
Cryptography Stream Ciphers

Stream Ciphers

Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 1 / 20

http://koclab.cs.ucsb.edu


Cryptography Stream Ciphers

Linear Congruential Generators

A linear congruential generator produces a sequence of integers xi for
i = 1, 2, . . . starting with the given initial (seed) value x0 as

xi+1 = a · xi + b (mod n)

where the multiplication and addition operation is performed modulo
n, and therefore, xi ∈ Zn

This is a deterministic algorithm; the same xi value will always
produce the same xi+1 value, and the same seed x0 will produce the
same sequence x1, x2, . . .

There are only finitely many xi ∈ Zn, and the sequence will repeat

The period of the sequence is w such that xi+w = xi

Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 2 / 20

http://koclab.cs.ucsb.edu


Cryptography Stream Ciphers

Linear Congruential Generators

For (a, b, n) = (3, 4, 15), and x0 = 1, we obtain the following
sequence: 1, 7, 10, 4, 1, 7, 10, 4 . . .; the period is w = 4

For (a, b, n) = (3, 4, 15), and x0 = 2, we obtain the following
sequence: 2, 10, 4, 1, 7, 10, 4, 1, 7, . . .; the period is w = 4

For (a, b, n) = (3, 4, 17), and x0 = 1, we obtain the following
sequence: 1, 7, 8, 11, 3, 13, 9, 14, 12, 6, 5, 2, 10, 0, 4, 16, 1, 7, 8 . . .
the period is w = 16

For (a, b, n) = (3, 4, 17), and x0 = 15, we obtain the following
sequence: 15, 15, 15, . . .; the period is just w = 1

For (a, b, n) = (2, 4, 17), and x0 = 2, we obtain the following
sequence: 1, 6, 16, 2, 8, 3, 10, 7, 1, 6, 16, 2, . . .; the period is w = 8

Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 3 / 20

http://koclab.cs.ucsb.edu


Cryptography Stream Ciphers

Period of LCGs

Theorem: Given a LCG with parameters (a, b, p) such that p is prime,
the period w is equal to the order of the element a in the
multiplicative group Z∗

p for all x0 seed values except
x0 = −(a − 1)−1 · b mod p.

Since the group order is p − 1, the period w is always a divisor of
p − 1. The maximum period occurs when a is a primitive element,
whose order is p − 1.

For (a, b, n) = (3, 4, 17), the order of the group is equal 16, while the
order of the element a = 3 mod 17 is found as 16 since

{31, 32, 33, . . . , 316} = {3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6, 1}

On the other hand, the “bad seed” value is
x0 = −(a − 1)−1 · b mod 11

x0 = −(3− 1)−1 · 4 = −2−1 · 4 = −2 = 15 (mod 17)

Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 4 / 20

http://koclab.cs.ucsb.edu


Cryptography Stream Ciphers

A Practical LCG

Since our processors have fixed data length, it is a good idea to select
a prime as large as the word size, since we will perform mod p

arithmetic

It turns out that 231 − 1 = 2, 147, 483, 647 is a prime number;
furthermore, the smallest primitive element in Zp for p = 231 − 1 is
found as a = 75 = 16, 807

Also, a is fairly close to the square root of p, therefore, we have a
good, practical, general-purpose LCG, given as

xi+1 = a · xi (mod p)

p = 231 − 1 = 2, 147, 483, 647

a = 75 = 16, 807

Since a is a primitive element, the period of LCG is w = 231 − 2

Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 5 / 20

http://koclab.cs.ucsb.edu


Cryptography Stream Ciphers

Cryptographic Strength of LCGs

Does the LCG satisfy requirements R1 and R2?

Analysis and experiments show that LCGs with large p (such as the
previous practical LCG) are (almost) acceptable as statistically
random, but there are some deficiencies

Unfortunately, the LCGs do not satisfy R2 since they are is highly
predictable: Assuming a and p are known, given a single element xi ,
any future element of the sequence can be computed as
xi+k = akxi mod n

Similarly, given xi , any past element of the sequence can be computed
as xi−k = a−kxi = (a−1)k mod n

Inversion: the seed x0 can be computed if any element xi of the
sequence is known, by working back from i down to 0

Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 6 / 20

http://koclab.cs.ucsb.edu


Cryptography Stream Ciphers

Cryptographic Strength of LCGs

In general, we need to assume that a and p are fixed parameters of
the RNG and therefore they are not changeable, i.e., they are not part
of the key (x0, the seed) — they can be discovered by reverse
engineering

If we can bundle a and p with the seed x0, then we can claim more
security — it would be much harder to discover the key (a, p, and x0)
given a limited number of elements xi from the sequence x1, x2, . . .

Note that xi+1 = a · xi mod p implies xi+1 = a · xi + N · p for some
integer N; however, N is different for every pair (xi+1, xi ), we have

xi+1 = a · xi + Ni · p

and therefore, if we have k pairs of the known elements (xj , xk) then
we will also have k + 2 unknowns, i.e., a, p, and Ni for i = 1, 2, . . . , k

Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 7 / 20

http://koclab.cs.ucsb.edu


Cryptography Stream Ciphers

Cryptographic Strength of LCGs

Still, equations of the form xi+1 = a · xi + Ni · p can be solved using
lattice reduction techniques, and therefore, we do not have strong
assumptions of cryptographic strength

There is also practical constraint in a LCG with all three parameters
(a, p, x0) are considered as the key

We know that p has to be a prime and a has to be a primitive
element of the group, that means a key generation algorithm has
needs to incorporate these properties and generate such keys

On the other hand, in a LCG with fixed parameters (a, p) we need not
worry about key with special properties — the only key, the seed x0,
is just a random integer: any integer would be fine; also, since b = 0,
the only “bad seed” is 0, and easy to avoid

Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 8 / 20

http://koclab.cs.ucsb.edu


Cryptography Stream Ciphers

GLIBC random()

The GNU C library’s random() function is a LCG with three steps

The first step is based on the prime modulus p = 231 − 1 and the
primitive element a = 16, 807

Given the seed value s, the first step computes 33 elements
x1, x2, . . . , x33:

x0 = s

xi = a · xi−1 (mod p) for i = 1, 2, . . . , 30

x31 = x0

x32 = x1

x33 = x2

Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 9 / 20

http://koclab.cs.ucsb.edu


Cryptography Stream Ciphers

GLIBC random()

The second step is based on the addition operation mod q = 232

In the second step, new xi values are computed for i = 34, 35, . . . , 343

xi = xi−3 + xi−31 (mod q) for i = 34, 35, . . . , 343

In the final step, the output values are generated using the previous
mod q addition operation and the logical right shift operation (·)rs as
follows

xi = xi−3 + xi−31 (mod q) for i ≥ 344

rj = (xj+344)rs for i ≥ 0

Inversion: Two consecutive different moduli and the right shift make
the inversion more difficult, however, since there are 232 different seed
values, exhaustive search is possible

Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 10 / 20

http://koclab.cs.ucsb.edu


Cryptography Stream Ciphers

Cellular Automata

A one-dimensional cellular automaton consists of a linearly connected
array of n cells, each of which takes the value of 0 or 1, and a
boolean function f (x) with q variables

The value of the cell xi is updated in parallel (synchronously) using
this function in discrete time steps as x ′i = f (x) for i = 1, 2, . . . , n

The boundary conditions are usually handled by taking the index
values modulo n, i.e., the linearly connected array is actually a circular
register

The parameter q is usually an odd integer, i.e., q = 2r + 1, where r is
often named the radius of the function f (x); the new value of the ith
cell is calculated using the value of the ith cell itself and the values of
r neighboring cells to the right and left of the ith cell

Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 11 / 20

http://koclab.cs.ucsb.edu


Cryptography Stream Ciphers

Cellular Automata

The one-dimensional cellular automaton with q = 3.

xi−1 xi xi+1
· · · Sk· · ·

❄❄❄

f (x)

❄

x ′i
· · · Sk+1· · ·

Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 12 / 20

http://koclab.cs.ucsb.edu


Cryptography Stream Ciphers

Cellular Automata

Since there are n cells, each of which takes the values of 0 or 1, there
are 2n possible state vectors

Let Sk denote the state vector at the automaton moves to the states
S1,S2,S3, etc., at time steps k = 1, 2, 3, etc

The state vector Sk takes values from the set of n-bit binary vectors
as k advances, and the state machine will eventually cycle, i.e., it will
reach a state Sk+w which was visited earlier Sk = Sk+w

The period w is a function of the initial state, the updating function,
and the number of cells

Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 13 / 20

http://koclab.cs.ucsb.edu


Cryptography Stream Ciphers

CA30 – A Random Updating Function

Cellular automata are generally considered as discrete dynamical
systems, or discrete approximations to partial differential equations
modeling a variety of natural systems

Wolfram proposed a random sequence generator based on the
one-dimensional cellular automaton with q = 3 and the so-called
CA30 updating function

f (xi−1, xi , xi+1) = xi−1 ⊕ (xi + xi+1)

where + is the boolean OR and ⊕ is the exclusive OR function

The state vectors produced by this cellular automaton seem to have
randomness properties, e.g., the time sequence values of the central
cell shows no statistical regularities under the usual randomness tests

Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 14 / 20

http://koclab.cs.ucsb.edu


Cryptography Stream Ciphers

CA30 – A Random Updating Function

The truth table for the CA30 function xi−1 ⊕ (xi + xi+1)
xi−1 xi xi+1 x ′i
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

The binary expansion of the integer 30 = (0001 1110)

For q = 3, we have 22
3

= 256 different CA functions: CA0 .. CA255

Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 15 / 20

http://koclab.cs.ucsb.edu


Cryptography Stream Ciphers

1-Dimensional CA Functions

Wolfram analyzed the behaviors of all them, starting from different
initial conditions

There seems to be 4 classes of behaviors

Class I Homogeneous: Everything eventually dies (or eventually lives
forever). Some initial transient behavior usually precedes this final state
Class II Periodic: Perhaps after some initial transients, the pattern
repeats itself exactly, in space (horizontally), in time (vertically), or
both
Class III Chaotic: Patterns grow in a chaotic fashion: short-lived
islands of order and sensitivity to initial conditions
Class IV Complex: Patterns grow in a complicated way, with both local
stable behavior (acting as memory) and long-range correlations (acting
to transmit data)

Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 16 / 20

http://koclab.cs.ucsb.edu


Cryptography Stream Ciphers

1-Dimensional CA Functions

Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 17 / 20

http://koclab.cs.ucsb.edu


Cryptography Stream Ciphers

CA30 Behavior

Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 18 / 20

http://koclab.cs.ucsb.edu


Cryptography Stream Ciphers

CA30 Behavior

Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 19 / 20

http://koclab.cs.ucsb.edu


Cryptography Stream Ciphers

Security of CA-based RNG

CA30 and many other CA functions satisfy R1

Question: Do they satisfy R2?

In order to use such a generator for cryptographic purposes, we must
also ensure that the seed value (the initial state vector S0) is difficult
to construct given a sequence of state vectors

It was claimed that this problem is in the class NP – no systematic
algorithm for its solution for an “unbounded” n

However, in order to use CA as a RNG in a stream cipher, we need
select a suitable updating function and a large n (several hundred bits)

We may not have cryptographic strength for some updating functions
and for small values of n

Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 20 / 20

http://koclab.cs.ucsb.edu

