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Differential cryptanalysis is a method for

breaking certain classes of cryptosystems

It was invented in 1990 by Israeli researchers

Eli Biham and Adi Shamir

However, apparently the IBM researchers who

designed DES knew about differential crypt-

analysis, as was indicated by Don Copper-

smith of TJ Watson Research Center
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Differential cryptanalysis is efficient when the

cryptanalyst can choose plaintexts and obtain

ciphertexts (chosen plaintext cryptanalysis)

The known plaintext differential cryptanalysis

is also possible, however, often the size of the

known text pairs is very large

The method searches for plaintext, ciphertext

pairs whose difference is constant, and inves-

tigates the differential behavior of the cryp-

tosystem

The difference of two elements P1 and P2 is

defined as P1 ⊕ P2 (bit-wise XOR operation)

for DES

The difference may be defined differently if the

method is applied to some other cryptosystem
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Differential cryptanalysis is applicable to the

iterated ciphers with a weak round function

(so-called Feistel ciphers)

The summary of the technique:

• Observe the difference between the two ci-

phertexts as a function of the difference

between the corresponding plaintexts

• Find the highest probability differential in-

put (called characteristic) which can be

traced through several rounds

• Assign probabilities to the keys and locate

the most probable key
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Notation

• P denotes plaintext, T denotes ciphertext

• (P, P ∗) is a pair of plaintexts which XOR

to a specific value P ′, i.e., P ′ = P ⊕ P ∗

• (T, T ∗) is a pair of ciphertexts which XOR

to a specific value T ′, i.e., T ′ = T ⊕ T ∗

• Primed values are always differential: P ′,
T ′, a′, A′, etc. For example, a′ = a ⊕ a∗
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DES (DEA):

Data Encryption Standard (Algorithm)

DES was designed by a group at IBM TJ Wat-

son Research Center at the request of the US

NIST for the protection of sensitive unclassi-

fied data

DES has become a US federal standard in 1976

to be reviewed every 5 years. It was reaffirmed

in 1987. In 1992, after some controversy, it

was recertified for another 5 years.

DES is a block cipher operating on a 64-bit

plaintext to produce a 64-bit ciphertext with a

key size of 56 bits

The fundamental building block is a substitu-

tion followed by a permutation on the text,

based on the key. This is called a round func-

tion. DES has 16 rounds.
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The round function of DES
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The Expansion E
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Differential Cryptanalysis of DES

A cryptosystem should be a good pseudoran-

dom generator in order to foil key clustering

attacks

DES was designed so that all distributions are

as uniform as possible

For example, changing 1 bit of the plaintext

or the key causes the ciphertext to change in

approximately 32 of its 64 bits in a seemingly

unpredictable and random manner
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Biham and Shamir observed that with a fixed

key, the differential behavior of DES does

not exhibit pseudorandomness

If we fix the XOR of two plaintexts P and P ∗

at P ′ then T ′ (which is equal to T ⊕ T ∗) is not

uniformly distributed

In contrast, the XOR of two uniformly dis-

tributed random numbers would itself be uni-

formly distributed
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S-box Non-Differential Uniformity

If the input to an S-box is a uniformly dis-

tributed random number, its output will be a

uniformly distributed random number

S1
E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7
0 F 7 4 E 2 D 1 A 6 C B 9 5 3 8
4 1 E 8 D 6 2 B F C 9 7 3 A 5 0
F C 8 2 4 9 1 7 5 B 3 E A 0 6 D

Assuming the 56-bit key is chosen according

to a uniform probability distribution, the input

to any S-box in any round will be uniformly

distributed over all 64 possible values

The output of any S-box in any round therefore

also uniformly distributed over its 16 possible

values (0 to F) since each occurs 4 times in

the S-box, once in each row
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S-box Differential Non-Uniformity

Consider the differential behavior of an S-box,

in which there are 642 = 4,096 possible input

pairs (x, x∗)

As the 6-bit quantities x, x∗, and x′ = x ⊕ x∗

each vary over their 64 possible values, the 4-

bit quantities y = S(x), y∗ = S(x∗), and y′ =

y ⊕ y∗ = S(x) ⊕ S(x∗) each vary over their 16

possible values

The distribution on the differential output y′

can be computed for each of the eight S-boxes

by counting the number of times each value y′

occurs as (x, x∗) varies over its 4,096 possible

values
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S1 Differential Distribution Table

Input Output y′
x′ 0 1 2 3 4 5 6 7 8 9 A B C D E F
00 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
01 0 0 0 6 0 2 4 4 0 10 12 4 10 6 2 4
02 0 0 0 8 0 4 4 4 0 6 8 6 12 6 4 2
03 14 4 2 2 10 6 4 2 6 4 4 0 2 2 2 0
...

0C 0 0 0 8 0 6 6 0 0 6 6 4 6 6 14 2
...

34 0 8 16 6 2 0 0 12 6 0 0 0 0 8 0 6
...

3E 4 8 2 2 2 4 4 14 4 2 0 2 0 8 4 4
3F 4 4 4 2 4 0 2 4 4 2 4 8 8 6 2 2
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The 6-bit differential input x′ takes 64 values:

00 (hex) to 3F (hex)

The 4-bit differential output y′ takes 16 values:

0 (hex) to F (hex)

Each row sums to 64 because each differential

input x′ occurs for 64 of the 4,096 (x, x∗) pairs

The first row has zeros in all but the first

column, because when x′ = x ⊕ x∗ = 0, the

same input occurs twice. Therefore, the same

output must also occur both times and y′ =

y ⊕ y∗ = 0
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The later rows are more interesting:

For example, when x′ = 01, five of the sixteen

possible y′ values 0, 1, 2, 4, 8 occur with zero

probability (i.e., never occurs)

A occurs with probability 16/64

9 and C occur with probability 10/64

This is a highly non-uniform distribution

This differential non-uniformity is observed in

all of the S-boxes S1, S2, . . . , S8
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Consider the input XOR 34. The possible out-

put XORs are

Output: 1 2 3 4 7 8 D F
Occurs: 8 16 6 2 12 6 8 6

34 → 4 has two occurrences. These input pairs

are duals: (α, β) and (β, α)

When we construct the differential distribution

table for S1, we discover these inputs as 13 and

27

13 = 01 0011

27 = 10 0111

13 ⊕ 27 = 11 0100

= 34

S1(13) = 0110

S1(27) = 0010

S1(13) ⊕ S1(27) = 0100

= 4
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List of possible input values for S1 box with

input XOR 34

34 → 1: 03, 0F, 1E, 1F, 2A, 2B, 37, 3B

34 → 2: 04, 05, 0E, 11, 12, 14, 1A, 1B, 20,

25, 26, 2E, 2F, 30, 31, 3A

34 → 3: 01, 02, 15, 21, 35, 36

34 → 4: 13, 27

34 → 7: 00, 08, 0D, 17, 18, 1D, 23, 29, 2C,

34, 39, 3C

34 → 8: 09, 0C, 19, 2D, 38, 3D

34 → D: 06, 10, 16, 1C, 22, 24, 28, 32

34 → F: 07, 0A, 0B, 33, 3E, 3F
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Determination of the key:

Suppose we know two inputs to S1 as 01 and

35 which XORs to 34, and the output XOR as

D

S1

+

S1E S1K

34: 01, 35

34:  06, 10, 16, 1C
       22, 24, 28, 32

D:

S1I

S1O

The input XOR is 34, regardless of the value

of the key because

S1′I = S1I ⊕ S1∗I
= (S1E ⊕ S1K) ⊕ (S1∗E ⊕ S1K)

= S1E ⊕ S1∗E
= S1′E
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Also since

S1I = S1E ⊕ S1K

we have

S1K = S1I ⊕ S1E

which gives

06 ⊕ 01 = 07 06 ⊕ 35 = 33
10 ⊕ 01 = 11 10 ⊕ 35 = 25
16 ⊕ 01 = 17 16 ⊕ 35 = 23
1C ⊕ 01 = 1D 1C ⊕ 35 = 29
22 ⊕ 01 = 23 22 ⊕ 35 = 17
24 ⊕ 01 = 25 24 ⊕ 35 = 11
28 ⊕ 01 = 29 28 ⊕ 35 = 1D
32 ⊕ 01 = 33 32 ⊕ 35 = 07

Thus, possible keys are:

{07,11,17,1D,23,25,29,33}

20



Furthermore, suppose we know two inputs to

S1 as 21 and 15 which XORs to 34, and the

output XOR as 3

S1

+

S1E S1K

34: 21, 15

34:  01, 02, 15, 21
        35, 36

3:

S1I

S1O

This gives the key values:

01 ⊕ 21 = 20 01 ⊕ 15 = 14
02 ⊕ 21 = 23 02 ⊕ 15 = 17
15 ⊕ 21 = 34 15 ⊕ 15 = 00
21 ⊕ 21 = 00 21 ⊕ 15 = 34
35 ⊕ 21 = 14 35 ⊕ 15 = 29
36 ⊕ 21 = 17 36 ⊕ 15 = 23

as

{00,14,17,20,23,34}

21



The correct key value must appear in both of

these sets:

{07,11,17,1D,23,25,29,33}

{00,14,17,20,23,34}

Intersecting these two sets, we obtain

{17,23}

Thus, the key value is either 17 or 23

In order to determine which one of these is

the correct value, we need more input/output

XORs
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Characteristic

The differential input with the highest prob-

ability, which can be traced through several

rounds

Two observations:

The XOR of pairs is linear in the E expansion:

E(X) ⊕ E(X∗) = E(X ⊕ X∗) = E(X ′)

The XOR of pairs is independent of the key:

SI = SE ⊕ SK

S∗
I = S∗

E ⊕ SK

SI ⊕ S∗
I = SE ⊕ SK ⊕ S∗

E ⊕ SK

S′
I = SE ⊕ S∗

E

S′
I = S′

E
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A 2-Round Characteristic

(00 80 82 00 , 60 00 00 00)

(00 00 00 00 , 60 00 00 00)

+

+ f(R,K)

a’=60 00 00 00
p=14/64

p=1

A’=00 80 82 00

b’=00 00 00 00B’=00 00 00 00

f(R,K)

The differential input to F in the first round is

a′ = 60 00 00 00

The expansion operation puts these half bytes

into the middle four bits of each S-box in order
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6 = 0110 goes to S1 and 0 = 0000 goes to

S2, . . . , S8

Since all the edge bits are zero, S1 is the only

S-box receiving non-zero differential input

S1’s differential input is 0 0110 0 = 0C while

the differential inputs of S2, . . . , S8 are all zero

Looking in S1’s differential distribution table,

we find that when x′ = 0C, the highest proba-

bility differential output y′ is E = 1110, which

occurs with probability 14/64

All the other S-boxes have x′ = 0 and y′ = 0

with probability 1
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The S-box outputs go through the permuta-

tion P before becoming the output f(R, K)

As shown, the differential output of f(R, K) is

A′ = P (E0 00 00 00) = 00 80 82 00

A′ = 00 80 82 00 is then XORed with L′ =

00 80 82 00 to give 00 00 00 00

Thus, in the second round all S-boxes receive

their differential inputs as zero, producing the

differential outputs as zero

The ouput of f(R, K) in the second round is

zero, giving the differential output as depicted:

(00 00 00 00 , 60 00 00 00)
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Differential Cryptanalysis

of 2-Round DES

This analysis assumes the initial (IP) and final

(FP) permutations are removed from the DES

algorithm

Step 1: Generate a plaintext pair (P, P ∗) such

that

P ′ = P ⊕ P ∗ = 00 80 82 00 60 00 00 00

This is done by generating a random P and

XORing it with

00 80 82 00 60 00 00 00

to generate P ∗
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Step 2: Give the plaintext pair (P, P ∗) to your

opponent who enciphers it and gives you the

ciphertext pair (T, T ∗)
(chosen plaintext cryptanalysis)

Step 3: Compute T ′ = T ⊕T ∗ and see whether

it is equal to

00 00 00 00 60 00 00 00

If it does not, the characteristic has not oc-

curred and this pair is not used. Go to Step 1

and generate a new plaintext pair.

If T ′ is equal to

00 00 00 00 60 00 00 00

then the characteristic has occurred, and we

know the values of A′ and B′. Go to Step 4.
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Step 4: Since S2, . . . , S8 have their differential

inputs equal to zero, no information can be

gained about S2K, . . . , S8K

Because, in the differential distribution table of

S1, we have 0C → E with probability 14/64,

only 14 of 64 possible S1K values allow

a′ = 60 00 00 00

to produce

A′ = 00 80 82 00

These 14 allowable values can be determined

by XORing each possible S1K with the corre-

sponding six bits of S1E and S1∗E, computing

S1’s differential output S1′O and checking if it

is equal to E

Put these 14 values of S1K in a table
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Step 5: Compute the intersection of these

tables

Since the correct key value must occur in each

table, it will be in the intersection

If more than one S1K value results, we do not

have enough plaintext, ciphertext differential

pairs to uniquely determine S1K. Go to Step

1 and generate additional data

The number of plaintext, ciphertext differen-

tial pairs needed is approximately equal to the

inverse of the probability of the characteristic

used; in this case 64/14 ≈ 5 pairs are needed

If a single S1K value results, it is correct. Go

to Step 6
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Step 6: At this point we have recovered the

6 bits of the key comprising S1K

Use similar characteristics to recover the 6 bits

of key which are XORed with S2 through S8’s

inputs in the first round

Step 7: At this point we have 48 bits of the

key which comprise SK, or equivalently S1K

through S8K

Find the remaining 8 bits of K by exhaustive

search over the 64 possible values
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Probabilistic Cryptanalysis

Remove Step 3 and assume that the charac-

teristic occurs for every pair of encipherments

The probability of this characteristic to occur

is 14/64 · 1 = 14/64

Thus, we will be wrong for 50/64 of the pairs

The correct value of S1K need not occur in

every table and we should look for the most

frequent S1K value

The correct value occurs in 14/64 of the ta-

bles and the remaining 63 values occurs with

approximately equal (and smaller) probability

32



4-Round Differential Attack

The following 1-round characteristic is used to

cryptanalyze the 4-round DES

(20 00 00 00 , 00 00 00 00)

(00 00 00 00 , 20 00 00 00)

+
a’=00 00 00 00

p=1
A’=00 00 00 00 f(R,K)

Biham and Shamir developed a method where

one uses an n-round characteristic to break an

(n + 3)-round DES

They call this method a 3R attack
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Differential Cryptanalysis

of 4-Round DES

(d’ , D’ + B’)

(20 00 00 00 , 00 00 00 00)

+

+ f(R,K)

a’=00 00 00 00 p=1A’=00 00 00 00

b’=20 00 00 00B’

f(R,K)

f(R,K)+
c’=B’C’

+ f(R,K)D’ d’

p2

p3

p4
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Observations:

We know the inputs x and x′ for all S-boxes in

the last round since d and d′ are the left halves

of the ciphertext T and T ′

To recover the 6-bit subkeys SiK in the last

round, we need to learn the differential outputs

y′ from some S-boxes

We know the values of d′ and D′ ⊕B′ since we

know the ciphertext pair causing this charac-

teristic

In order to get D′, we need to obtain B′
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Note that b′ = 20 00 00 00 causes the differ-

ential inputs to S2 through S8 in the second

round to be all zeros in their middle four bits

2 = 0010 is input to S1’s middle four bits and

the seven zeros are inputs to S2, S3, . . . , S8

The expanded edge bits that go from S1 to S8

and S2 are both zero; they do not disturb the

zero inputs to S2, S3, . . . , S8

Thus, B′ have 7 · 4 = 28 zeros in its represen-

tation; the places of the zeros can be found

by tracing back the permutation used at the

output of f(R, K)

Therefore, we know 28 bits of D′

We can now obtain 6 · 7 = 42 bits of the key

using our analysis technique; the remaining 14

bits can be obtained using exhaustive search
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Differential Cryptanalysis

of 8-Round DES

DES with 8 rounds can be broken using a 5-

round characteristic

The probability of the characteristic is

16

64
· 10 · 16

642
· 16
64

· 10 · 16
642

≈ 9.5 · 10−5

Thus, we expect approximately 10,000 (P, P ∗)
pairs to be needed per occurrence of the char-

acteristic

Since we cannot completely observe input, out-

put XORs, we cannot guarantee that the char-

acteristic has occurred

We assume that the characteristic occurs for

every differential pair of plaintexts (P, P ∗)
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+

+ f(R,K)

a’=04 00 00 00 p=16/64A’=40 08 00 00

b’=00 54 00 00

f(R,K)

f(R,K)+
c’=0

+ f(R,K)

p=1

=P(0A 08 00 00)

p=10x16/642A’=04 00 00 00

=P(00 10 00 00)

d’=00 54 00 00D’=04 00 00 00

=P(00 10 00 00)

C’=0

p=10x16/642

+ f(R,K)
e’=04 00 00 00E’=40 08 00 00

=P(0A 00 00 00)

p=16/64

+ f(R,K)
f’=40 5C 00 00F’

=P(x0 xx 00 00)

+ f(R,K)
g’=F’ + e’G’

+ f(R,K)
h’H’

R’8 = H’ + P(x0 xx 00 00) + 04 00 00 00L’8 = h’

(40 5C 00 00 , 04 00 00 00)
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We are right only one time in 10,000; we need

several times this number of differential pairs

Biham and Shamir claim that 150,000 pairs

are needed

Step 1: Generate the pair (P, P ∗) whose dif-

ferential P ′ = P ⊕ P ∗ is equal to

40 5C 00 00 04 00 00 00

Step 2: Obtain the ciphertext pair (T, T ∗)

Step 3: Assume the characteristic has oc-

curred and compute the differential outputs of

S2, S5, S6, S7, and S8 in the 8th round using

P−1(H ′) which is equal to

P−1(R′
8 ⊕ 04 00 00 00) ⊕ (x0 xx 00 00)
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Step 4: Test each of the 64 possible 6-bit sub-

keys K8,2 associated with S2 in the 8th round

to see which case the observed (x, x∗) to pro-

duce the y′ computed for S2 in Step 3

Put those subkeys that produce y′ in a table

{K8,2}

Repeat this step to produce tables of possible

subkeys {K8,5}, {K8,6}, {K8,7}, and {K8,8} for

S5, S6, S7, S8, respectively

Step 5: If any of the five tables produced in

Step 4 is empty, the characteristic could not

have occurred

In that case, discard all 5 tables, return to Step

1 and try a new differential plaintext pair
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Step 6: If each of the 5 tables is nonempty,

the characteristic may have occurred

In that case, generate all possible 30-bit por-

tions of K8 associated with S2, S5, S6, S7,

and S8 by choosing one 6-bit from each table

If n2, n5, n6, n7, and n8 denote the number

of 6-bit subkeys in the tables {K8,5}, {K8,6},
{K8,7}, and {K8,8}, then the number of 30-bit

values is N = n2n5n6n7n8

Let K denote such a 30-bit value
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Step 7: For each of the K’s generated in Step

6, increment a counter corresponding to that

value

If any counter reaches a count of 10, the as-

sociated K value is probably correct

(the value 10 is obtained using some heuristic

arguments and test results suggest that it is a

suitable constant)

If no counter reaches 10, return to Step 1 and

generate additional differential plaintext pairs
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Known-Plaintext Attack

We have assumed a chosen plaintext attack in

which the cryptanalyst can obtain ciphertext

of any selected plaintext

It is possible to perform a known plaintext at-

tack by allowing the cryptanalyst to pick from

a larger set of plaintext, ciphertext pairs

Suppose the chosen plaintext attack needs m

pairs, and that we are given

232
√

2m

random plaintext, ciphertext pairs.

These form

(232
√

2m)2

2
= 264m

possible pairs of plaintexts.
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Each pair has an XOR. Since the block size is

64, there are 264 possible plaintext XOR val-

ues, and thus there are about

264m

264
= m

pairs creating each plaintext XOR value.

In particular, with high probability there are

about m pairs with each one of the several

plaintext XOR values needed for differential

cryptanalysis.
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Results

No. of Find Charac Chosen Known
Round Bits Ln Pr Plains Plains

4 42 1 1 24 233

6 30 3 2−4 28 236

8 30 5 2−13.5 216 240

10 18 9 2−31.5 235 249

16 18 15 2−55.1 258 261

Improved with heuristics

No. of Chosen Known Complexity
Round Plaintexts Plaintexts

8 214 238 29

10 224 243 215

12 231 247 221

14 239 251 229

16 247 255 237
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Summary of the Results

• DES reduced to 6 rounds can be broken by a

chosen plaintext attack in less 0.3 seconds on a

PC using 240 ciphertexts; the known plaintext

version requires 236 ciphertexts

• DES reduced to 8 rounds can be broken by a

chosen plaintext attack in less than 2 minutes

on a PC by analyzing about 214 ciphertexts;

the known plaintext attack needs about 238

ciphertexts

• Full DES can be broken by analyzing 236

ciphertexts from a larger pool of 247 chosen

plaintexts using 237 time

• The above is true even if the keys are fre-

quently changed and the collected data are de-

rived from different keys
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• The effort is almost independent of the key

size; breaking DES with a 56-bit key requires

almost the same amount of effort as breaking

DES with 16 different 48-bit keys

• Differential cryptanalysis confirmed the im-

portance of the number of rounds and the

method by which the S-boxes are constructed

• Variations on DES turn out to be easier to

cryptanalyze than the original DES; for ex-

ample, GDES (Generalized DES) scheme of

Schaumuller-Bich is much more easily crypt-

analyzed (using only 6 ciphertexts in less than

0.2 seconds)

• Certain changes in the structure of DES may

have catastrophic results:
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Modified Versions of DES

Modified Chosen
Operation Plaintexts

Full DES (No change) 247

P permutation:
Random 247

Identity 219

Order of S-boxes 238

Change XOR by Addition 231

S-boxes:
Random 221

Random Permutation 244 ∼ 248

One Entry 233

Uniform 226

Eliminate Expansion E 226

Order of E and subkey XOR 244
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