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Cryptography Linear Feedback Shift Registers

LFSR Structure

A linearly connected shift register of n cells, each of which is holding
a state variable si ∈ {0, 1} and set of coefficients ci ∈ {0, 1}, for
i = 0, 1, . . . , n − 1

The feedback function which is addition mod 2 (the XOR function),
computing the new state value sn using the coefficients and the state
values as

sn = c0 · s0 + c1 · s1 + · · ·+ cn−1 · sn−1 (mod 2)

= c0 · s0 ⊕ c1 · s1 ⊕ · · · ⊕ cn−1 · sn−1

The (right) shift function which places si+1 into si for 0 ≤ i ≤ n − 1,
and therefore, (sn−1, sn−2, . . . , s1, s0) → (sn, sn−1, . . . , s2, s1)
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4-bit LFSR Example
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4-bit LFSR, n = 4
State vector: (s3, s2, s1, s0)
Coefficient vector: (c3, c2, c1, c0)
s0 is the output of the LFSR

s4 = c3 · s3 + c2 · s2 + c1 · s1 + c0 · s0 (mod 2)

Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 3 / 45

http://koclab.cs.ucsb.edu


Cryptography Linear Feedback Shift Registers

4-bit LFSR Example

Given the coefficients (c3, c2, c1, c0) = (1, 1, 1, 1) and the initial states
(s3, s2, s1, s0) = (0, 0, 0, 1), we compute the next state s4 as

s4 = 1 · s3 + 1 · s2 + 1 · s1 + 1 · s0

= 1 · 0 + 1 · 0 + 1 · 0 + 1 · 1 = 1

Therefore, the new state is (s4, s3, s2, s1) = (1, 0, 0, 0)

Proceeding this way, we find the subsequent state s5

s5 = 1 · s4 + 1 · s3 + 1 · s2 + 1 · s1

= 1 · 1 + 1 · 0 + 1 · 0 + 1 · 0 = 1

and thus (s5, s4, s3, s2) = (1, 1, 0, 0)
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LFSR Period for (c3, c2, c1, c0) = (1, 1, 1, 1)

c3 = 1 c2 = 1 c1 = 1 c0 = 1 coefficients
0 0 0 1 initial state
1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1 back to initial state

The period of this LFSR with this initial state is 5 since there are 5
independent (unequal) states

Regardless of the connection coefficients, the initial state of all-zero
will cause the future states be all-zero; the period will always be 1

s4 = c3 · s3 + c2 · s2 + c1 · s1 + c0 · s0

= c3 · 0 + c2 · 0 + c1 · 0 + c0 · 0 = 0
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LFSR Maximal Period

Since there are n state variables, taking binary values, the number of
all possible states is 2n

However, due to the linearity of the feedback function, an all-zero
state at any given time causes all future states be all zero

Therefore, an LFSR can have at most 2n − 1 unique states, since the
all-zero state is excluded

Question 1: Are there sets of connection coefficients and initial states
that produce sequences with the maximal period?

Question 2: Are there sets of connection coefficients that produce
sequences with the maximal period, regardless of the initial state (of
course, except all zero state)
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Another LFSR: (c3, c2, c1, c0) = (0, 0, 1, 1)

c3 = 0 c2 = 0 c1 = 1 c0 = 1 coefficients
0 0 0 1 (1)
1 0 0 0 (2)
0 1 0 0 (3)
0 0 1 0 (4)
1 0 0 1 (5)
1 1 0 0 (6)
0 1 1 0 (7)
1 0 1 1 (8)
0 1 0 1 (9)
1 0 1 0 (10)
1 1 0 1 (11)
1 1 1 0 (12)
1 1 1 1 (13)
0 1 1 1 (14)
0 0 1 1 (15)
0 0 0 1 back to (1)
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LFSR Period Properties

The period of the 4-bit LFSR with coefficients
(c3, c2, c1, c0) = (0, 0, 1, 1) is equal 15, which is the maximal period
for a 4-bit LFSR: 24 − 1 = 15

As can be seen, the period of this LFSR will always be 15 for any of
the initial states, except the all-zero state

In general, the period of an LSFR is a function of the coefficient
vector and also the initial state vector

For the 4-bit LFSR with coefficients (c3, c2, c1, c0) = (1, 1, 1, 1), the
period was 5 for the initial state (s3, s2, s1, s0) = (0, 0, 0, 1)

In fact, the period will still be 5 for any of the initial states (0, 0, 0, 1),
(1, 0, 0, 0), (1, 1, 0, 0), (0, 1, 1, 0), and (0, 0, 1, 1); these are the states
visited when starting with (0, 0, 0, 1)
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LFSR Period Properties

For (c3, c2, c1, c0) = (1, 1, 1, 1), the LFSR exhibits the following
behavior, depending on the initial state

0001 1000 1100 0110 0011

0010 1001 0100 1010 0101

0111 1011 1101 1110 1111
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Solomon Wolf Golomb

Solomon Wolf Golomb (1932) is an American mathematician and
engineer, best known to the general public and fans of mathematical
games as the inventor of polyominoes, the inspiration for the
computer game Tetris

He worked on combinatorial analysis, number theory, coding theory
and communications

Golomb invented Cheskers (a variant of checkers) and the
pentominoes in 1948 and 1953 respectively

Golomb pioneered the identification of the characteristics and merits
of maximum length shift register sequences

Because of Golomb’s work, we know how to build LFSRs with
maximum period
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The Connection Polynomial

Given a coefficient vector (cn−1, cn−1, . . . , c1, c0) for a n-bit LFSR, we
can write a polynomial of degree n

c(x) = xn + cn−1x
n−1 + cn−2x

n−2 + · · ·+ c1x + c0

This is called the connection polynomial of the n-bit LFSR

For example, for the 4-bit LFSR with (c3, c2, c1, c0) = (1, 1, 1, 1), the
connection polynomial is x4 + x3 + x2 + x + 1, which is of degree 4

Similarly, for the 4-bit LFSR with (c3, c2, c1, c0) = (0, 0, 1, 1), the
connection polynomial is x4 + x + 1, which is of degree 4
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Golomb’s First Theorem

The coefficients are in {0, 1}, and the arithmetic of these polynomials
are performed modulo 2

In other words, these polynomials are defined over the finite field
GF(2)

Theorem

If the connection polynomial (of degree n) of an n-bit LFSR is reducible,
then its its period is not maximal (6= 2n − 1)
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Irreducible versus Reducible Polynomials

Definition: A polynomial is called reducible if it can be factored into
smaller degree polynomials

For example, the following polynomials are reducible:

x2 = x · x

x2 + x = x · (x + 1)

x2 + 1 = (x + 1) · (x + 1)

We are factoring the polynomials whose coefficients are also in the set
{0, 1}, i.e., we are performing mod 2 arithmetic with the coefficients

Since 1 + 1 = 0, and thus, x + x = 0, the polynomial x2 + 1 is
reducible:

(x + 1) · (x + 1) = x2 + x + x + 1 = x2 + 1
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Irreducible versus Reducible Polynomials

A polynomial that is not reducible is called irreducible

For example, the polynomial x2 + x + 1 is irreducible: we cannot
write it as the product lesser degree (that is, of degree 1) polynomials

To see that, consider all polynomials of degree (up to) 1: 0, 1, x ,
x + 1; if we form all possible products, we obtain all reducible
polynomials:

* 0 1 x x + 1

0 0 0 0 0
1 0 1 x x + 1
x 0 x x2 x2 + x

x + 1 0 x + 1 x2 + x x2 + 1

The polynomial x2 + x + 1 is not in the list, and therefore, it is
irreducible
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Irreducible Polynomials

Mathematicians and computer scientists are interested in irreducible
polynomials for various reasons

Algorithms for finding irreducible polynomials and deciding if a given
polynomial is irreducible have been developed

Particularly of interest are polynomials whose coefficients are from the
set {0, 1} and arithmetic is mod 2

These are called polynomials over the finite field GF(2), i.e., Galois
field of 2 elements

Lists of irreducible polynomials over GF(2) have been published
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Irreducible Polynomials over GF(2)

n irreducible polynomials

1 x x + 1

2 x2 + x + 1

3 x3 + x + 1 x3 + x2 + 1

4 x4 + x + 1 x4 + x3 + 1 x4 + x3 + x2 + x + 1

5 x5 + x2 + 1 x5 + x3 + 1 x5 + x3 + x2 + x + 1

x5 + x4 + x3 + x + 1 x5 + x4 + x3 + x2 + 1 x5 + x4 + x2 + x + 1

6 x6 + x + 1 x6 + x3 + 1 x6 + x5 + 1

x6 + x4 + x2 + x + 1 x6 + x4 + x3 + x + 1 x6 + x5 + x2 + x + 1

x6 + x5 + x3 + x2 + 1 x6 + x5 + x4 + x2 + 1 x6 + x5 + x4 + x + 1
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A Reducible Polynomial Example

For example, consider the 3-bit LFSR with (c2, c1, c0) = (1, 1, 1), and
its degree-3 connection polynomial c(x) = x3 + x2 + x + 1

Since this polynomial is reducible, the LFSR is not maximal

Indeed, the iteration of this LFSR with different initial states gives its
period at most as 4

001 100 110 011

010 101 111
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Irreducible Polynomials

Irreducible polynomials are important for binary extension fields
GF(2k)

The elements of GF(2k) are polynomials of degree at most k − 1,
with coefficients from the ground field GF(2)

The multiplication of two elements of GF(2k) are performed using

r(x) = a(x)b(x) mod g(x)

where g(x) is an irreducible polynomial of degree k

Irreducible polynomials show up in a different context again!

The coefficient polynomial c(x) of an LFSR needs to at least
irreducible for it to have maximal period
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Is Irreducibility Sufficient for Maximality?

Unfortunately, irreducibility is a necessary but not a sufficient
condition for maximality of the LFSRs

Indeed, we discovered that the 4-bit LFSR with the coefficients
(c3, c2, c1, c0) = (1, 1, 1, 1) was not maximal

The period was at most 5, even though its connection polynomial

x4 + x3 + x2 + x + 1

irreducible over GF(2), as can be seen from the list above

It turns out that for ensured maximality the connection polynomial
needs to be primitive
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Golomb’s Second Theorem

Theorem

If the connection polynomial of degree n is a primitive polynomial, then
the associated LFSR is maximal, with period 2n − 1.

Primitivity of polynomials are related to the primitivity of integers,
but it is based on different principles

For polynomial to be primitive, first it needs to be irreducible

Definition: An irreducible polynomial p(x) of degree n over GF(2) is
called primitive, if the smallest integer e for which p(x) divides xe + 1
is e = 2n − 1
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Primitive Polynomials over GF(2)

Consider the irreducible polynomial p(x) = x4 + x3 + x2 + x + 1, and
apply the division algorithm to divide the polynomial xe + 1 by p(x)
for increasing values of e, and find the smallest e value such that the
remainder (R) is zero:

e = 4 → x
4+1

x4+x3+x2+x+1
→ Q = 1 R = x3 + x2 + x

e = 5 → x
5+1

x4+x3+x2+x+1
→ Q = x + 1 R = 0

Since the irreducible polynomial x4 + x3 + x2 + x + 1 divides x5 + 1
and e = 5 6= 24 − 1 = 15, we conclude that x4 + x3 + x2 + x + 1 is
not primitive
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Primitive Polynomials over GF(2)

Now, consider another irreducible polynomial p(x) = x3 + x + 1, and
apply the division algorithm again to find the smallest e for this
polynomial

e = 3 → x3+1

x3+x+1
= Quo: 1 Rem: x

e = 4 → x4+1

x3+x+1
= Quo: x Rem: x2 + x + 1

e = 5 → x5+1

x3+x+1
= Quo: x2 + 1 Rem: x2 + x

e = 6 → x
6+1

x3+x+1
= Quo: x3 + x + 1 Rem: x2

e = 7 → x7+1

x3+x+1
= Quo: x4 + x2 + x + 1 Rem: 0

Since the irreducible polynomial x3 + x + 1 divides x7 + 1 and
e = 7 = 23 − 1, we conclude that x3 + x + 1 is primitive

Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 22 / 45

http://koclab.cs.ucsb.edu


Cryptography Linear Feedback Shift Registers

Example: A Primitive Polynomial over GF(2)

Since p(x) = x3 + x + 1 is a primitive polynomial, the 3-bit LFSR
with the connection coefficients (c2, c1, c0) = (0, 1, 1) produces a
sequences with the maximal period 7

c2 = 0 c1 = 1 c0 = 1 coefficients
0 0 1 (1)
1 0 0 (2)
0 1 0 (3)
1 0 1 (4)
1 1 0 (5)
1 1 1 (6)
0 1 1 (7)
0 0 1 back to (1)
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List of Primitive Polynomials over GF(2)

n primitive polynomials

1 x + 1

2 x2 + x + 1

3 x3 + x + 1 x3 + x2 + 1

4 x4 + x + 1 x4 + x3 + 1

5 x5 + x2 + 1 x5 + x3 + 1 x5 + x3 + x2 + x + 1

x5 + x4 + x3 + x + 1 x5 + x4 + x3 + x2 + 1 x5 + x4 + x2 + x + 1

6 x6 + x + 1 x6 + x5 + 1 x6 + x4 + x3 + x + 1

x6 + x5 + x2 + x + 1 x6 + x5 + x3 + x2 + 1 x6 + x5 + x4 + x + 1
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Example: Irreducible but Not Primitive

We discovered that p(x) = x4 + x3 + x2 + x + 1 was an irreducible
polynomial, but not primitive

Therefore, the 4-bit LFSR with the connection coefficient

(c3, c2, c1, c0) = (1, 1, 1, 1)

is not a maximal LFSR

Indeed, its period was 5, not 15
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Example: Another Primitive Polynomial

Since p(x) = x3 + x + 1 is a primitive polynomial, the 3-bit LFSR
with the connection coefficients (c2, c1, c0) = (0, 1, 1) produces a
sequences with the maximal period 7

c2 = 0 c1 = 1 c0 = 1 coefficients
0 0 1 (1)
1 0 0 (2)
0 1 0 (3)
1 0 1 (4)
1 1 0 (5)
1 1 1 (6)
0 1 1 (7)
0 0 1 back to (1)
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Cryptographic Strength of LFSRs

Does the maximal LFSR satisfy requirements R1 and R2?

An n-bit maximal LFSR scans all 2n − 1 states, and therefore, of all
possible n-bit binary sequences, the output contains 2n − 1 of them

Therefore, as long as the LFSR length is kept large (n > 100), and
therefore, they have large period, they are statistically random

Unfortunately, the LCGs do not satisfy R2 since they are is highly
predictable, because the state values, the coefficients and the output
of the LFSR are linearly related

Similar to the discussion we had about LCGs, we need to make some
assumptions about the structural parameters and the seed, and
analyze the LFSRs
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Cryptographic Strength of LFSRs

LFSRs are typically implemented in hardware due to their simplicity
and low-cost, for example, a 100-bit LFSR requires only a few
hundred transistors

In hardware implementations, the connection polynomial is fixed, and
cannot be (generally) changed, therefore, we can only think of it as a
(fixed) secret key, along with its length and the coefficients

On the other hand, in a typical usage the LFSR starts with an initial
state determined by the seed, normally, the initial state is the seed

Furthermore, the running key bits are simply the outputs of the LFSR,
which are just the state values shifted right
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Cryptographic Strength of LFSRs

With these assumptions, we can pose the following question: Is it
possible to compute the degree and coefficients of the connection
polynomial in an LFSR, given a set of the running key bits (obtained
via known or chosen text attack)?

The answer is affirmative: The Berlekamp-Massey algorithm,
developed by two American mathematicians, solves this problem
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Computing the Connection Polynomial

First, assume we obtain a set of plaintext and ciphertext pairs
(mi , ci ), and thus, we have a set of running key bits ri = ci ⊕mi for
i = 0, 1, . . . , k − 1

Without loss of generality, also assume that these running key bits are
simply the consecutive bits of the state si = ri for i = 0, 1, . . . , k − 1
at the given time, and k > n

s
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s
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Computing the Connection Polynomial

Therefore, we can write a set of linear equations in GF(2) as

sn = cn−1sn−1 + cn−2sn−2 + · · · + c1s1 + c0s0

sn+1 = cnsn + cn−1sn−1 + · · ·+ c2s2 + c1s1

sn+2 = cn+1sn+1 + cnsn + · · ·+ c3s3 + c2s2
...

s2n−2 = c2n−3s2n−3 + c2n−4s2n−4 + · · ·+ cn−3sn−3 + cn−2sn−2

s2n−1 = c2n−2s2n−2 + c2n−3s2n−3 + · · ·+ cn−4sn−4 + cn−3sn−3

...

If we can obtain as many state bits si as we need, we can write n
equations, and solve a linear system of n equations with n unknowns,
which implies that we need to know 2n state bits: s0, s1, . . . , s2n−1
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Computing the Connection Polynomial

For example, for n = 4, we write the set of equations as

s4 = c3s3 + c2s2 + c1s1 + c0s0

s5 = c3s4 + c2s3 + c1s2 + c0s1

s6 = c3s5 + c2s4 + c1s3 + c0s1

s7 = c3s6 + c2s5 + c1s4 + c0s1

In the matrix form as






s3 s2 s1 s0
s4 s3 s2 s1
s5 s4 s3 s2
s6 s5 s4 s3













c3
c2
c1
c0






=







s4
s5
s6
s7






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Computing the Connection Polynomial

Therefore, the coefficients (c3, c2, c1, c0) of the connection polynomial
in a 4-bit LFSR can be computed if we know 8 consecutive state bits
s0, s1, . . . , s7

For an n-bit LFSR, we need 2n consecutive values of the state bits in
order to compute the n coefficients of the connection polynomial

However, n is also unknown!

This problem can be circumvented, if we have twice as many (or
more) state bits available: si for i = 0, 1, 2, . . . , k − 1 such that
k ≥ 2n

We can start with the smallest possible of n (perhaps, just n = 1) and
iteratively increase the value of n, at each step solving a linear system
of equations of dimension n
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Computing the Connection Polynomial - An Example

The following running key bit sequence (0101000010010110) was
produced by an LFSR of unknown length n and an unknown
connection polynomial p(x)

Note that the given sequence r0, r1, . . . , r15 is of length 16, and
therefore, we know the first 16 bits of the states

(s0s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15) = (0101000010010110)

Our objective is to write the set of linear equations of dimension n for
increasing values of n = 1, 2, 3, . . ., until we find the correct value of n
and the connection polynomial coefficients (cn−1, cn−2, . . . , c1, c0)
that produces the entire sequence
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Computing the Connection Polynomial

According to our method, we will write a set of linear of equations of
dimension n for increasing values of n

We will solve these equations, and find the connection polynomial,
which gives us an LFSR of length n

We will then check to see if this LFSR correctly produces the rest of
(all of) the given sequence; if not, then we need to increase n

The Berlekamp-Massey algorithm is a slight modification of our
method, where the solution of the linear equations and the checking
to see if the obtained LFSR produces the rest of the sequence is more
efficiently (compactly) performed
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Computing the Connection Polynomial for n = 1

First, we assume that there is an LFSR of length n = 1 produced this
sequence

However, we immediately see that n = 1 cannot be correct since a
1-bit LFSR can only produce either the sequence 000 · · · or the
sequence 111 · · · , depending whether the initial state was 0 or 1,
respectively

For n = 1, we write a linear system of equations with 1 unknown:

s1 = c0 · s0 ⇒ 1 = c0 · 0

There is no value of c0 that would satisfy this equation, and therefore,
this sequence (obviously) could not have been produced by a 1-bit
LFSR
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Computing the Connection Polynomial for n = 2

For n = 2, we write a linear system of equations with 2 unknowns:

[
s1 s0
s2 s1

] [
c1
c0

]

=

[
s2
s3

]

⇒

[
1 0
0 1

] [
c1
c0

]

=

[
0
1

]

This implies (c1, c0) = (0, 1), however, these choices do not satisfy
the rest of sequence, for example,

[
s7 s6
s8 s7

] [
c1
c0

]

=

[
s8
s9

]

⇒

[
0 0
1 0

] [
0
1

]

6=

[
1
0

]

and therefore, n 6= 2
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Computing the Connection Polynomial for n = 3

For n = 3, we write a linear system of equations with 3 unknowns:





s2 s1 s0
s3 s2 s1
s4 s3 s2









c2
c1
c0



 =





s3
s4
s5



 ⇒





0 1 0
1 0 1
0 1 0









c2
c1
c0



 =





1
0
0





This implies (c2, c1, c0) = (0, 1, 0), however, these choices do not
satisfy the rest of sequence, for example,





s10 s9 s8
s11 s10 s9
s12 s11 s10









c2
c1
c0



 =





s11
s12
s13



 ⇒





0 0 1
1 0 0
0 1 0









0
1
0



 6=





1
0
1





and therefore, n 6= 3
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Computing the Connection Polynomial for n = 4

For n = 4, we write a linear system of equations with 4 unknowns:







s3 s2 s1 s0
s4 s3 s2 s1
s5 s4 s3 s2
s6 s5 s4 s3













c3
c2
c1
c0






=







s4
s5
s6
s7







This gives






1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1













c3
c2
c1
c0






=







0
0
0
0







By solving these linear system of equations we find
(c3, c2, c1, c0) = (0, 0, 0, 0), which obviously is a contradiction; such
LFSR cannot produce any nonzero sequence, and thus, n 6= 4
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Computing the Connection Polynomial for n = 5

For n = 5, we write a linear system of equations with 5 unknowns:









s4 s3 s2 s1 s0
s5 s4 s3 s2 s1
s6 s5 s4 s3 s2
s7 s6 s5 s4 s3
s8 s7 s6 s5 s4

















c4
c3
c2
c1
c0









=









s5
s6
s7
s8
s9

















0 1 0 1 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

















c4
c3
c2
c1
c0









=









0
0
0
1
0









By solving these equations we find (c4, c3, c2, c1, c0) = (0, 0, 1, 0, 1)
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Computing the Connection Polynomial for n = 5

If we apply this coefficient set at another part of the sequence, we find








s9 s8 s7 s6 s5
s10 s9 s8 s7 s6
s11 s10 s9 s8 s7
s12 s11 s10 s9 s8
s13 s12 s11 s10 s9

















c4
c3
c2
c1
c0









=









s10
s11
s12
s13
s14

















0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
0 1 0 0 1
1 0 1 0 0

















0
0
1
0
1









=









0
1
0
1
1









In fact, we can easily verify that the LFSR with n = 5 and the
connection polynomial is x5 + x2 + 1 indeed produces the given
sequence
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Linear Complexity

The Berlekamp-Masses algorithm (and our simplified version)
computes the length and the connection polynomial for any sequence,
whether or not this sequence was originally produced by an LFSR

What we obtain is the minimal length LFSR that produces the given
sequence – The length n is called linear complexity of the sequence

Linear complexity is proposed as a measure of RNGs, the higher
values of n imply that the RNG is more complex (less linear or more
nonlinear)

We should bear in mind, however, that the linear complexity is a
measure of the given linear sequence, not the underlying RNG

An (perfect) RNG can produce any sequence, including all zeros:
000 · · · , whose linear complexity is 1
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Linear Complexity

As we have seen an LFSR with n = 1 can only produce the sequences
000 · · · or 111 · · · , i.e., the linear complexity of these sequence is just
1

Similarly, the linear complexity of the sequence 010101 · · · can be
shown to be equal 2, regardless of its length

The period of a sequence and its linear complexity are related, but
they will not be the same

We know that an n-bit maximal LFSR produces a sequence with
period 2n − 1, thus, the linear complexity of such a sequence will be n
while its period is 2n − 1

In cryptanalysis, we cannot hope to obtain very long sequences of
running keys, and thus, to discover the period (in most cases)
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Linear Complexity

Question: Given a “random” sequence of length k what is its linear
complexity?

The smallest value of linear complexity for a sequence of length will
be 1 (if the sequence happens to be all-zero or all-one)

The largest possible value of linear complexity for a sequence of
length will be k

The value of k essentially indicates our failure to find a smaller LFSR
producing the sequence, and thus, we just build a k-bit LFSR and set
the initial state as the bits of the given sequence, which produces the
sequence by right shift in k clock cycles

Otherwise, we will obtain a value between 1 and k
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Linear Complexity

Higher value of linear complexity does not imply randomness
(statistical or unpredictability)

It is quite easy to construct a sequence of length k whose linear
complexity is k (which is the highest possible value): k − 1 zeros
followed by 1

k−1 times
︷ ︸︸ ︷

000 · · · 000 1

This sequence has the maximum possible linear complexity, however,
it is not statistically random and highly predictable,

However, randomness implies higher linear complexity; we expect a
truly random source to produce sequences whose linear complexity is
unbounded
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