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Groups in Cryptography

@ The security of the Diffie-Hellman key exchange, ElGamal public-key
encryption algorithm, ElGamal signature scheme, and Digital
Signature Algorithm depends on the difficulty of the DLP in Z]

o Another type of group for which the DLP is difficult is the elliptic
curve group over a finite field

o In fact, the Elliptic Curve Discrete Logarithm Problem (ECDLP)
seems to be a much more difficult problem than the DLP

@ There is no subexponential algorithm for the ECDLP as of yet

o Furthermore, the elliptic curve variants of the Diffie-Hellman and the
DSA require significantly smaller group size for the same amount of
security, as compared to that of ZJ groups
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Elliptic Curves

o An elliptic curve is the solution set of a nonsingular cubic polynomial
equation in two unknowns over a field F

E={(xy)e FxF|[f(xy)=0}
o The general equation of a cubic in two variables is given by
3 3 2 2 2 2 . .
ax>+ by’ +cx‘y+dxy  +ex“+fy +gxy +hx+iy+,=0

o When char(F) # {2,3}, we can convert the above equation to the
Weierstrass form
yv2=x3+ax+b

o We will also study the Edwards curves

Cetin Kaya Kog http://koclab.cs.ucsb.edu Winter 2017 3 /47


http://koclab.cs.ucsb.edu

ECC Fundamentals EC Groups, EC Arithmetic

Elliptic Curves over R

o The field in which this equation solved can be an infinite field, such
as C (complex numbers), R (real numbers), or Q (rational numbers)
o Since
lim y = o0
X—>00

The point at infinity O = (00, 0) is also a solution of the equation

@ The elliptic curves over R for different values of a and b make
continuous curves on the plane, which have either one or two parts
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Elliptic Curves over R
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Elliptic Curves over R

o When the discriminant A = 4a3 + 27b2, is nonzero, the curve is
called nonsingular

For example, fora=—4and b=1, A = -229<0
On the other hand, fora= -4, b=3, A=-13<0
On the other hand, fora= —4, b=3.1, A=3.47 >0
A =0 for a= —4 and /256/27 = 3.0792
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Elliptic Curves over R
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Bezout Theorem

A linear line that intersects an elliptic curve at 2 points also crosses at a
third point.

o Consider the elliptic curve and the linear equation together:

y2 = xX3+ax+b
y = ox+d

o Substituting either y or x from the second equation to the first one,
we obtain one of the following cubic equations

(ex+d)? = x*4ax+b
y? = (y—d)P/ +aly —d)/c+b
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Elliptic Curve Chord and Tangent

@ A cubic equation has either:

o 1 real and 2 complex (conjugate) roots, or
o 3 real roots

@ since we already have 2 real points on the curve (2 real roots), the
third one must be real
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Elliptic Curve Chord and Tangent

o For example, by solving y?2 = x3 — 4x with three different linear
equations, as given below, we find the following points on the curve:

y=x y = 4427 X__%

(0.0) (%95 | (B3R
T3+ | (595 | (553
A 3+YE) | (5 %)
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Elliptic Curve Chord and Tangent

Jy
y? =2 — 4z 9l /
B . B 1 \3 4
X
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Weierstrass Curve Chord-and-Tangent Rule

o The Weierstrass curves has a chord-and-tangent rule for adding two
points on the curve to get a third point

o Together with this addition rule, the set of points on the curve forms
an Abelian additive group in which the point at infinity is the zero
element of the group

o The point at infinity, denoted as O is also a solution of the
Weierstrass equation y? = x>+ ax + b

o The best way to explain the addition rule is to use geometry over R
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Weierstrass Curve Point Addition

Q1®Q1=0Q3 1

Rl@(—Rl):O
RO =R,

\/
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Weierstrass Curve Point Addition

o The “point addition” is a geometric operation: a linear line that
connects P; and P> also crosses the elliptic curve at a third point,
which we will name as —P3

@ The new “sum” point P3 = P; & P» is the mirror image of —P3 with
respect to the x axis:

if P3=(x3,y3) then — P3=(x3,—y3)
@ The point at infinity O acts as the neutral (zero) element

POO = OaP =P
P& (-P) = (-P)&P = O
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Weierstrass Curve Point Addition

@ The addition rule for P3 = P; & P, can be algebraically obtained by
first computing the slope m of the straight line that connects
Pl = (Xl,yl) and P2 = (Xz,yz) using

Y2—wn
m =
X2 — X1

@ In the case of doubling Q3 = Q1 ® Q1 = (x1,¥1) ® (x1,y1), the slope
m of the linear line is equal to the derivative of the elliptic curve
equation y? = x3 + ax + b evaluated at point x; as

3x2 + a

2y =3x°4+a —» y="2=m
2y
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Weierstrass Curve Point Addition

@ Once the slope m is obtained, the linear equation can be written, and
solved together with the elliptic curve equation to find x3 and y3

@ Since the slope is m, and the linear line goes through (x1,y1), its
equation would be of the form
y—y1=m(x—x)
o Therefore, the new coordinates of new point (x3, y3) can be obtained
by solving these two equations together
y2 = xX3+ax+b
y = mx—x1)+xn
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Weierstrass Curve Point Addition and Doubling over R

If (x1,y1) = O, then (x3,y3) = (x2,y2) since P3 =0+ P, = P,

If (x2,y2) = O, then (x3,y3) = (x1,y1) since P3 =P+ 0 =P,

If xo = x1 and y» = —y1, then (x3,y3) = O since P3=—P1+P; = 0O
Otherwise, first compute the slope using

24 for X1 75 X2

Xp—X1
m =
3x24a
21y1 for xy =xxand y1 = y»
@ Then, (x3,y3) is computed using
_ .2
X3 = M — X1 — X2
3 = m(x1—x3) =y
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Elliptic Curves over Finite Fields

@ The field in which the Weierstrass equation solved can also be a finite
field, which is of interest in cryptography
@ Most common cases of finite fields are:

o Characteristic p: GF(p), where p is a large prime
o Characteristic 2: GF(2), where k is a small prime
o Characteristic p: GF(p*), where p and k are small primes
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Elliptic Curves over GF(p)

o In GF(p) for a prime p # 2,3, we can use the Weierstrass equation

v2=x3+ax+b

with the understanding that the solution of this equation and all field
operations are performed in the finite field GF(p)

o We will denote this group by £(a, b, p)
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An Elliptic Curve over GF(23)

o Consider the elliptic curve group £(1,1,23): The solutions of the
equation with a=1and b=1

v =x3+x+1

over the finite field GF(23)

o We obtain the elements of the group by solving this equation in
GF(23) for all values of x € Z3;
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An Elliptic Curve over GF(23)

o As we give a particular value for x, we obtain a quadratic equation in
y modulo 23, whose solution will depend on whether the right hand
side is a QR mod 23

o If (x,y) is a solution, so is (x, —y) because y? = (—y)?, i.e., the
elliptic curve is symmetric with respect to the x axis
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An Elliptic Curve over GF(23)

o Starting with x = 0, we get y2 = 1 (mod 23) which immediately
gives two solutions as (0,1) and (0, —1) = (0,22)
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An Elliptic Curve over GF(23)

o Similarly, for x = 1, we obtain y? = 3 (mod 23)

o This is a quadratic equation, the solution will depend on whether 3 is
QR, which turns out to be:

3(P~1/2 =31 =1 (mod 23)
The solution for y is
y =30PtD/4 =30 — 16 (mod 23)

and thus, we find a pair of coordinates: (1,16), (1,—16) = (1,7)
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An Elliptic Curve over GF(23)

o Now, taking x = 2, we have y?> =23 +2 4+ 1 =11 (mod 23),
however, 11 is a QNR since

11(p-1/2 — 111 = 4

therefore, there is no solution for y? = 11 (mod 23), and this elliptic
curve does not have any points whose x coordinate is 2
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An Elliptic Curve over GF(23)

o On the other hand, for x = 3, we have y> =33 +34+1=31=38
(mod 23), and 8 is a QR since

g(P~1)/2 = g1 — 1 (mod 23)
o We solve for y? = 8 (mod 23) using
y =8PHD/4 =86 — 13 (mod 23)

thus, obtain the pair of coordinates: (3,13), (3,—-13) = (3,10)
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An Elliptic Curve over GF(23)

o Proceeding for the other values of x € Z3;, we find 27 solutions:

(0,1) (0,22) (1,7) (1,16) (3,10) (3,13) (4,0)
(5.4) (519) (6.4) (619) (7.11) (7.12)
(9,7) (9,16) (11,3) (11,20) (12,4) (12,19)
(13,7) (13,16) (17,3) (17,20) (18,3) (18,20)
(19,5) (19,18)

o The solutions come in pairs except one of them: (4,0), since for
x = 4, we have

Y2=4444+1=69=0 (mod 23)

which has only one solution y = 0 and thus one point (4,0)
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Elliptic Curve Point Addition over GF(23)

o Given P; =(3,10) and P, = (9,7), compute P3 = P; © P,

o Since x1 # x», we have

m = (y2=y)-(e—x)"" (mod23)
(7-10)-(9—-3)"1=(-3)- 61 =11 (mod 23)

x3 = m*—x3—x (mod 23)
= 112-3-9 = 17 (mod 23)
y3 = m(x1—x3)—y1 (mod 23)

= 11-(3-17)—10 = 20 (mod 23)

o Thus, we have (x3,y3) = (3,10) & (9,7) = (17,20)

o Question: Is the geometry of point addition still valid?
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Elliptic Curve Point Addition over GF(23)

(3,10) + (9,7) = (17,20)

21 (17,20) -
20 . . .

L (17,3) -

O N WK U o ®
T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
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Elliptic Curve Point Doubling over GF(23)

o Given P; = (3,10), compute P3 = P1 & P4

@ Since x;1 = xp and y; = y», we have

m = (3x2+a)-(2y1)"! (mod 23)
= (3-324+1)-(20)"! (mod 23)

= 6

x3 = m?—x —xy (mod23)
= 6°-3-3 (mod 23)
= 7

y3. = m(x1—x3)—y1 (mod 23)
— 6-(3-7)—10 (mod 23)
= 12
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Elliptic Curve Point Doubling over GF(23)

o Thus, we have (x3,y3) = (3,10) & (3,10) = (7,12)
o Question: Is the geometry of point doubling still valid?
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Elliptic Curve Point Doubling over GF(23)

O N WK U o ®

(3,10) + (3,10) = (7,12)
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Elliptic Curve Point Multiplication

o The elliptic curve point multiplication operation takes an integer k
and a point on the curve P, and computes

k terms

KIP=PoPo---®P

@ This can be accomplished with the binary method, using the binary
expansion of the integer k = (km—1 - kiko)2

o For example [17]P is computed using the addition chain
P4 121P % [4]P & [8]P % [16]P 3 [17]P

@ The symbol 4 stands for doubling, such as [2]P @ [2]P = [4]P
o The symbol 2 stands for addition, such as P @ [16]P = [17]P
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Number of Points on an Elliptic Curve

@ The elliptic curve group £(1,1,23) had the following elements:

(0,1) (0,22) (1,7) (1,16)
(5.4) (519) (6,4) (6,19)
(9.7) (9.16) (11,3) (11,20)
(13,7) (13,16) (17,3) (17,20)
(19,5) (19,18)

3,10) (3,13) (4,0)
7,11) (7,12)
12,4) (12,19)
18,3) (18,20)

~ A~~~

o There are 27 points in the above list

o Including the point at infinity O, the elliptic curve group £(1,1,23)
has 27 + 1 = 28 elements

@ The order of the group £(1,1,23) is 28
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Order of Elliptic Curve Groups

@ In order to use an elliptic curve group £ in cryptography, we need to
know the order of the group, denoted as order(&)

o The order of &(a, b, p) is always less than 2p + 1
o The finite field has p elements, and we solve the equation

yv2=x3+ax+b

for values of x =10,1,...,p— 1, and obtain a pair of solutions (x, y)
and (x, —y) for every x, we can have no more than 2p points

@ Including the point at infinity, the order is bounded as
order(E(a, b,p)) <2p+1

o The order of £(1,1,23) is 28 which is less than 2 -23 + 1 = 47
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Order of Elliptic Curve Groups

@ However, this bound is not very precise

o As we discovered in finding the elements of £(1,1,23), not every x
value yields a solution of the quadratic equation y? = x3 4+ x + 1

o For a solution to exists, u = x3 + ax + b needs to be a QR mod p
@ Only half of the elements in GF(p) are QRs
@ As x takes values in GF(p), depending on whether

u=x3+ax+b

is a QR or QNR, we will have a solution for y?> = u (mod p) or not,
respectively

o Therefore, the number of solutions will be less than 2p
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Order of Elliptic Curve Groups

o If we define x(u) as

_ +1 if u isQR
X =Y .1 i 4 isQNR

we can write the number of solutions to y2 = u (mod p) as 1 + x(u)

o Therefore, we find the size of the group including O as

order(€) = 1+ >  (1+x(+ax+b))
xe GF(p)

= p+1+ Z x(x* + ax + b)
x € GF(p)

which is a function of x(x3 + ax + b) as x takes values in GF(p)
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Hasse Theorem

o As x takes values in GF(p), the value of x(x® + ax + b) will be
equally likely as +1 and —1

o This is a random walk where we toss a coin p times, and take either a
forward and backward step

o According to the probability theory, the sum > x(x3 + ax + b) is of

order \/[_)

@ More precisely, this sum is bounded by 2,/p
@ Thus, we have a bound on the order of £(a, b, p), due to Hasse:

The order of an elliptic curve group over GF(p) is bounded by

p+1—2/p<orderf) <p+1+2\/p

Cetin Kaya Kog http://koclab.cs.ucsb.edu Winter 2017 38 / 47


http://koclab.cs.ucsb.edu

ECC Fundamentals EC Groups, EC Arithmetic

Order of Elements

@ The order of an element P is the smallest integer k such that

k terms

KP=PoP®---®P=0

o According to the Lagrange Theorem, the order of any point divides
the order of the group

o The primitive element is defined as the element P € £ whose order
n = order(P) is equal to the group order

n = order(P) = order(&)
o According to the Hasse Theorem, we have

p+1—2yp<order((a,b,p)) <p+1+2\p
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Order of Elements

For the group £(1,1,23), we have [v/23] = 5, and the bounds are

14 < order(£(1,1,23)) < 34

Indeed, we found it as order(£(1,1,23)) = 28

According to the Lagrange Theorem, the element orders in £(1,1,23)
can only be the divisors of 28 which are 1,2,4,7,14,28

The order of a primitive element is 28
The order of O is 1 since [1]O = O
The order (4,0) is 2 since [2](4,0) = (4,0) @ (4,0) = O
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Order of Elements

Compute the order of the point P = (11,3) in £(1,1,23)

2P = (11,3)® (11,3) = (4,0)

BlP = (11,3)® (4,00 = (11,20) <«
o Note that
[3]P = (11,20) = (11,-3) = —P
o This gives
4P=pBIPeP=(—-P)eoP=0
o Therefore, the order of (11,3) is 4
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Order of Elements

o Compute the order of the point P = (1,7) in £(1,1,23)

PP = @Gnern = (7,11

BlPF = @@7)@(7,11) = (18,20)
[4P = (7,11)&(7,11) = (17,20)
[7]P = (18,20) @ (17,20) = (11,3) «
[14P = (11,3)®(11,3) = (4,0)
1] = (11,3)® (4,0) = (11,20) «

o Since the order of (1,7) is not 2, or 7, or 14, it must be 28
o Indeed (11,20) and (11, 3) are negatives of one another

[28]P = [7T]P @ [21]P = (11,3) & (11, -3) =

o Therefore, the order of P = (1,7) is 28 and (1,7) is primitive
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Elliptic Curve Group Order

o One remarkable property of the elliptic curve groups is that the order
n can be a prime number, while the multiplicative group Z; order is
always even: p—1

o When the group order is a prime, all elements of the group are
primitive elements (except the neutral element O whose order is 1)

o As a small example, consider £(2,1,5): The equation
y2=x>+2x+1 (mod 5)

has 6 finite solutions (0,1), (0,4), (1,2), (1,3), (3,2), and (3,3)
o Including O, this group has 7 elements, and thus, its order is a prime
number and all elements (except O) are primitive
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Elliptic Curve Point Multiplication

o The elliptic curve point multiplication operation is the computation of
the point Q = [k]P given an integer k and a point on the curve P

k terms

Q=[kKP=PoP®---oP

o If the order of the point P is n, we have [n]P = O
@ Thus, the computation of [k]P effectively gives

[k]P = [k mod n]P
o Similarly, we have

[a]P & [b]P = [a+ bmod n|P
[a][b]P = [a-b mod n]P
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Elliptic Curve DLP

@ Once we have a primitive element P € £ whose order n equal to the
group order, we can execute the steps of the Diffie-Hellman key
exchange algorithm using the elliptic curve group &

o Diffie-Hellman works over any group as long as the DLP in that group
is a difficult problem

o The Elliptic Curve DLP is defined as the computation of the integer k
given P and Q such that

k terms

Q=[kKP=PoPo---®P

o The ECDLP requires an exhaustive search on the integer k

o No subexponential algorithm for the ECDLP exists as of yet
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Elliptic Curve Diffie-Hellman

A and B agree on the elliptic curve group £ of order n and a primitive
element P € £ (whose order is also n)

This is done in public: £, n, and P are known to the adversary

A selects integer a € [2, n— 1], computes Q = [a]P, and sends Q to B
B selects integer b € [2, n— 1], computes R = [b]P, and sends R to A
A receives R, and computes S = [a]R

B receives Q, and computes S = [b]Q

S =[a]R = [a][b]P = [a- b mod n]P
S = [b]Q = [b][a]P = [b- a mod n]P
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Elliptic Curve Diffie-Hellman

sn, P
Us:r A [a]P f Usgr B
AP | : > [b]P
[allbIP BF 1 bap
S =[ab]P S = [ab]P
T ' _:_ - —

' Adversary l
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