Edwards Curves

Çetin Kaya Koç

koc@cs.ucsb.edu

Çetin Kaya Koç

Edwards Curves

- Harold Edwards introduced a new normal form for elliptic curves and gave an addition law which is remarkably symmetric and much simpler
- The original form the equation Edwards studied was

$$x^2 + y^2 = c^2 + c^2 x^2 y^2$$

solved over a field ${\mathcal F}$ whose characteristic is not equal to 2

- Studies on such groups go as far back as to Gauss
- Bernstein and Lange gave a slightly simpler form

$$x^2 + y^2 = 1 + dx^2 y^2$$

where d is not a square in \mathcal{F}

Edwards Curves

- For values of d ∈ F − {0,1} in a non-binary field F, Edward curves are within the unit circle
- Edwards curves for d = 0, -2, -10, -50, -200 over \mathcal{R}

Edwards Curves for d = 0

• When d = 0, the equation defines the unit circle: $x^2 + y^2 = 1$

• Let
$$x_i = sin(\alpha_i)$$
 and $y_i = cos(\alpha_i)$

- The angle α_i is measured with the respect to the y axis
- The addition of (x_1, y_1) and (x_2, y_2) is "addition on a clock"

$$x_3 = \sin(\alpha_1 + \alpha_2)$$

= $\sin(\alpha_1)\cos(\alpha_2) + \cos(\alpha_1)\sin(\alpha_2)$
= $x_1y_2 + y_1x_2$

$$y_3 = \cos(\alpha_1 + \alpha_2)$$

= $\cos(\alpha_1)\cos(\alpha_2) - \sin(\alpha_1)\sin(\alpha_2)$
= $y_1y_2 - x_1x_2$

Edwards Curves for d = 0

- Addition of angles defines the commutative group law
- The zero (neutral) element of the group is (0,1)

Edwards Curves for $d \neq 0, 1$

•
$$x^2 + y^2 = 1 + dx^2y^2$$
 for $d \in \mathcal{F} - \{0, 1\}$

- The zero (neutral) element is (0,1)
- The inverse of (x, y) is (-x, y)

$$P_{3} = P_{1} \oplus P_{2}$$

$$(x_{3}, y_{3}) = (x_{1}, y_{1}) \oplus (x_{2}, y_{2})$$

$$\left(\frac{x_{1}y_{2} + x_{2}y_{1}}{1 + dx_{1}x_{2}y_{1}y_{2}}, \frac{y_{1}y_{2} - x_{1}x_{2}}{1 - dx_{1}x_{2}y_{1}y_{2}}\right)$$

y
neutral =
$$(0, 1)$$

 $P_1 = (x_1, y_1)$
 $P_2 = (x_2, y_2)$
 x
 $P_3 = (x_3, y_3)$

- The zero element (0,1) is of order 1
- The point (0, -1) has order 2, since

$$(0,-1)\oplus(0,-1) = (0,1)$$

• The points (1,0) and (-1,0) have orders 4, since

$$egin{array}{rll} (1,0)\oplus(1,0)&=&(0,-1)\ (-1,0)\oplus(-1,0)&=&(0,-1) \end{array}$$

- The negative of P = (x, y) is -P = (-x, y)
- The addition law applies to doubling as well

- d needs to be a non-square in the field ${\cal F}$
- For $\mathcal{F} = GF(p)$, d needs to be quadratic non-residue
- Question: Since

$$(x_1, y_1) \oplus (x_2, y_2) = \left(\frac{x_1 y_2 + x_2 y_1}{1 + dx_1 x_2 y_1 y_2} \ , \ \frac{y_1 y_2 - x_1 x_2}{1 - dx_1 x_2 y_1 y_2} \right)$$

can denominators be 0 in \mathcal{F} ?

Theorem

The denominators is never 0 if d is non-square in \mathcal{F} .

- Let (x_1, y_1) and (x_2, y_2) be on the curve
- That is: $x_i^2 + y_i^2 = 1 + dx_i^2 y_i^2$ for i = 1, 2
- Write $e = dx_1x_2y_1y_2$
- We will use proof by contradiction
- Assume $e = -1, 1 \in \mathcal{F}$
- This implies $x_1, x_2, y_1, y_2 \neq 0$ and $e^2 = 1$

• Now calculate $dx_1^2y_1^2(x_2^2 + y_2^2)$

$$dx_1^2 y_1^2 (x_2^2 + y_2^2) = dx_1^2 y_1^2 (1 + dx_2^2 y_2^2)$$

= $dx_1^2 y_1^2 + d^2 x_1^2 y_1^2 x_2^2 y_2^2$
= $dx_1^2 y_1^2 + e^2$
= $1 + dx_1^2 y_1^2$

• We have obtained $dx_1^2y_1^2(x_2^2+y_2^2) = 1 + dx_1^2y_1^2 = x_1^2 + y_1^2$

• We now calculate $(x_1 + ey_1)^2$

$$(x_1 + ey_1)^2 = x_1^2 + y_1^2 + 2e x_1 y_1$$

= $d x_1^2 y_1^2 (x_2^2 + y_2^2) + 2x_1 x_2 y_1 y_2 x_1 y_1$
= $d x_1^2 y_1^2 (x_2^2 + 2x_2 y_2 + y_2^2)$
= $d x_1^2 y_1^2 (x_2 + y_2)^2$

• This gives an expression for d as

$$d = \frac{(x_1 + ey_1)^2}{x_1^2 y_1^2 (x_2 + y_2)^2} = \left(\frac{x_1 + ey_1}{x_1 y_1 (x_2 + y_2)}\right)^2$$

• This implies that d is a square, if $x_2 + y_2 \neq 0$

• Similarly, we calculate $(x_1 - ey_1)^2$

$$(x_1 - ey_1)^2 = x_1^2 + y_1^2 - 2e x_1 y_1$$

= $d x_1^2 y_1^2 (x_2^2 + y_2^2) - 2x_1 x_2 y_1 y_2 x_1 y_1$
= $d x_1^2 y_1^2 (x_2^2 - 2x_2 y_2 + y_2^2)$
= $d x_1^2 y_1^2 (x_2 - y_2)^2$

• This gives an expression for d as

$$d = \frac{(x_1 - ey_1)^2}{x_1^2 y_1^2 (x_2 - y_2)^2} = \left(\frac{x_1 - ey_1}{x_1 y_1 (x_2 - y_2)}\right)^2$$

• This implies that d is a square, if $x_2 - y_2 \neq 0$

• Considering these two expressions together:

$$x_2 + y_2 \neq 0 \implies \left(rac{x_1 + ey_1}{x_1y_1(x_2 + y_2)}
ight)^2 \implies d ext{ is square}$$

$$x_2 - y_2 \neq 0 \implies \left(\frac{x_1 - ey_1}{x_1y_1(x_2 - y_2)}\right)^2 \implies d$$
 is square

• However, $x_2 + y_2 = 0$ and $x_2 - y_2 = 0$ imply $x_2 = y_2 = 0$

- Therefore, we reach a contradiction: x_2 and y_2 were nonzero
- This implies that e cannot be -1 or 1
- Therefore the denominators cannot be zero

An Example Edwards Curve

- Let us denote the $x^2 + y^2 = 1 + dx^2y^2$ over GF(p) using $\mathcal{E}(d, p)$
- Consider the curve $\mathcal{E}(5,23)$
- We can check if 5 is not a square in GF(23)
- Euler's test: a is not square if $a^{(p-1)/2} = -1 \pmod{p}$
- $5^{(23-1)/2} = 5^{11} = 22 = -1 \pmod{23}$, thus, 5 is not square
- We now generate all elements of $\mathcal{E}(5,23)$ and find its order

Addition Law, Arithmetic, Properties

- We know that $(0,1)\in \mathcal{E}(5,23)$
- It is the neutral element of the group and its order is 1
- These elements also belong to $\mathcal{E}(5,23)$: (0,-1), (1,0), and (-1,0) since they satisfy the curve equation
- Since $(0,-1)\oplus(0,-1)=(0,1)$, its order is 2
- Since $(1,0)\oplus(1,0)=(0,-1)$, its order is 4
- Since $(-1,0) \oplus (-1,0) = (0,-1)$, its order is 4

Edwards Curve: $x^2 + y^2 = 1 + 5x^2y^2$ in GF(23)

• To find other elements of the group $\mathcal{E}(5, 23)$, we give values to $x \in GF(23)$, and solve for y in

$$x^2 + y^2 = 1 + 5x^2y^2$$

in GF(23)

- For x = 0, we already know solutions (0, 1) and (0, 1) since y² = 1 (mod 23) implies y = ±1
- For $x = \pm 1$, we obtain $1 + y^2 = 1 + 5y^2$ which implies $y^2 = 0$, and thus y = 0, giving two solutions $(\pm 1, 0)$

- For x = 2, we obtain $4 + y^2 = 1 + 5 \cdot 4 \cdot y^2 \pmod{23}$, which gives $19y^2 = 3 \pmod{23}$
- We compute $19^{-1} \pmod{23}$ as 17, and write

$$y^2 = 3 \cdot 17 = 51 = 5 \pmod{23}$$

- For a solution for y to exist, the righthand side needs to be a quadratic residue
- Applying Euler's test $5^{(23-1)/2} = -1 \pmod{23}$, we discover that the the righthand side is not a square and there is no y for x = 2

• For a given *x*, we can write

$$\begin{array}{rcl} x^2 + y^2 &=& 1 + 5x^2y^2 \pmod{23} \\ x^2 - 1 &=& (5x^2 - 1)y^2 \pmod{23} \\ y^2 &=& (x^2 - 1)(5x^2 - 1)^{-1} \pmod{23} \end{array}$$

• For a solution for y to exist, the righthand side

$$R(x) = (x^2 - 1)(5x^2 - 1)^{-1} \pmod{23}$$

needs to be a quadratic residue

- Euler's test: if $R(x)^{(23-1)/2} = 1 \pmod{23}$, then R(x) is square
- If y exists, $y = R(x)^{(23+1)/4} \pmod{23}$, since $23 = 3 \pmod{4}$

Addition Law, Arithmetic, Properties

- Every $\pm x$ maps to the same y
- For every x there are two $\pm y$ values
- If $(x, y) \in \mathcal{E}(d, p)$, so is $(y, x) \in \mathcal{E}(d, p)$
- Therefore, if $(x, y) \in \mathcal{E}(d, p)$, then all of these points are too: (x, y), (x, -y), (-x, y), (-x, -y)(y, x), (y, -x), (-y, x), (-y, -x)

- We only need to test positive x values, $x \in [2, 11]$
- For mod p this implies testing for $x \in [2, (p-1)/2]$

х	R(x)	$R(x)^{11}$	$y = R(x)^{6}$ if $R(x)^{11} = 1$
2	5	-1	
3	19	-1	
4	13	1	± 6
5	18	1	±8
6	16	1	\pm 4
7	10	-1	
8	2	1	± 5
9	15	-1	
10	22	-1	
11	20	1	

Edwards Curves Addition Law, Arithmetic, Properties Edwards Curve: $x^2 + y^2 = 1 + 5x^2y^2$ in GF(23)

• Therefore, we find all elements $\mathcal{E}(5,23)$

• Since there are 20 elements, $\operatorname{order}(\mathcal{E}(5,23))=20$

Hasse theorem applies

$$23 - 2\sqrt{23} \leq \operatorname{order}(\mathcal{E}(5, 23)) \leq 23 + 2\sqrt{23}$$

- Furthermore, the factors 20 are 1, 2, 4, 5, 10, 20
- Therefore, element orders can only be one of these integers

Çetin Kaya Koç

Addition Law, Arithmetic, Properties

- Group order: 20
- Order 1 element: (0,1)
- Order 2 element: (0, -1)
- Order 4 elements: (1,0), (-1,0)
- \bullet Order 5 elements: (4,6), (-4,6) and (8,-5), (-8,-5)
- \bullet Order 10 elements: (4, -6), (-4, -6) and (8, 5), (-8, 5)
- Order 20 elements:
 - (6,4), (6,-4), (-6,4), (-6,-4)(5,8), (5,-8), (-5,8), (-5,-8)
- The set of order 20 elements are all primitive

A Complexity Result

- We know that $\mathcal{E}(d,p)$ has identity (0,1)
- The element (0, -1) is of order 2
- What are the orders of the other elements?
- Suppose p, q are prime numbers with p = 4q 1.
- A few such (p, q) pairs are (11, 3), (19, 5), (331, 83), (1314883, 328721), (2760727332067, 690181833017)
- Consider the Edwards group $\mathcal{E}(d, p)$ with d = -1, which is a non square in GF(p)

Theorem

Given primes p and q with p = 4q - 1, the elements $(x, y) \in \mathcal{E}(-1, p)$ are of order q, 2q or 4q, except (0, 1) and (0, -1) whose orders are 1 and 2.