# Discrete Logarithm Problem 

Çetin Kaya Koç<br>koc@cs.ucsb.edu



## Exponentiation and Logarithms in a General Group

- In a multiplicative group $(S, \otimes)$ with a primitive element $g \in S$, the exponentiation operation for a positive $x$ is the computation of $y$ in

$$
y=g^{x}=\overbrace{g \otimes g \otimes \cdots \otimes g}^{x \text { terms }}
$$

- On the other hand, in an additive group $(S, \oplus)$ with a primitive element $g \in S$, the point multiplication operation is the computation of $y$ in

$$
y=[x] g=\overbrace{g \oplus g \oplus \cdots \oplus g}^{x \text { terms }}
$$

- In both cases, the discrete logarithm problem (DLP) is defined as:

$$
\text { Given } y \text { and } g \text {, Compute } x
$$

## Discrete Logarithms in Public-Key Cryptography

- If the DLP is difficult in a given group, we can use it to implement several public-key cryptographic algorithms, for example, Diffie-Hellman key exchange method, ElGamal public-key encryption method, and the Digital Signature Algorithm
- Two types of groups are noteworthy:
- The multiplicative group $\mathcal{Z}_{p}^{*}$ of integers modulo a prime $p$
- The additive group of elliptic curves defined over finite fields
- The DLP problem in these groups are known to be difficult


## Discrete Logarithm in $\left(Z_{n},+\bmod n\right)$

- There may also be other groups worth considering
- However, the DLP is trivial in many groups
- For example, the DLP in additive mod $p$ group is trivial
- "Exponentiation" in this group is defined as

$$
y=[x] g=\overbrace{g+g+\cdots+g}^{x \text { terms }}
$$

where $g$ is a primitive element in the group, $x$ is an integer, $y$ is an element of the group (an integer in $Z_{n}$ ), and the + operation is the addition $\bmod n$

## Discrete Logarithm in $\left(Z_{n},+\bmod n\right)$

- $x$ is easily solvable from the above since

$$
x=g^{-1} \cdot y \quad(\bmod n)
$$

where $y^{-1}$ is the multiplicative inverse of $y \bmod n$

- Consider $\left(Z_{11},+\bmod 11\right)$ where any nonzero element is primitive
- Any DLP in $\left(Z_{11},+\bmod 11\right)$ is easily solvable, for example,

$$
2=[x] 3 \quad(\bmod 11)
$$

is solved as

$$
\begin{aligned}
x & =3^{-1} \cdot 2(\bmod 11) \\
& =4 \cdot 2(\bmod 11) \\
& =8
\end{aligned}
$$

## Discrete Logarithms in GF( $2^{k}$ )

- On the other hand, the DLP in the multiplicative group of $\operatorname{GF}\left(2^{k}\right)$ is also known to be rather easy (but not trivial)
- The multiplicative group of $\operatorname{GF}\left(2^{k}\right)$ consists of
- The set $S=\operatorname{GF}\left(2^{k}\right)-\{0\}$
- The group operation multiplication $\bmod p(x)$
- $p(x)$ is the irreducible polynomial generating the field $\mathrm{GF}\left(2^{k}\right)$
- The group order is $2^{k}-1$
- The group order is prime, when $2^{k}-1$ is prime,


## Discrete Logarithms in GF(2k)

- Consider the multiplicative group of $\operatorname{GF}\left(2^{3}\right)$
- The set is $S=\left\{1, x, x+1, x^{2}, x^{2}+1, x^{2}+x, x^{2}+x+1\right\}$
- The operation is the multiplication $\bmod p(x)=x^{3}+x+1$
- The group order is 7 , which happens to be prime
- Thus, all elements of the set is primitive, except 1
- Let us take $g=x$
- The powers $x^{i}$ for $i=1,2, \ldots, 7$ generates all elements of the set $S$

$$
\begin{gathered}
\left\{x^{i} \quad(\bmod p(x)) \mid i=1,2, \ldots, 7\right\}= \\
\left\{x, x^{2}, x+1, x^{2}+x, x^{2}+x+1, x^{2}+1,1\right\}
\end{gathered}
$$

## Discrete Logarithms in GF( $2^{k}$ )

- Consider the DLP in $\operatorname{GF}\left(2^{3}\right)$

$$
x^{a}=x^{2}+x \quad\left(\bmod x^{3}+x+1\right)
$$

where $a$ is the unknown, to be computed (the DL)

- Which power of $x$ is equal to $x^{2}+x\left(\bmod x^{3}+x+1\right)$ ?
- We can solve this particular DLP using exhaustive search
- There are 7 candidates for $a$, and we find it as $a=4$
- The general DLP seems difficult
- Don Coppersmith proved that it is easy (but not trivial): http://cs.ucsb.edu/~koc/ecc/docx/Coppersmith84.pdf


## Exponentiation and Discrete Logarithms in $\mathcal{Z}_{p}^{*}$

- Consider the multiplicative group $\mathcal{Z}_{p}^{*}$ of integers modulo a prime $p$ and a primitive element $g \in \mathcal{Z}_{p}^{*}$
- The exponentiation operation is the computation of $y$ in

$$
y=g^{x}=\overbrace{g \cdot g \cdots g}^{x \text { terms }} \quad(\bmod p)
$$

for a positive integer $x$

- The discrete logarithm problem in this group is defined to be the computation of $x$, given $y, g$, and $p$
- Example: Given $p=23$ and $g=5$, find $x$ such that

$$
11=5^{x} \quad(\bmod 23)
$$

Answer: $x=9$

## Discrete Logarithms in $\mathcal{Z}_{p}^{*}$

- Given $p=158\left(2^{800}+25\right)+1=$

1053546280395016975304616582933958731948871814925913489342 6087342587178835751858673003862877377055779373829258737624 5199045043066135085968269741025626827114728303489756321430 0237166369174066615907176472549470083113107138189921280884 003892629359
and $g=3$, find $x \in \mathcal{Z}_{p}^{*}$ such that

$$
2=3^{x} \quad(\bmod p)
$$

Answer: ?

## Discrete Logarithm Notation

- The computation of $x$ in $y=g^{x}(\bmod p)$ is called the DLP
- Here $x$ is equal to the discrete analogue of the logarithm

$$
x=\log _{g} y \quad(\bmod p-1)
$$

- The modulus is $p-1$ since the powers are added and multiplied mod $p-1$ according to Fermat's Theorem
- The logarithm notation is particularly useful
- For example, $2^{15}=27(\bmod 29)$ implies

$$
\log _{2} 27=15 \quad(\bmod 28)
$$

## Discrete Logarithm Notation

- The logarithm notation allows us to compute new discrete logarithms
- For example

$$
\log _{g}(a \cdot b \bmod p)=\log _{g} a+\log _{g} b \quad(\bmod p-1)
$$

- Similarly

$$
\log _{g}\left(a^{e} \cdot b^{f} \bmod p\right)=e \cdot \log _{g} a+f \cdot \log _{g} b \quad(\bmod p-1)
$$

## Discrete Logarithm Notation

- For example,

$$
\begin{aligned}
& 2^{15}=27 \quad(\bmod 29) \\
& 2^{22}=5(\bmod 29)
\end{aligned}
$$

which implies

$$
\begin{aligned}
\log _{2} 27 & =15(\bmod 28) \\
\log _{2} 5 & =22(\bmod 28)
\end{aligned}
$$

- Therefore, we can write

$$
\begin{aligned}
\log _{2} 27+\log _{2} 5 & =\log _{2}(27 \cdot 5 \bmod 29)(\bmod 28) \\
& =\log _{2} 19 \quad(\bmod 28) \\
15+22 & =9(\bmod 28)
\end{aligned}
$$

which implies $\log _{2} 19=9(\bmod 28)$ or $2^{9}=19(\bmod 29)$

## Exhaustive Search

- Since $x \in \mathcal{Z}_{p}^{*}$, we can perform search, and try all possible values of $x$ :

$$
\begin{aligned}
& \text { for } i=1 \text { to } p-1 \\
& \quad \begin{array}{l}
z=g^{i}(\bmod p) \\
\text { if } y=z \\
\quad \text { return } x=i
\end{array}
\end{aligned}
$$

- This algorithm requires the computation of $i$ th power of $g \bmod p$ at each step


## Exhaustive Search

- However, ith power of $g$ need not be computed from scratch

$$
\begin{aligned}
& z=g \\
& \text { for } i=2 \text { to } p-1 \\
& \quad z=g \cdot z(\bmod p) \\
& \quad \text { if } y=z \\
& \quad \text { return } x=i
\end{aligned}
$$

- This algorithm requires $p-2$ multiplications
- Since multiplications of $k$-bit operands are of order $O\left(k^{2}\right)$, the search is exponential in $k$

$$
O\left(p k^{2}\right)=O\left(2^{k} k^{2}\right)
$$

## Shanks' Baby-Step-Giant-Step

- In 1973, Shanks described an algorithm for computing discrete logarithms that runs in $O(\sqrt{p})$ time and requires $O(\sqrt{p})$ space
- Let $y=g^{x}(\bmod p)$, with $m=\lceil\sqrt{p}\rceil$ and $p<2^{k}$
- Shanks' method is a deterministic algorithm and requires the construction of two tables $S$ and $T$, which contains pairs of integers
- The construction of $S$ is called the giant-steps:

$$
S=\left\{\left(i, g^{i \cdot m}\right) \mid i=0,1, \ldots, m\right\}
$$

- The construction of $T$ is called the baby-steps:

$$
T=\left\{\left(j, y \cdot g^{j}\right) \mid j=0,1, \ldots, m\right\}
$$

## Shanks' Baby-Step-Giant-Step

- The existence of the same group element in both tables implies

$$
g^{i \cdot m}=y \cdot g^{j}=g^{x} \cdot g^{j} \quad(\bmod p)
$$

- We get the indices $i$ and $j$, and write the equality of the powers as

$$
i \cdot m=x+j \quad(\bmod p-1)
$$

and thus find $x=i \cdot m-j(\bmod p-1)$

- To use this method in practice, one would typically only store the giant-steps array and the lookup each successive group element from the baby-steps array until a match is found
- However, the algorithm requires enormous amount of space, and thus, it is rarely used in practice


## Shanks' Baby-Step-Giant-Step

- Consider the solution of $y=44=3^{x}(\bmod 101)$
- $m=\lceil\sqrt{101}\rceil=11$, therefore, the giant-steps and baby-steps tables:

| $S=\left\{\left(i, 3^{11 i}\right) \mid i=0,1, \ldots, 11\right\}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $i$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| $3^{11 i}$ | 1 | 94 | 49 | 61 | 78 | 60 | 85 | 11 | 24 | 34 | 65 | 50 |
| $T=\left\{\left(j, 44 \cdot 3^{j}\right) \mid j=0,1, \ldots, 11\right\}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| $j$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| $44 \cdot 3^{j}$ | 44 | 31 | 93 | 77 | 29 | 87 | 59 | 76 | 26 | 78 | 32 | 96 |

- The solution $x=4 \cdot 11-9=35$, i.e., $3^{35}=44(\bmod 101)$


## Correctness of Shanks' Algorithm

- Solving for $x$ in $y=g^{x}(\bmod p)$ requires creation of 2 tables of $O(\sqrt{p})$ size
- However, $x$ can be any one of the numbers in the set $[2, p-2]$, which is of size $O(p)$
- How does it work that by searching in 2 tables of size $O(\sqrt{p})$ we can find an element $x$ that belongs to a set of size $O(p)$ ?


## Proof of Correctness of Shanks' Algorithm

- Since $m=\lceil\sqrt{p}\rceil$, we can write $x$ in base- $m$ as

$$
x=i \cdot m+j
$$

such that $i, j \in[0, m-1]$

- For example, for $p=101, m=11$, and $x=35$, we can write:

$$
35=3 \cdot 11+2
$$

- Instead of searching for $x \in[2, p-2]$, we can search for $i, j \in[0, m-1]$


## Proof of Correctness of Shanks' Algorithm

- Therefore, we would be performing 2 searches in two sets of size $O(m)=O(\sqrt{p})$, one search for $i$ and the other for $j$
- The exponentiation equality is given as

$$
y=g^{i \cdot m+j} \quad(\bmod p)
$$

- This implies

$$
y \cdot g^{-j}=g^{i \cdot m} \quad(\bmod p)
$$

## Proof of Correctness of Shanks' Algorithm

- We would create one table $(S)$ of values $\left(i, g^{i \cdot m}\right)$, and another table $(T)$ of values $\left(j, y \cdot g^{-j}\right)$
- An equality of the form

$$
g^{i \cdot m}=y \cdot g^{-j}=g^{x} \cdot g^{-j} \quad(\bmod p)
$$

for particular values of $i, j$ implies that

$$
i \cdot m=x-j \quad(\bmod p-1)
$$

which allows us to compute $x$ by creating 2 tables of size $O(\sqrt{p})$

## Pollard Rho Algorithm for DLP

- Pollard Rho algorithm is also of $O(\sqrt{p})$ time complexity, however, it does not require a large table
- It forms a pseudorandom sequence of elements from the group, and searches for a cycle to appear in the sequence
- The sequence is defined deterministically and each successive element is a function of only the previous element
- If a group element appears a second time, every element of the sequence after that will be a repeat of elements in the sequence
- According to the birthday problem, a cycle should appear after $O(\sqrt{p})$ elements of the sequence have been computed


## Pollard Rho Algorithm for DLP

- The Pollard Rho algorithm defines the sequence

$$
a_{i+1}= \begin{cases}y \cdot a_{i} & \text { for } a_{i} \in S_{0} \\ a_{i}^{2} & \text { for } a_{i} \in S_{1} \\ g \cdot a_{i} & \text { for } a_{i} \in S_{2}\end{cases}
$$

where $S_{0}, S_{1}$, and $S_{2}$ are disjoint partitions of the group elements, that are approximately the same size

- The initial term is taken as $a_{0}=g^{\alpha}$ for a random $\alpha$
- Apparently, there is no need to keep all of the group elements; we compute the sequences from $a_{i}$ to $a_{2 i}$ until an equality is discovered
- The equality of two terms in the sequence implies equality on exponents $\bmod (p-1)$, from which we solve for $x$


## Pollard Rho Algorithm for DLP

- Consider the solution of $y=44=3^{x}(\bmod 101)$
- We divide the set $S=\{1,2, \ldots, 100\}$ into 3 sets such that

$$
\begin{aligned}
& S_{0}=\{1,2, \ldots, 33\}, S_{1}=\{34,35, \ldots, 66\}, \text { and } \\
& S_{2}=\{67,68, \ldots, 100\}
\end{aligned}
$$

- Starting with the first term $a_{0}=g^{\alpha}$ for a random $\alpha=15$, we get $a_{0}=3^{15}=39$, and first few following terms of the iteration as

|  | $a_{i}$ | $S_{0}$ | $S_{1}$ | $S_{2}$ | $a_{i}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $i=0$ | $a_{0}=39$ |  | 39 |  | $g^{15}$ |
| $i=1$ | $a_{1}=a_{0}^{2}=39^{2}=6$ | 6 |  | $g^{30}$ |  |
| $i=2$ | $a_{2}=y \cdot a_{1}=44 \cdot 6=62$ |  | 62 | $y \cdot g^{30}$ |  |
| $i=3$ | $a_{3}=a_{2}^{2}=62^{2}=6$ | 6 |  | $y^{2} \cdot g^{60}$ |  |
| $i=4$ | $a_{4}=y \cdot a_{3}=44 \cdot 6=62$ |  | 62 | $y^{3} \cdot g^{60}$ |  |
| $i=5$ | $a_{5}=a_{4}^{2}=62^{2}=6$ | 6 |  | $y^{6} \cdot g^{120}$ |  |

## Pollard Rho Algorithm for DLP

- Therefore, we find $a_{1}=a_{3}$ (also $a_{2}=a_{4}$ and $a_{3}=a_{5}$ )
- The discovery of an equality in the sequence implies that we found a relationship between the exponent $x$ and known powers of $g$
- The equality $a_{1}=a_{3}$ implies

$$
g^{30}=y^{2} \cdot g^{60}=\left(g^{x}\right)^{2} \cdot g^{60}=g^{2 x+60}
$$

- We have an equality over the exponents

$$
30=2 x+60(\bmod 100) \rightarrow 2 x=70(\bmod 100)
$$

- Since $\operatorname{gcd}(2,100) \neq 1$, this equation has two solutions: $x=\{35,85\}$


## Pollard Rho Algorithm for DLP

- We can check each candidate to verify:

$$
3^{x} \stackrel{?}{=} 44 \quad(\bmod 100)
$$

- We see that $x=35$ is a solution since $3^{35}=44(\bmod 101)$
- Similarly, the equality of $a_{2}=a_{4}$ gives the same equation:

$$
x+30=3 x+60 \quad(\bmod 100) \rightarrow 2 x=70 \quad(\bmod 100)
$$

- On the other hand, the equality of $a_{3}=a_{5}$ implies

$$
2 x+60=6 x+120 \quad(\bmod 100) \rightarrow 4 x=40 \quad(\bmod 100)
$$

We find 4 candidates: $x=\{10,35,60,85\}$

## Pollard Rho Algorithm for DLP

- Another way to divide the set $S=\{1,2, \ldots, p-1\}$ :

$$
\begin{aligned}
& S_{0}=\{i \mid i=0(\bmod 3)\} \\
& S_{1}=\{i \mid i=1(\bmod 3)\} \\
& S_{2}=\{i \mid i=2(\bmod 3)\}
\end{aligned}
$$

- For $p=101$, we get

$$
\begin{aligned}
& S_{0}=\{3,6,9,12, \ldots, 99\} \\
& S_{1}=\{1,4,7,10,13, \ldots, 100\} \\
& S_{2}=\{2,5,8,11,14, \ldots, 98\}
\end{aligned}
$$

## Pollard Rho Algorithm for DLP

- Solving for $48=3^{x}(\bmod 101)$
- Starting with the first term $a_{0}=g^{\alpha}$ for a random $\alpha=10$, we get $a_{0}=3^{10}=65$, and first few following terms of the iteration as

|  | $a_{i}$ | $S_{0}$ | $S_{1}$ | $S_{2}$ | $a_{i}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $i=0$ | $a_{0}=65$ |  | 65 | $g^{10}$ |  |
| $i=1$ | $a_{1}=g \cdot a_{0}=3 \cdot 65=94$ | 94 |  | $g^{11}$ |  |
| $i=2$ | $a_{2}=a_{1}^{2}=94^{2}=49$ | 49 | $g^{22}$ |  |  |
| $i=3$ | $a_{3}=a_{2}^{2}=49^{2}=78$ | 78 |  | $g^{44}$ |  |
| $i=4$ | $a_{4}=y \cdot a_{3}=48 \cdot 78=7$ | 7 | $y \cdot g^{44}$ |  |  |
| $i=5$ | $a_{5}=a_{4}^{2}=7^{2}=49$ | 49 | $y^{2} \cdot g^{88}$ |  |  |

## Pollard Rho Algorithm for DLP

- The equality of $a_{2}=a_{5}$ implies

$$
g^{22}=y^{2} \cdot g^{88}=g^{2 x} \cdot g^{88} \quad(\bmod 101)
$$

- From which, we write

$$
\begin{aligned}
2 x+88 & =22 \quad(\bmod 100) \\
2 x & =34 \quad(\bmod 100)
\end{aligned}
$$

- We find candidates for the solution as $\{17,67\}$
- Trying both, we find $x=17$ as the solution in $3^{x}=48(\bmod 101)$


## The Complexity of Pollard Rho Algorithm

- The Pollard Rho algorithm generates a sequence in order to find a match, due to the birthday problem
- Its time complexity is $O(\sqrt{p})$ which is exponential in terms of the input size in bits: $O\left(2^{k / 2}\right)$
- However, there are subexponential algorithms, for example the index calculus method for the group $\mathcal{Z}_{p}^{*}$ has subexponential time complexity
- Before that, let us study the Pohlig-Hellman algorithm which converts on order-ab DL into an order-a DL, an order- $b \mathrm{DL}$, and a few exponentiations


## Pohlig-Hellman Algorithm

- The group order in $\left(Z_{p}^{*}, * \bmod p\right)$ is $p-1$
- There are $p-1$ elements in the set $Z_{p}^{*}=\{1,2, \ldots, p-1\}$
- Assume $p-1=a \cdot b$, that is, $g$ has order $a \cdot b$
- Given $y$, which is a power of $g$, we deduce that:
$g^{a}$ has order $b$ since $\left(g^{a}\right)^{b}=g^{a b}=g^{p-1}=1$
$g^{b}$ has order a since $\left(g^{b}\right)^{a}=g^{a b}=g^{p-1}=1$ $y^{a}$ is a power of $g^{a}$ since $y^{a}=\left(g^{x}\right)^{a}=\left(g^{a}\right)^{x}$


## Pohlig-Hellman Algorithm

- Step 1: Solve for $r$ in the DLP:

$$
\left(g^{a}\right)^{r}=y^{a} \quad(\bmod p)
$$

- Step 2: Solve for $s$ in the DLP:

$$
\left(g^{b}\right)^{s}=y \cdot g^{-r} \quad(\bmod p)
$$

- Step 3: Compute $x=r+s \cdot b$
- Correctness proof:

$$
\begin{aligned}
g^{r+s \cdot b} & =g^{r} \cdot\left(g^{s}\right)^{b} \quad(\bmod p) \\
& =g^{r} \cdot y \cdot g^{-r}(\bmod p) \\
& =y
\end{aligned}
$$

## Pohlig-Hellman Algorithm Example $p=1259$

- Consider $p=1259$ and $g=2$, and the DLP

$$
y=338=g^{x} \quad(\bmod p)
$$

- $p-1=34 \cdot 37=a \cdot b$
- Step 1: Solve for $r$ in

$$
\begin{aligned}
\left(g^{a}\right)^{r} & =y^{a} \quad(\bmod p) \\
\left(2^{34}\right)^{r} & =338^{34}(\bmod p) \\
870^{r} & =463 \quad(\bmod p)
\end{aligned}
$$

- Since 870 is of order $b=37$, we solve a smaller DLP
- The solution $r$ is in the set $[0, b-1]=[0,36]$
- This DLP gives $r=27$ since $870^{27}=463 \bmod p$


## Pohlig-Hellman Algorithm

- Step 2: Solve for $s$ in the DLP:

$$
\begin{aligned}
\left(g^{b}\right)^{s} & =y \cdot g^{-r}(\bmod p) \\
\left(2^{37}\right)^{s} & =338 \cdot 2^{-27}(\bmod p) \\
665^{s} & =338 \cdot 880(\bmod p) \\
665^{s} & =316 \quad(\bmod p)
\end{aligned}
$$

- This is also a smaller DLP, since $s$ is in the set $[0, a-1]=[0,33]$
- We find $s=2$, since $665^{2}=316(\bmod p)$
- Step 3: We find $x$ as

$$
x=r+s \cdot b=27+2 \cdot 37=101
$$

- This is indeed the solution of DLP:

$$
g^{x}=2^{101}=338=y \quad(\bmod p)
$$

## Complexity of the Pohlig-Hellman Algorithm

- The Pohlig-Hellman algorithm requires two independent DLPs which are order $\sqrt{a}$ and $\sqrt{b}$ when $p=a \cdot b$
- These can be solved using exhaustive search, requiring $O(\sqrt{a})$ and $O(\sqrt{b})$ multiplications
- It works better if $a$ or $b$ factors even further
- The means, we can apply Pohlig-Hellman recursively
- If the largest prime divisor of $p-1$ is much smaller than $p$, then Pohlig-Hellman computes DL more quickly


## Applications to ECDLP

- The exhaustive search, Shank's, Pollard Rho, and Pohlig-Hellman algorithms are applicable to any group
- They do not require particular properties from the group, and perform only group operations to solve for the DLP
- They are applicable to the ECDLP
- They all require exponential time
- Given the DLP $y=g^{x}(\bmod p)$, these algorithms require:

Exhaustive Search: $O(p)$ operations
Shank's Baby-Step-Giant-Step: $O(\sqrt{p})$ operations and $O(\sqrt{p})$ space Pollard Rho: $O(\sqrt{p})$ operations and probably less space Pohlig-Hellman: $O(\sqrt{a}+\sqrt{b})$ for $p-1=a \cdot b$

## Index Calculus Algorithm

- The Index Calculus algorithm is asymptotically faster than the previous algorithms
- The Index Calculus algorithm generates group elements $g^{a \cdot n+b}$
- It then deduces equations for $n$ from random collisions
- However, the Index Calculus algorithm obtains discrete-logarithm equations in a different way


## Index Calculus Algorithm

- We are attempting to solve the DLP $y=g^{x}(\bmod p)$
- Consider the set $S$, called the factor base, the set of all primes less than or equal to some bound $b$
- For example, $S=\{2,3,5\}$ where $b=5$
- An element of $Z_{p}^{*}$ is called smooth with respect to $b$, if all of its factors are contained in $S$
- For example, these elements of $Z_{19}^{*}$ are smooth wrt $b=5$ :

$$
\left\{2,3,4=2^{2}, 5,6=2 \cdot 3,8=2^{3}, 9=3^{2}, 10=2 \cdot 5,12=2^{2} \cdot 3,15=3 \cdot 5,16=2^{4}, 18=2 \cdot 3^{2}\right\}
$$

- These elements of $Z_{19}^{*}$ are not smooth wrt $b=5$ :

$$
\{7,11,13,14=2 \cdot 7,17\}
$$

## Index Calculus Algorithm

- The Index Calculus algorithm has 3 steps
- Step 1: Take a random $\alpha$, and compute $g^{\alpha}(\bmod p)$, and see if it is smooth, that is

$$
g^{\alpha}=\prod_{p_{i} \in S} p_{i}^{\alpha_{i}}
$$

- If it is, we obtain its discrete logarithm base $g$, where all $\alpha_{i}$ are known

$$
\alpha=\sum_{p_{i} \in S} \alpha_{i} \log _{g} p_{i} \quad(\bmod p-1)
$$

- Continue this process until more than $|S|$ equations are known


## Index Calculus Algorithm

- Step 2: Solve this system of equations to find the unique values for each of $\log _{g} p_{i}(\bmod p-1)$
- Step 3: In this step we find the solution to the DLP $y=g^{x}(\bmod p)$, that is we compute $\log _{g} y(\bmod p-1)$
- Select a random $\alpha$ so that $y \cdot g^{\alpha}(\bmod p)$ is smooth
- When we find such an $\alpha$, we can compute $x$ using

$$
x=\log _{g} y=-\alpha+\sum_{p_{i} \in S} \alpha_{i} \log _{g} p_{i} \quad(\bmod p-1)
$$

where everything on the right hand side is known

## Index Calculus Algorithm Example for $p=37$

- Consider $p=37, g=5$ and $S=\{2,3\}$
- Step 1: Try $\alpha=6: g^{\alpha}=5^{6}=11(\bmod 37)$ : Not smooth
- Try $\alpha=7: g^{\alpha}=5^{7}=18=2^{1} \cdot 3^{2}(\bmod 37)$ : Smooth
- Thus, we find

$$
1 \cdot \log _{5} 2+2 \cdot \log _{5} 3=7 \quad(\bmod 36)
$$

- Try $\alpha=14: g^{\alpha}=5^{14}=28=2^{2} \cdot 7(\bmod 37)$ : Not smooth
- Try $\alpha=31: g^{\alpha}=5^{31}=24=2^{3} \cdot 3^{1}(\bmod 37)$ : Smooth
- Thus, we find

$$
3 \cdot \log _{5} 2+1 \cdot \log _{5} 3=31 \quad(\bmod 36)
$$

## Index Calculus Algorithm

- Step 2: We solve these two equations

$$
\begin{aligned}
& 1 \cdot \log _{5} 2+2 \cdot \log _{5} 3=7 \quad(\bmod 36) \\
& 3 \cdot \log _{5} 2+1 \cdot \log _{5} 3=31(\bmod 36)
\end{aligned}
$$

- Expressed in matrix form as

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
\log _{5} 2 \\
\log _{5} 3
\end{array}\right]=\left[\begin{array}{c}
7 \\
31
\end{array}\right] \quad(\bmod 36)
$$

- We find the solutions as $\log _{5} 2=11$ and $\log _{5} 3=34$
- These are verified as $5^{11}=2(\bmod 37)$ and $5^{34}=3(\bmod 37)$


## Index Calculus Algorithm Example for $y=17$

- Step 3: Suppose we want to find $\log _{5} 17(\bmod 36)$
- We are trying to solve the DLP: $y=17=5^{x}(\bmod 37)$
- Try $\alpha=24: y \cdot g^{\alpha}=17 \cdot 5^{24}=35(\bmod 37):$ Not smooth
- Try $\alpha=15: y \cdot g^{\alpha}=17 \cdot 5^{15}=12(\bmod 37)$ : Smooth
- This number factors as $12=2^{2} \cdot 3^{1}$, thus, we find

$$
\begin{aligned}
\log _{g} y & =-\alpha+\sum_{p_{i} \in S} \alpha_{i} \log _{g} p_{i} \quad(\bmod p-1) \\
\log _{5} 17 & =-15+2 \cdot \log _{5} 2+1 \cdot \log _{5} 3 \quad(\bmod 36) \\
& =-15+2 \cdot 11+1 \cdot 34 \quad(\bmod 36) \\
& =41(\bmod 36) \\
& =5
\end{aligned}
$$

- The solution is $x=5$ in $17=5^{x}(\bmod 37)$, since $5^{5}=17(\bmod 37)$


## Index Calculus Algorithm Example for $y=19$

- Step 3: Suppose we want to find $\log _{5} 19(\bmod 36)$
- We are trying to solve the DLP: $y=19=5^{x}(\bmod 37)$
- Try $\alpha=5: y \cdot g^{\alpha}=19 \cdot 5^{5}=27(\bmod 37):$ Smooth
- This number factors as $27=3^{3}$, thus, we find

$$
\begin{aligned}
\log _{g} y & =-\alpha+\sum_{p_{i} \in S} \alpha_{i} \log _{g} p_{i}(\bmod p-1) \\
\log _{5} 19 & =-5+3 \cdot \log _{5} 3(\bmod 36) \\
& =-5+3 \cdot 34(\bmod 36) \\
& =97(\bmod 36) \\
& =25
\end{aligned}
$$

- Thus $x=25$ in $19=5^{x}(\bmod 37)$, since $5^{25}=19(\bmod 37)$


## Complexity of the Index Calculus Algorithm

- Analysis of the Index Calculus algorithm depends on several factors:
- How likely is it that $g^{\alpha}(\bmod p)$ and $y \cdot g^{\alpha}(\bmod p)$ smooth ?
- What is the chance that $|S|$ equations are linearly independent $(\bmod p-1)$ ?
- How do we solve linear equations $\bmod p-1$ ?
- It is shown that the time complexity is

$$
e^{\left(\frac{1}{\sqrt{2}}+o(1)\right) \sqrt{\log p \log \log p}}
$$

- Furthermore, as $p \rightarrow \infty$, the Index Calculus algorithm scales very well: the cost becomes $p^{\epsilon}$ where $\epsilon \rightarrow 0$
- Compare this to the Pollard Rho algorithm: $\approx \sqrt{p}$

