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Discrete Logarithm Problem Shanks, Pollard Rho

Exponentiation and Logarithms in a General Group

o In a multiplicative group (S, ®) with a primitive element g € S, the
exponentiation operation for a positive x is the computation of y in
x terms
—_——~
y=8'=g0g®--0g
@ On the other hand, in an additive group (S, ®) with a primitive

element g € S, the point multiplication operation is the computation

of y in
x terms

—_—~
y=Klg=goges -og
o In both cases, the discrete logarithm problem (DLP) is defined as:

|Given y and g, Compute x|
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Discrete Logarithms in Public-Key Cryptography

o If the DLP is difficult in a given group, we can use it to implement
several public-key cryptographic algorithms, for example,
Diffie-Hellman key exchange method, EIGamal public-key encryption
method, and the Digital Signature Algorithm

o Two types of groups are noteworthy:

o The multiplicative group Z; of integers modulo a prime p
o The additive group of elliptic curves defined over finite fields

o The DLP problem in these groups are known to be difficult
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Discrete Logarithm in (Z,,+ mod n)

There may also be other groups worth considering
However, the DLP is trivial in many groups
For example, the DLP in additive mod p group is trivial

“Exponentiation” in this group is defined as
x terms

—_——
y=xlg=g+g+--+g

where g is a primitive element in the group, x is an integer, y is an
element of the group (an integer in Z,), and the + operation is the
addition mod n
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Discrete Logarithm in (Z,,+ mod n)

o x is easily solvable from the above since

x=g 'y (mod n)

where y~1

is the multiplicative inverse of y mod n
o Consider (Z11,+ mod 11) where any nonzero element is primitive

o Any DLP in (Z11,+ mod 11) is easily solvable, for example,
2=[x]|3 (mod 11)
is solved as

x = 371.2 (mod11)
= 4.2 (mod 11)
8

(http://cs.ucsb.edu/~koc/ecc) Elliptic Curve Cryptography lect08 discrete log 5/ 46


http://cs.ucsb.edu/~koc/ecc

Discrete Logarithm Problem Shanks, Pollard Rho

Discrete Logarithms in GF(2%)

o On the other hand, the DLP in the multiplicative group of GF(2¥) is
also known to be rather easy (but not trivial)

o The multiplicative group of GF(2¥) consists of

The set S = GF(2k) — {0}

The group operation multiplication mod p(x)

p(x) is the irreducible polynomial generating the field GF(2%)
The group order is 2K — 1

The group order is prime, when 2% — 1 is prime,
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Discrete Logarithms in GF(2%)

o Consider the multiplicative group of GF(23)

o Thesetis S ={1,x,x+1,x% x>+ 1,x%> +x,x*> +x + 1}

o The operation is the multiplication mod p(x) = x> 4+ x + 1

o The group order is 7, which happens to be prime

@ Thus, all elements of the set is primitive, except 1

o Let us take g = x

o The powers x' for i = 1,2,...,7 generates all elements of the set S

{x" (mod p(x)) | i=1,2,...,7} =

{x, %, x4+ 1, x> +x,x> + x +1,x> + 1,1}
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Discrete Logarithms in GF(2%)

o Consider the DLP in GF(23)
x?=x?>+x (mod x>+ x +1)

where a is the unknown, to be computed (the DL)
Which power of x is equal to x* + x (mod x3 + x +1) ?

We can solve this particular DLP using exhaustive search

There are 7 candidates for a, and we find it as a =4

The general DLP seems difficult

Don Coppersmith proved that it is easy (but not trivial):
http://cs.ucsb.edu/~koc/ecc/docx/Coppersmith84.pdf
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Exponentiation and Discrete Logarithms in Z7

o Consider the multiplicative group Z; of integers modulo a prime p
and a primitive element g € Z

@ The exponentiation operation is the computation of y in

x terms
—_—
y=g8"=%-g---g (modp)

for a positive integer x

o The discrete logarithm problem in this group is defined to be the
computation of x, given y, g, and p

o Example: Given p =23 and g =5, find x such that
11 =5 (mod 23)
Answer: x =9
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Discrete Logarithms in Z;

o Given p = 158(2800 4. 25) + 1 =

1053546280395016975304616582933958731948871814925913489342
6087342587178835751858673003862877377055779373829258737624
5199045043066135085968269741025626827114728303489756321430
0237166369174066615907176472549470083113107138189921280884
003892629359

and g = 3, find x € Z; such that
2=3% (mod p)

Answer: 7
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Discrete Logarithm Notation

The computation of x in y = g* (mod p) is called the DLP

o Here x is equal to the discrete analogue of the logarithm

x=loggy (modp—1)

@ The modulus is p — 1 since the powers are added and multiplied mod
p — 1 according to Fermat’'s Theorem

The logarithm notation is particularly useful

For example, 215 = 27 (mod 29) implies

log, 27 =15 (mod 28)
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Discrete Logarithm Notation

o The logarithm notation allows us to compute new discrete logarithms

o For example
logg(a- bmod p) = logg a+logg b (mod p—1)
o Similarly

log,(a® - b' mod p) = e- logz a+ f-logg b (mod p—1)
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Discrete Logarithm Notation

o For example,
215 = 27 (mod 29)
= 5 (mod 29)
which implies
log,27 = 15 (mod 28)
logo5 = 22 (mod 28)
o Therefore, we can write

log, 27 + log, 5 = log,(27 - 5 mod 29) (mod 28)
= log,19 (mod 28)
15+22 = 9 (mod 28)
which implies log, 19 = 9 (mod 28) or 2° = 19 (mod 29)
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Exhaustive Search

@ Since x € Z7, we can perform search, and try all possible values of x:

fori=1top—1
z=g' (mod p)
ify==z
return x =/

o This algorithm requires the computation of ith power of g mod p at
each step
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Exhaustive Search

o However, ith power of g need not be computed from scratch

zZ=g
fori=2top—1
z=g-z (mod p)
ify=z
return x =/

o This algorithm requires p — 2 multiplications

o Since multiplications of k-bit operands are of order O(k?), the search
is exponential in k
O(pk?) = 0(2°k?)
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Shanks’ Baby-Step-Giant-Step

In 1973, Shanks described an algorithm for computing discrete
logarithms that runs in O(,/p) time and requires O(,/p) space

Let y = g* (mod p), with m = [/p| and p < 2k

Shanks’ method is a deterministic algorithm and requires the
construction of two tables S and T, which contains pairs of integers

o The construction of S is called the giant-steps:
S={(i,g"™) |i=0,1,...,m}
@ The construction of T is called the baby-steps:

T:{(j,y-gj) |j=0,1,...,m}
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Shanks’ Baby-Step-Giant-Step

@ The existence of the same group element in both tables implies
g =y-g =¢g"¢ (modp)
o We get the indices i and j, and write the equality of the powers as
i-m=x+j (modp—1)

and thus find x =7-m—j (mod p — 1)
o To use this method in practice, one would typically only store the

giant-steps array and the lookup each successive group element from
the baby-steps array until a match is found

o However, the algorithm requires enormous amount of space, and thus,
it is rarely used in practice
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Shanks’ Baby-Step-Giant-Step

o Consider the solution of y = 44 = 3* (mod 101)
e m = [v/101] = 11, therefore, the giant-steps and baby-steps tables:

S={(3"%)|i=0,1,...,11}
i J]o 1 2 3 4 5 6 7 8 9 10 11
31 [ 1 94 49 61 78 60 85 11 24 34 65 50

T={(,44-3)|j=0,1,...,11}
J 0 1 2 3 4 5 6 7 8 9 10 11
44 .3/ |44 31 93 77 29 87 59 76 26 78 32 96

o The solution x = 4-11 —9 =35, i.e., 3%° = 44 (mod 101)
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Correctness of Shanks’ Algorithm

@ Solving for x in y = g* (mod p) requires creation of 2 tables of
O(y/p) size

@ However, x can be any one of the numbers in the set [2, p — 2], which
is of size O(p)

o How does it work that by searching in 2 tables of size O(,/p) we can
find an element x that belongs to a set of size O(p)?
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Proof of Correctness of Shanks' Algorithm

o Since m = [,/p], we can write x in base-m as
X=1i-m+j

such that /,j € [0,m — 1]

o For example, for p = 101, m = 11, and x = 35, we can write:
35=3-114+2

o Instead of searching for x € [2, p — 2], we can search for
i,j€[0,m—1]
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Proof of Correctness of Shanks' Algorithm

o Therefore, we would be performing 2 searches in two sets of size
O(m) = O(/p), one search for i and the other for j

o The exponentiation equality is given as

i-m-+j

y=g (mod p)

o This implies

y-g7=g" (mod p)
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Proof of Correctness of Shanks' Algorithm

o We would create one table (S) of values (i,g"™), and another table
(T) of values (j,y -g7/)
o An equality of the form

gm=y gl=g"g7 (modp)
for particular values of 7, implies that
i-m=x—j (modp—1)

which allows us to compute x by creating 2 tables of size O(,/p)
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Pollard Rho Algorithm for DLP

o Pollard Rho algorithm is also of O(,/p) time complexity, however, it
does not require a large table

o It forms a pseudorandom sequence of elements from the group, and
searches for a cycle to appear in the sequence

@ The sequence is defined deterministically and each successive element
is a function of only the previous element

o If a group element appears a second time, every element of the
sequence after that will be a repeat of elements in the sequence

o According to the birthday problem, a cycle should appear after
O(4/p) elements of the sequence have been computed
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Pollard Rho Algorithm for DLP

o The Pollard Rho algorithm defines the sequence

y-a; for a; €5
ajt1 = a? for aj e 5

g-a; for a; €5,

where Sg, S1, and S, are disjoint partitions of the group elements,
that are approximately the same size

o The initial term is taken as ag = g* for a random «

o Apparently, there is no need to keep all of the group elements; we
compute the sequences from a; to ap; until an equality is discovered

o The equality of two terms in the sequence implies equality on
exponents mod (p — 1), from which we solve for x
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Pollard Rho Algorithm for DLP

o Consider the solution of y = 44 = 3* (mod 101)

o We divide the set S = {1,2,...,100} into 3 sets such that
So=11,2,...,33}, S; = {34,35,...,66}, and
S, ={67,68,...,100}

o Starting with the first term ap = g¢ for a random a = 15, we get
ag = 3'® = 39, and first few following terms of the iteration as

aj 50 51 52 aj
i=0 ao =39 39 gt
i=1| a=a2=392=6 6 g%
[=2|a=y-a3=44-6=062 62 y g0
i=3 a3=a5=622=6 6 y? . g%
i=4|lag=y-a3=44-6=062 62 y3. g%
i=5 as=as=622=6 6 y8 . gt?o
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Pollard Rho Algorithm for DLP

Therefore, we find a; = a3 (also ap = a4 and a3z = as)

The discovery of an equality in the sequence implies that we found a
relationship between the exponent x and known powers of g

o The equality a; = a3 implies

g30 = 2. g% — (g¥)2. gb0 — g2x+60
o We have an equality over the exponents

30 =2x+60 (mod 100) — 2x =70 (mod 100)

Since ged(2,100) # 1, this equation has two solutions: x = {35,85}
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Pollard Rho Algorithm for DLP

o We can check each candidate to verify:
3244 (mod 100)

o We see that x = 35 is a solution since 3%° = 44 (mod 101)

o Similarly, the equality of a) = a4 gives the same equation:
x+30=3x+60 (mod100) — 2x =70 (mod 100)
@ On the other hand, the equality of a3 = a5 implies
2x +60 = 6x+ 120 (mod 100) — 4x =40 (mod 100)

We find 4 candidates: x = {10, 35,60,85}
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Pollard Rho Algorithm for DLP

o Another way to divide the set S ={1,2,...,p—1}:
So={i|i=0 (mod 3)}
Si={i|i=1(mod 3)}
So={i|i=2 (mod3)}

o For p =101, we get
So =1{3,6,9,12,...,99}
Sy ={1,4,7,10,13,...,100}
S, ={2,5,8,11,14,...,98}
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Pollard Rho Algorithm for DLP

@ Solving for 48 = 3* (mod 101)

o Starting with the first term ag = g® for a random o = 10, we get
ag = 310 = 65, and first few following terms of the iteration as

a; 50 51 52 aj
i=0 ap = 65 65| gl
i=1|lag=g-a=3-6b=94 94 gl!
i=2| a=a}=94=49 g?
i= a3=a3=492=78 |78 g*
I = ay=y-a3=48-78=7 7 y-g*
i=5| as=a3=7>=49 y? - g%8
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Pollard Rho Algorithm for DLP

o The equality of ap = a5 implies
g22 _ y2 A g88 — g2X . g88 (mOd 101)
@ From which, we write

2x+88 = 22 (mod 100)
2x = 34 (mod 100)

o We find candidates for the solution as {17,67}
o Trying both, we find x = 17 as the solution in 3* = 48 (mod 101)
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The Complexity of Pollard Rho Algorithm

o The Pollard Rho algorithm generates a sequence in order to find a
match, due to the birthday problem

o lts time complexity is O(,/p) which is exponential in terms of the
input size in bits: O(2/?)

o However, there are subexponential algorithms, for example the index
calculus method for the group Z; has subexponential time complexity

o Before that, let us study the Pohlig-Hellman algorithm which converts
on order-ab DL into an order-a DL, an order-b DL, and a few
exponentiations
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Pohlig-Hellman Algorithm

The group order in (Z;,* mod p) is p — 1
There are p — 1 elements in the set Z; = {1,2,...,p—1}
Assume p—1=a- b, that is, g has order a- b

Given y, which is a power of g, we deduce that:
g? has order b since (g?)? =g =gP 1 =1
g? has order a since (g?)? =g =gP1 =1
y? is a power of g? since y? = (g*)? = (g?)*
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Pohlig-Hellman Algorithm

o Step 1: Solve for r in the DLP:

(&%) =y (mod p)

o Step 2: Solve for s in the DLP:

(&) =y-g " (mod p)
o Step 3: Compute x=r+s-b
o Correctness proof:
gt = g -(g)" (mod p)

r —r

g
= g"-y-g" (modp)
y
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Pohlig-Hellman Algorithm Example p = 1259

o Consider p = 1259 and g = 2, and the DLP
y =338=g" (mod p)
op—1=34.-37=a-b
o Step 1: Solve for r in
(&°)" = y° (mod p)
(234" = 338%* (mod p)
870" = 463 (mod p)

@ Since 870 is of order b = 37, we solve a smaller DLP
@ The solution r is in the set [0, b — 1] = [0, 36]
o This DLP gives r = 27 since 870%7 = 463 mod p
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Pohlig-Hellman Algorithm

o Step 2: Solve for s in the DLP:

(g°)° = y-g " (modp)
(2%7)° = 338-27%" (mod p)
665° = 338-880 (mod p)

665° = 316 (mod p)

o This is also a smaller DLP, since s is in the set [0,a — 1] = [0, 33]
o We find s = 2, since 6652 = 316 (mod p)

o Step 3: We find x as
X=r+s-b=27+2-37=101

o This is indeed the solution of DLP:
g<=20"=338=y (mod p)
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Complexity of the Pohlig-Hellman Algorithm

o The Pohlig-Hellman algorithm requires two independent DLPs which
are order \/a and Vb when p=a- b

@ These can be solved using exhaustive search, requiring O(+/a) and
O(v/b) multiplications

o It works better if a or b factors even further
@ The means, we can apply Pohlig-Hellman recursively

o If the largest prime divisor of p — 1 is much smaller than p, then
Pohlig-Hellman computes DL more quickly

(http://cs.ucsb.edu/~koc/ecc) Elliptic Curve Cryptography lect08 discrete log 36 / 46


http://cs.ucsb.edu/~koc/ecc

Discrete Logarithm Problem Shanks, Pollard Rho

Applications to ECDLP

o The exhaustive search, Shank’s, Pollard Rho, and Pohlig-Hellman
algorithms are applicable to any group

@ They do not require particular properties from the group, and perform
only group operations to solve for the DLP
o They are applicable to the ECDLP

o They all require exponential time

o Given the DLP y = g* (mod p), these algorithms require:
Exhaustive Search: O(p) operations
Shank’s Baby-Step-Giant-Step: O(,/p) operations and O(,/p) space
Pollard Rho: O(,/p) operations and probably less space
Pohlig-Hellman: O(y/a+Vb)forp—1=a-b
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Index Calculus Algorithm

@ The Index Calculus algorithm is asymptotically faster than the
previous algorithms

o The Index Calculus algorithm generates group elements g@"+b
o It then deduces equations for n from random collisions

o However, the Index Calculus algorithm obtains discrete-logarithm
equations in a different way
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Index Calculus Algorithm

o We are attempting to solve the DLP y = g* (mod p)

o Consider the set S, called the factor base, the set of all primes less
than or equal to some bound b

o For example, S = {2,3,5} where b=5

@ An element of Z7 is called smooth with respect to b, if all of its
factors are contained in S

o For example, these elements of Z;, are smooth wrt b = 5:
{2,3,4=2256=23,8=2%9=3210=25,12=22.3,15 = 3.5,16 = 2*,18 = 2.3%}
o These elements of Zjy are not smooth wrt b = 5:

{7,11,13,14 = 2. 7,17}
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Index Calculus Algorithm

The Index Calculus algorithm has 3 steps

Step 1: Take a random «, and compute g% (mod p), and see if it is

smooth, that is
g =[] p"

pi€S

If it is, we obtain its discrete logarithm base g, where all «; are known

o= Z ajlogg pi (mod p —1)
pi€S

o Continue this process until more than |S| equations are known
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Index Calculus Algorithm

o Step 2: Solve this system of equations to find the unique values for
each of log, p; (mod p —1)

@ Step 3: In this step we find the solution to the DLP y = g* (mod p),
that is we compute log, y (mod p — 1)

o Select a random « so that y - g® (mod p) is smooth

o When we find such an «, we can compute x using

x=logyy =—a+ Za;loggp,- (mod p—1)
pi€ES

where everything on the right hand side is known
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Index Calculus Algorithm Example for p = 37

o Consider p=37, g =5and S ={2,3}

o Step 1: Try a = 6: g% =5%=11 (mod 37): Not smooth
o Trya=7 g*=5 =18=2'.32 (mod 37): Smooth

o Thus, we find

1-logs2+2-logs3=7 (mod 36)

Try a = 14: g =5 =28 =22.7 (mod 37): Not smooth
Try a = 31: g% =53 =24 =23.3! (mod 37): Smooth
o Thus, we find

3-logs2+1-logs3 =31 (mod 36)
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Index Calculus Algorithm

o Step 2: We solve these two equations

1-logs2+2-logs3 = 7 (mod 36)
3-logs2+1-logs3 31 (mod 36)

o Expressed in matrix form as

1 2| |logs2| |7
[3 1] [Iog5 3] - [31] (mod 36)
@ We find the solutions as logs 2 = 11 and logs 3 = 34
o These are verified as 5! =2 (mod 37) and 53* = 3 (mod 37)

(http://cs.ucsb.edu/~koc/ecc) Elliptic Curve Cryptography lect08 discrete log 43 / 46


http://cs.ucsb.edu/~koc/ecc

Discrete Logarithm Problem Shanks, Pollard Rho

Index Calculus Algorithm Example for y = 17

o Step 3: Suppose we want to find logs 17 (mod 36)

o We are trying to solve the DLP: y = 17 = 5% (mod 37)

o Trya =24: y-g* =17-5%* =35 (mod 37): Not smooth
o Trya=15: y-g* =17-5% =12 (mod 37): Smooth

o This number factors as 12 = 22 - 31, thus, we find

log,y = —a+ Z ajlogg pi  (mod p —1)
pi€S
logs17 = —15+2-log5g2+1-logs3 (mod 36)
— —15+2-11+1-34 (mod 36)
= 41 (mod 36)
= 5

@ The solution is x = 5 in 17 = 5% (mod 37), since 5°> = 17 (mod 37)
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Index Calculus Algorithm Example for y = 19

o Step 3: Suppose we want to find logs 19 (mod 36)
o We are trying to solve the DLP: y = 19 = 5% (mod 37)
o Trya=5 y-g*=19-5>=27 (mod 37): Smooth

o This number factors as 27 = 33, thus, we find

log,y = —a+ Z ailogg pi  (mod p —1)
pi€S
logs19 = —5+3-logs3 (mod 36)
= —5+3.34 (mod 36)
= 97 (mod 36)
25

o Thus x =25 in 19 = 5% (mod 37), since 525 = 19 (mod 37)

(http://cs.ucsb.edu/~koc/ecc) Elliptic Curve Cryptography lect08 discrete log 45 / 46


http://cs.ucsb.edu/~koc/ecc

Discrete Logarithm Problem Shanks, Pollard Rho

Complexity of the Index Calculus Algorithm

@ Analysis of the Index Calculus algorithm depends on several factors:

o How likely is it that g* (mod p) and y - g* (mod p) smooth ?

o What is the chance that |S| equations are linearly independent
(mod p—1)7

o How do we solve linear equations mod p—1 7

o It is shown that the time complexity is
(75 To(1) Vg ploglog p
o Furthermore, as p — oo, the Index Calculus algorithm scales very

well: the cost becomes p¢ where ¢ — 0
o Compare this to the Pollard Rho algorithm: ~ ,/p
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