equation, and then move up

$$
\begin{aligned}
70-3 \cdot(231-3 \cdot 70) & =7 \\
10 \cdot 70-3 \cdot 231 & =7 \\
10 \cdot(301-1 \cdot 231)-3 \cdot 231 & =7 \\
10 \cdot 301-13 \cdot 231 & =7 \\
10 \cdot 301-13 \cdot(833-2 \cdot 301) & =7 \\
-13 \cdot 833+36 \cdot 301 & =7
\end{aligned}
$$

Therefore, we find $s=-13$ and $t=36$ such that $g=7=s \cdot a+t \cdot b$

Computation of Multiplicative Inverse

- The extended Euclidean algorithm allows us to compute the multiplicative inverse of an integer a modulo another integer n, if $\operatorname{gcd}(a, n)=1$
- The EEA obtains the identity $g=s \cdot a+t \cdot b$ which implies

$$
\begin{aligned}
s \cdot a+t \cdot n & =1 \\
s \cdot a & =1 \quad(\bmod n) \\
a^{-1} & =s \quad(\bmod n)
\end{aligned}
$$

For example, $\operatorname{gcd}(23,25)=1$, and the extended Euclidean algorithm returns $s=12$ and $t=11$, such that

$$
1=12 \cdot 23-11 \cdot 25
$$

therefore $23^{-1}=12(\bmod 25)$

Fermat's Little Theorem

- Theorem: If p is prime and $\operatorname{gcd}(a, p)=1$, then $a^{p-1}=1(\bmod p)$
- For example, $p=7$ and $a=2$, we have $a^{p-1}=2^{6}=64=1(\bmod 7)$
- FLT can be used to compute the multiplicative inverse if the modulus is a prime number

$$
a^{-1}=a^{p-2} \quad(\bmod p)
$$

since $a^{-1} \cdot a=a^{p-2} \cdot a=a^{p-1}=1 \bmod p$

- The converse of the FLT is not true: If $a^{n-1}=1(\bmod n)$ and $\operatorname{gcd}(a, n)=1$, then n may or may not be a prime.
- Example: $\operatorname{gcd}(2,341)=1$ and $2^{340}=1(\bmod 341)$, but 341 is not prime: $341=11 \cdot 31$

Euler's Phi Function

- Euler's Phi (totient) Function $\phi(n)$ is defined as the number of numbers in the range [$1, n-1$] that are relatively prime to n
- Let $n=7$, then $\phi(7)=6$ since for all $a \in[1,6]$, we have $\operatorname{gcd}(a, 7)=1$
- If p is a prime, $\phi(p)=p-1$
- For a positive power of prime, we have $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$
- If n and m are relatively prime, then $\phi(n \cdot m)=\phi(n) \cdot \phi(m)$
- If all prime factors of n is known, then $\phi(n)$ is easily computed:

$$
\phi(n)=n \cdot \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

Euler's Theorem

- Theorem: If $\operatorname{gcd}(a, n)=1$, then $a^{\phi(n)}=1(\bmod n)$
- Example: $n=15$ and $a=2$, we have $2^{\phi(15)}=2^{8}=256=1 \bmod 15$
- Euler's theorem can be used to compute the multiplicative inverse for any modulus:

$$
a^{-1}=a^{\phi(n)-1} \quad(\bmod n)
$$

however, this requires the computation of the $\phi(n)$ and therefore the factorization of n

- To compute $23^{-1} \bmod 25$, we need $\phi(25)=\phi\left(5^{2}\right)=5^{2}-5^{1}=20$, and therefore,

$$
23^{-1}=23^{20-1}=23^{19}=12 \quad(\bmod 25)
$$

Modular Arithmetic Operations

- Given a modulus (prime or composite), how does one compute additions, subtractions, multiplications, and exponentiations?
- $s=a+b(\bmod n)$ is computed in two steps: 1$)$ add, 2$)$ reduce
- If $a, b<n$ to start with, then the reduction step requires a subtraction

$$
\text { if } s>n \text {, then } s=s-n
$$

- $s=a-b(\bmod n)$ is computed similarly: 1$)$ subtract, 2$)$ reduce
- Negative numbers are brought to the range $[0, n-1]$ since we use the least positive representation, e.g., $-5=-5+11=6(\bmod 11)$

Modular Multiplication

- $a \cdot b(\bmod n)$ can be computed in two steps: 1$)$ multiply, 2) reduce
- The reduction step requires division by n to get the remainder

$$
a \cdot b=s=q \cdot n+r
$$

However, we do not need the quotient!

- The division by n is an expensive operation
- The modular multiplication operation is highly common in public-key cryptography
- The Montgomery Multiplication: An new algorithm for performing modular multiplication that does not require division by n

Modular Exponentiation

- The computation of $a^{e}(\bmod n)$: Perform the steps of the exponentiation a^{e}, reducing numbers at each step modulo n
- Exponentiation algorithms: binary method, quaternary method, m-ary methods, power method, sliding windows, addition chains
- The binary method uses the binary expansion of the exponent $e=\left(e_{k-1} e_{k-2} \cdots e_{1} e_{0}\right)_{2}$, and performs squarings and multiplications at each step
- For example, to compute a^{55}, we start with the most significant bit of $e=55=(110111)$, and proceed by scanning the bits

$$
a^{1} \xrightarrow{s} a^{2} \xrightarrow{m} a^{3} \xrightarrow{s} a^{6} \xrightarrow{s} a^{12} \xrightarrow{m} a^{13} \xrightarrow{s} a^{26} \xrightarrow{m} a^{27} \xrightarrow{s} a^{54} \xrightarrow{m} a^{55}
$$

The Binary Method of Exponentiation

- Given the inputs a, n, and $e=\left(e_{k-1} e_{k-2} \cdots e_{1} e_{0}\right)_{2}$, the binary method computes $b=a^{e}(\bmod n)$ as follows

$$
\begin{aligned}
& \text { if } e[k-1]=1 \text { then } b=a \text { else } b=1 \\
& \text { for } i=k-2 \text { downto } 0 \\
& \quad b=b * b \bmod n \\
& \text { if } e[i]=1 \text { then } b=b * a \bmod n \\
& \text { return } b
\end{aligned}
$$

- For $e=55=(110111)$, we have $k=6$
- Since $e_{5}=1$, we start with $b=a$

	$e_{4}=1$	$e_{3}=0$	$e_{2}=1$	$e_{1}=1$	$e_{0}=1$
Step 2a	$b^{2}=a^{2}$	$b^{2}=a^{6}$	$b^{2}=a^{12}$	$b^{2}=a^{26}$	$b^{2}=a^{54}$
Step 2b	$b \cdot a=a^{3}$	$b=a^{6}$	$b \cdot a=a^{13}$	$b \cdot a=a^{27}$	$b \cdot a=a^{55}$

The Chinese Remainder Theorem

- Some cryptographic algorithms work with two (such as RSA) or more moduli (such as secret-sharing) - the Chinese Remainder Theorem (CRT) and underlying algorithm allows to work with multiple moduli
- Theorem: Given k pairwise relatively prime moduli $\left\{n_{i} \mid i=1,2, \ldots, k\right\}$, a number $X \in[0, N-1]$ is uniquely representable using the remainders $\left\{r_{i} \mid i=1,2, \ldots, k\right\}$ such that $r_{i}=X\left(\bmod n_{i}\right)$ and $N=n_{1} \cdot n_{2} \cdots n_{k}$
Given the remainders $r_{1}, r_{2}, \ldots, r_{k}$, we can compute X using

$$
X=\sum_{i=1}^{k} r_{i} \cdot c_{i} \cdot N_{i} \quad(\bmod N)
$$

where $N_{i}=N / n_{i}$ and $c_{i}=N_{i}^{-1}\left(\bmod n_{i}\right)$

A CRT Example

- Let the moduli set be $\{5,7,9\}$; note that they are pairwise relatively prime $\operatorname{gcd}(5,7)=\operatorname{gcd}(5,9)=\operatorname{gcd}(7,9)=1$ (even though 9 is not prime)
- We have $n_{1}=5, n_{2}=7, n_{3}=9$, and thus $N=5 \cdot 7 \cdot 9=315$, therefore, all integers in the range $[0,314]$ are uniquely representable using these moduli set
- Let $X=200$, then we have

$$
\begin{array}{ll}
r_{1}=200 \bmod 5 ; & r_{2}=200 \bmod 7 ; \\
r_{1}=0 & r_{1}=200 \bmod 9 \\
r_{2}=4 & r_{3}=2
\end{array}
$$

- The remainder set $(0,4,2)$ with respect to the moduli set $(5,7,9)$ uniquely represents the integer 200, as $\operatorname{CRT}(0,4,2 ; 5,7,9)=200$

A CRT Example

- Compute $Y=\operatorname{CRT}(0,4,2 ; 5,7,9)$

$$
\begin{aligned}
& N=n_{1} \cdot n_{2} \cdot n_{3}=5 \cdot 7 \cdot 9=315 \\
& N_{1}=N / n_{1}=315 / 5=7 \cdot 9=63 \\
& N_{2}=N / n_{2}=315 / 7=5 \cdot 9=45 \\
& N_{3}=N / n_{3}=315 / 9=5 \cdot 7=35 \\
& c_{1}=N_{1}^{-1}=63^{-1}=3^{-1}=2(\bmod 5) \\
& c_{2}=N_{2}^{-1}=45^{-1}=3^{-1}=5(\bmod 7) \\
& c_{2}=N_{3}^{-1}=35^{-1}=8^{-1}=8(\bmod 9) \\
& \quad Y=r_{1} \cdot c_{1} \cdot N_{1}+r_{2} \cdot c_{2} \cdot N_{2}+r_{3} \cdot c_{3} \cdot N_{3} \quad(\bmod N) \\
& \quad=0 \cdot 2 \cdot 63+4 \cdot 5 \cdot 45+2 \cdot 8 \cdot 35=1460 \quad(\bmod 315) \\
& \quad=200(\bmod 315)
\end{aligned}
$$

Therefore, $\operatorname{CRT}(0,4,2 ; 5,7,9)=200$

Another CRT Example

- Compute $Y=\operatorname{CRT}(2,1,1 ; 7,9,11)$

$$
\begin{aligned}
& N=n_{1} \cdot n_{2} \cdot n_{3}=7 \cdot 9 \cdot 11=693 \\
& N_{1}=N / n_{1}=693 / 7=9 \cdot 11=99 \\
& N_{2}=N / n_{2}=693 / 9=7 \cdot 11=77 \\
& N_{3}=N / n_{3}=693 / 11=7 \cdot 9=63 \\
& c_{1}=N_{1}^{-1}=99^{-1}=1^{-1}=1(\bmod 7) \\
& c_{2}=N_{2}^{-1}=77^{-1}=5^{-1}=2(\bmod 9) \\
& c_{2}=N_{3}^{-1}=63^{-1}=8^{-1}=7(\bmod 11)
\end{aligned}
$$

$$
\begin{aligned}
Y & =r_{1} \cdot c_{1} \cdot N_{1}+r_{2} \cdot c_{2} \cdot N_{2}+r_{3} \cdot c_{3} \cdot N_{3}(\bmod N) \\
& =2 \cdot 1 \cdot 99+1 \cdot 2 \cdot 77+1 \cdot 7 \cdot 63=793(\bmod 693) \\
& =100(\bmod 693)
\end{aligned}
$$

Therefore, $\operatorname{CRT}(2,1,1 ; 7,9,11)=100$

