Classical Cryptography

Shift Cipher

- Input/output: $\{a, b, \ldots, z\}$ with encoding $\{0,1, \ldots, 25\}$

a	b	c	d	e	f	g	h	i	j	k	l	m	n	o
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

p	q	r	s	t	u	v	w	x	y	z
15	16	17	18	19	20	21	22	23	24	25

- Encryption function: $E_{k}(x)=x+k(\bmod 26)$ Decryption function: $D_{k}(y)=y-k(\bmod 26)$
- The encryption or decryption key: $k \in\{0,1,2, \ldots, 25\}$
- Key space size: 26 (or 25 , if you do not count $k=0$)
- Caesar cipher: Shift cipher with a constant encryption key $k=3$

Shift Cipher

- For $k=15$, hello is encrypted as wtaad since

$$
\begin{aligned}
& E_{15}(\mathrm{~h})=E_{15}(7)=7+15=22(\bmod 26) \rightarrow \mathrm{w} \\
& E_{15}(\mathrm{e})=E_{15}(4)=4+15=19(\bmod 26) \rightarrow \mathrm{t} \\
& E_{15}(\mathrm{l})=E_{15}(11)=11+15=26=0(\bmod 26) \rightarrow \mathrm{a} \\
& E_{15}(\mathrm{o})=E_{15}(14)=14+15=29=3(\bmod 26) \rightarrow \mathrm{d}
\end{aligned}
$$

- For $k=12$, eqqw is decrypted as seek since

$$
\begin{aligned}
& D_{12}(\mathrm{e})=D_{12}(4)=4-12=-8=18(\bmod 26) \rightarrow \mathrm{s} \\
& D_{12}(\mathrm{q})=D_{12}(16)=16-12=4(\bmod 26) \rightarrow \mathrm{e} \\
& D_{12}(\mathrm{w})=D_{12}(22)=22-12=10(\bmod 26) \rightarrow \mathrm{k}
\end{aligned}
$$

Cryptanalysis of Shift Cipher

- Ciphertext only (CO)
- Exhaustive key search: a paragraph of ciphertext (in order to avoid ambiguity)
- Frequency analysis: a paragraph of ciphertext (in order to get statistically reliable frequency count)
- Known plaintext (KP): a single plaintext/ciphertext pair
- Chosen plaintext (CP): a single plaintext/ciphertext pair
- Chosen text (CT): a single plaintext/ciphertext pair

Exhaustive Key Search

- Given an encrypted text: vnnc vn jc ljsn jc oxda yv
- Decrypt the text with all possible keys:
$\xrightarrow{k=1}$ ummb um ib kirm ib nwcz xu
...
$\xrightarrow{k=8}$ nffu $n f$ bu dbkf bu gpvs qn
$\xrightarrow{k=9}$ meet me at caje at four pm
- A short encrypted text may have several "meaningful" decryptions:
$\begin{array}{ll}\text { vnnc } \\ \text { vnnc } \\ \xrightarrow{k=25} & \text { meet } \\ \text { wood }\end{array}$
- For a sufficiently long encrypted text, there will not be ambiguity

Frequency Analysis

- The most frequently occurring ciphertext is the encryption of the most frequently occurring plaintext
- In English: that would be the letter e, followed up by letters t and a

Letter frequencies (percentages) in English

\mathbf{a}	b	c	d	\mathbf{e}	f	g	h	i	j
$\mathbf{8 . 2}$	1.5	2.8	4.3	$\mathbf{1 2 . 7}$	2.2	2.0	6.1	7.0	0.2

k	l	m	n	o	p	q	r	s	t
0.8	4.0	2.4	6.7	7.5	1.9	0.1	6.0	6.3	$\mathbf{9 . 1}$

u	v	w	x	y	z
2.8	1.0	2.3	0.1	2.0	0.1

- Compute the ciphertext letter frequencies, and find the most frequently occurring the letter: this must be the ciptertext for the letter e

Occurrences of Letter e

The future is in the details

When creating iPhone 4, Apple designers and engineers didn't start with a clean sheet of paper. They started with three years of experience designing and building the phones that redefined what a phone can do. iPhone 4 is the result of everything they've learned so far. And it's all contained in a beautiful enclosure a mere 9.3 millimeters thin, making iPhone 4 the world's thinnest smartphone.

Frequency: $\frac{54}{435} \approx 12.4 \%$

Occurrences of Letter a

The future is in the details
When creating iPhone 4, Apple designers and engineers didn't start with a clean sheet of paper. They started with three years of experience designing and building the phones that redefined what a phone can do. iPhone 4 is the result of everything they've learned so far. And it's all contained in a beautiful enclosure a mere 9.3 millimeters thin, making iPhone 4 the world's thinnest smartphone.

Frequency: $\frac{23}{435} \approx 5.3 \%$

Occurrences of Letter t

The future is in the details
When creating iPhone 4, Apple designers and engineers didn't start with a clean sheet of paper. They started with three years of experience designing and building the phones that redefined what a phone can do. iPhone 4 is the result of everything they've learned so far. And it's all contained in a beautiful enclosure a mere 9.3 millimeters thin, making iPhone 4 the world's thinnest smartphone.

Frequency: $\frac{30}{435} \approx 6.9 \%$

Unusual Texts

The novel "Gadsby" by E. V. Wright is written as a lipogram*; it has 50,000 words in it without a single occurrence of the letter e
"A Void", translated from the original French "La Disparition" (The Disappearance), is a 300-page lipogrammatic novel, written in 1969 by Georges Perec, entirely without using the letter e (except for the author's name)

However, the probability of occurrence for such texts is very low

* A lipogram (leipográmmatos: leaving out a letter) is a kind of constrained writing or word game consisting of writing paragraphs in which a particular letter or group of letters is avoided

Frequency Analysis

- Given the short ciphertext: tbxqebo fp dobxq ebob
- Frequency analysis finds the most frequently occurring letter as b
- The letter b (most probably) is the ciphertext for the letter e

$$
\begin{aligned}
E_{k}(\mathrm{e}) & =\mathrm{b} \\
E_{k}(4) & =4+k=1 \quad(\bmod 26) \\
k & =1-4=-3=23 \quad(\bmod 26)
\end{aligned}
$$

- Indeed, if we decrypt the encrypted text using the key $k=23$, we obtain:
tbxqebo fp dobxq ebob $\xrightarrow{k=23}$ weather is great here

Known Plaintext Scenario

- Given a (any) single plaintext/ciphertext pair (x, y), we have

$$
\begin{aligned}
E_{k}(x) & =x+k=y \quad(\bmod 26) \\
k & =y-x \quad(\bmod 26)
\end{aligned}
$$

- Consider the encrypted message:
zrrg zr ng bhe frperg ybpngvba and the plaintext/ciphertext pair: $m \rightarrow z$

$$
\begin{aligned}
E_{k}(\mathrm{~m}) & =\mathrm{z} \\
E_{k}(12) & =12+k=25 \quad(\bmod 26) \\
k & =25-12=13 \quad(\bmod 26)
\end{aligned}
$$

We find the key as $k=13$; indeed this key decrypts the message $\xrightarrow{k=13}$ meet me at our secret location

Chosen Plaintext Scenario

- Since the cryptanalyst gets to choose the plaintext, and obtains the ciphertext, she/he can select the pair (x, y) such that $x=\mathrm{a}$

$$
\begin{aligned}
E_{k}(\mathrm{a}) & =0+k=y \quad(\bmod 26) \\
k & =y \quad(\bmod 26)
\end{aligned}
$$

- In other words, the key is equal to the encoding of the letter that is the ciphertext for a
- Using the previous encrypted text: zrrg zr ng bhe frperg ybpngvba
- We ask and obtain the ciphertext for a, which is given as n
- Since the encoding of n is 13 , we obtain the key as $k=13$

Chosen Ciphertext Scenario

- Similarly, if we can choose the ciphertext y in the pair (x, y), and obtain the plaintext x, all we have to do is to solve for the linear congruence

$$
E_{k}(x)=x+k=y \quad(\bmod 26)
$$

to obtain the key as

$$
k=y-x \quad(\bmod 26)
$$

- In fact the difficulty of obtaining the key for all three scenarios: KP, CP, CT is about the same: Obtain a single plaintext/ciphertext and solve for the key in the above linear congruence
- Therefore, we conclude that the shift cipher is very weak

Cryptanalysis of the Shift Cipher

- The number of keys is very small: 26 (or 25)
- Ciphertext only attack succeeds by performing 26 (or 25) decryptions of a not-so-short encrypted message (in order to avoid ambiguity)
- Known plaintext attack succeeds if we obtain a single pair (x, y) of plaintext and ciphertext; we solve for the linear congruence:

$$
k=y-x \quad(\bmod 26)
$$

- Similarly, the chosen text attack succeeds if we obtain a single pair (x, y) of plaintext and ciphertext; we use the above equation to obtain the key

