## Edwards Curves

Çetin Kaya Koç
koc@cs.ucsb.edu


## Edwards Curves

- Harold Edwards introduced a new normal form for elliptic curves and gave an addition law which is remarkably symmetric and much simpler
- The original form the equation Edwards studied was

$$
x^{2}+y^{2}=c^{2}+c^{2} x^{2} y^{2}
$$

solved over a field $\mathcal{F}$ whose characteristic is not equal to 2

- Studies on such groups go as far back as to Gauss
- Bernstein and Lange gave a slightly simpler form

$$
x^{2}+y^{2}=1+d x^{2} y^{2}
$$

where $d$ is not a square in $\mathcal{F}$

## Edwards Curves

- For values of $d \in \mathcal{F}-\{0,1\}$ in a non-binary field $\mathcal{F}$, Edward curves are within the unit circle
- Edwards curves for $d=0,-2,-10,-50,-200$ over $\mathcal{R}$



## Edwards Curves for $d=0$

- When $d=0$, the equation defines the unit circle: $x^{2}+y^{2}=1$
- Let $x_{i}=\sin \left(\alpha_{i}\right)$ and $y_{i}=\cos \left(\alpha_{i}\right)$
- The angle $\alpha_{i}$ is measured with the respect to the $y$ axis
- The addition of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is "addition on a clock"

$$
\begin{aligned}
x_{3} & =\sin \left(\alpha_{1}+\alpha_{2}\right) \\
& =\sin \left(\alpha_{1}\right) \cos \left(\alpha_{2}\right)+\cos \left(\alpha_{1}\right) \sin \left(\alpha_{2}\right) \\
& =x_{1} y_{2}+y_{1} x_{2} \\
y_{3} & =\cos \left(\alpha_{1}+\alpha_{2}\right) \\
& =\cos \left(\alpha_{1}\right) \cos \left(\alpha_{2}\right)-\sin \left(\alpha_{1}\right) \sin \left(\alpha_{2}\right) \\
& =y_{1} y_{2}-x_{1} x_{2}
\end{aligned}
$$

## Edwards Curves for $d=0$

- Addition of angles defines the commutative group law
- The zero (neutral) element of the group is $(0,1)$



## Edwards Curves for $d \neq 0,1$

- $x^{2}+y^{2}=1+d x^{2} y^{2}$ for $d \in \mathcal{F}-\{0,1\}$
- The zero (neutral) element is $(0,1)$
- The inverse of $(x, y)$ is $(-x, y)$

$$
\begin{array}{ll}
P_{3}=P_{1} \oplus P_{2} & \\
\left(x_{3}, y_{3}\right)=\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right) & \text { nneutral }=(0,1) \\
\left(\frac{x_{1} y_{2}+x_{2} y_{1}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
\end{array}
$$

## Edwards Curve Arithmetic Properties

- The zero element $(0,1)$ is of order 1
- The point $(0,-1)$ has order 2 , since

$$
(0,-1) \oplus(0,-1)=(0,1)
$$

- The points $(1,0)$ and $(-1,0)$ have orders 4 , since

$$
\begin{aligned}
(1,0) \oplus(1,0) & =(0,-1) \\
(-1,0) \oplus(-1,0) & =(0,-1)
\end{aligned}
$$

- The negative of $P=(x, y)$ is $-P=(-x, y)$
- The addition law applies to doubling as well


## Edwards Curve Arithmetic Properties

- $d$ needs to be a non-square in the field $\mathcal{F}$
- For $\mathcal{F}=\mathrm{GF}(p), d$ needs to be quadratic non-residue
- Question: Since

$$
\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(\frac{x_{1} y_{2}+x_{2} y_{1}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

can denominators be 0 in $\mathcal{F}$ ?

## Theorem

The denominators is never 0 if $d$ is non-square in $\mathcal{F}$.

## Edwards Curve Arithmetic Properties

- Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be on the curve
- That is: $x_{i}^{2}+y_{i}^{2}=1+d x_{i}^{2} y_{i}^{2}$ for $i=1,2$
- Write $e=d x_{1} x_{2} y_{1} y_{2}$
- We will use proof by contradiction
- Assume $e=-1,1 \in \mathcal{F}$
- This implies $x_{1}, x_{2}, y_{1}, y_{2} \neq 0$ and $e^{2}=1$


## Edwards Curve Arithmetic Properties

- Now calculate $d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}\right)$

$$
\begin{aligned}
d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}\right) & =d x_{1}^{2} y_{1}^{2}\left(1+d x_{2}^{2} y_{2}^{2}\right) \\
& =d x_{1}^{2} y_{1}^{2}+d^{2} x_{1}^{2} y_{1}^{2} x_{2}^{2} y_{2}^{2} \\
& =d x_{1}^{2} y_{1}^{2}+e^{2} \\
& =1+d x_{1}^{2} y_{1}^{2}
\end{aligned}
$$

- We have obtained $d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}\right)=1+d x_{1}^{2} y_{1}^{2}=x_{1}^{2}+y_{1}^{2}$


## Edwards Curve Arithmetic Properties

- We now calculate $\left(x_{1}+e y_{1}\right)^{2}$

$$
\begin{aligned}
\left(x_{1}+e y_{1}\right)^{2} & =x_{1}^{2}+y_{1}^{2}+2 e x_{1} y_{1} \\
& =d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}\right)+2 x_{1} x_{2} y_{1} y_{2} x_{1} y_{1} \\
& =d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+2 x_{2} y_{2}+y_{2}^{2}\right) \\
& =d x_{1}^{2} y_{1}^{2}\left(x_{2}+y_{2}\right)^{2}
\end{aligned}
$$

- This gives an expression for $d$ as

$$
d=\frac{\left(x_{1}+e y_{1}\right)^{2}}{x_{1}^{2} y_{1}^{2}\left(x_{2}+y_{2}\right)^{2}}=\left(\frac{x_{1}+e y_{1}}{x_{1} y_{1}\left(x_{2}+y_{2}\right)}\right)^{2}
$$

- This implies that $d$ is a square, if $x_{2}+y_{2} \neq 0$


## Edwards Curve Arithmetic Properties

- Similarly, we calculate $\left(x_{1}-e y_{1}\right)^{2}$

$$
\begin{aligned}
\left(x_{1}-e y_{1}\right)^{2} & =x_{1}^{2}+y_{1}^{2}-2 e x_{1} y_{1} \\
& =d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}+y_{2}^{2}\right)-2 x_{1} x_{2} y_{1} y_{2} x_{1} y_{1} \\
& =d x_{1}^{2} y_{1}^{2}\left(x_{2}^{2}-2 x_{2} y_{2}+y_{2}^{2}\right) \\
& =d x_{1}^{2} y_{1}^{2}\left(x_{2}-y_{2}\right)^{2}
\end{aligned}
$$

- This gives an expression for $d$ as

$$
d=\frac{\left(x_{1}-e y_{1}\right)^{2}}{x_{1}^{2} y_{1}^{2}\left(x_{2}-y_{2}\right)^{2}}=\left(\frac{x_{1}-e y_{1}}{x_{1} y_{1}\left(x_{2}-y_{2}\right)}\right)^{2}
$$

- This implies that $d$ is a square, if $x_{2}-y_{2} \neq 0$


## Edwards Curve Arithmetic Properties

- Considering these two expressions together:

$$
\begin{aligned}
& x_{2}+y_{2} \neq 0 \Longrightarrow\left(\frac{x_{1}+e y_{1}}{x_{1} y_{1}\left(x_{2}+y_{2}\right)}\right)^{2} \Longrightarrow d \text { is square } \\
& x_{2}-y_{2} \neq 0 \Longrightarrow\left(\frac{x_{1}-e y_{1}}{x_{1} y_{1}\left(x_{2}-y_{2}\right)}\right)^{2} \Longrightarrow d \text { is square }
\end{aligned}
$$

- However, $x_{2}+y_{2}=0$ and $x_{2}-y_{2}=0$ imply $x_{2}=y_{2}=0$
- Therefore, we reach a contradiction: $x_{2}$ and $y_{2}$ were nonzero
- This implies that e cannot be -1 or 1
- Therefore the denominators cannot be zero


## An Example Edwards Curve

- Let us denote the $x^{2}+y^{2}=1+d x^{2} y^{2}$ over $\operatorname{GF}(p)$ using $\mathcal{E}(d, p)$
- Consider the curve $\mathcal{E}(5,23)$
- We can check if 5 is not a square in $\operatorname{GF}(23)$
- Euler's test: $a$ is not square if $a^{(p-1) / 2}=-1(\bmod p)$
- $5^{(23-1) / 2}=5^{11}=22=-1(\bmod 23)$, thus, 5 is not square
- We now generate all elements of $\mathcal{E}(5,23)$ and find its order


## Edwards Curve: $x^{2}+y^{2}=1+5 x^{2} y^{2}$ in GF(23)

- We know that $(0,1) \in \mathcal{E}(5,23)$
- It is the neutral element of the group and its order is 1
- These elements also belong to $\mathcal{E}(5,23):(0,-1),(1,0)$, and $(-1,0)$ since they satisfy the curve equation
- Since $(0,-1) \oplus(0,-1)=(0,1)$, its order is 2
- Since $(1,0) \oplus(1,0)=(0,-1)$, its order is 4
- Since $(-1,0) \oplus(-1,0)=(0,-1)$, its order is 4


## Edwards Curve: $x^{2}+y^{2}=1+5 x^{2} y^{2}$ in GF(23)

- To find other elements of the group $\mathcal{E}(5,23)$, we give values to $x \in \operatorname{GF}(23)$, and solve for $y$ in

$$
x^{2}+y^{2}=1+5 x^{2} y^{2}
$$

in GF(23)

- For $x=0$, we already know solutions $(0,1)$ and $(0,1)$ since $y^{2}=1$ $(\bmod 23)$ implies $y= \pm 1$
- For $x= \pm 1$, we obtain $1+y^{2}=1+5 y^{2}$ which implies $y^{2}=0$, and thus $y=0$, giving two solutions $( \pm 1,0)$


## Edwards Curve: $x^{2}+y^{2}=1+5 x^{2} y^{2}$ in GF(23)

- For $x=2$, we obtain $4+y^{2}=1+5 \cdot 4 \cdot y^{2}(\bmod 23)$, which gives $19 y^{2}=3(\bmod 23)$
- We compute $19^{-1}(\bmod 23)$ as 17 , and write

$$
y^{2}=3 \cdot 17=51=5 \quad(\bmod 23)
$$

- For a solution for $y$ to exist, the righthand side needs to be a quadratic residue
- Applying Euler's test $5^{(23-1) / 2}=-1(\bmod 23)$, we discover that the the righthand side is not a square and there is no $y$ for $x=2$


## Edwards Curve: $x^{2}+y^{2}=1+5 x^{2} y^{2}$ in GF(23)

- For a given $x$, we can write

$$
\begin{aligned}
x^{2}+y^{2} & =1+5 x^{2} y^{2} \quad(\bmod 23) \\
x^{2}-1 & =\left(5 x^{2}-1\right) y^{2} \quad(\bmod 23) \\
y^{2} & =\left(x^{2}-1\right)\left(5 x^{2}-1\right)^{-1} \quad(\bmod 23)
\end{aligned}
$$

- For a solution for $y$ to exist, the righthand side

$$
R(x)=\left(x^{2}-1\right)\left(5 x^{2}-1\right)^{-1} \quad(\bmod 23)
$$

needs to be a quadratic residue

- Euler's test: if $R(x)^{(23-1) / 2}=1(\bmod 23)$, then $R(x)$ is square
- If $y$ exists, $y=R(x)^{(23+1) / 4}(\bmod 23)$, since $23=3(\bmod 4)$


## Edwards Curve: $x^{2}+y^{2}=1+5 x^{2} y^{2}$ in $\operatorname{GF}(23)$

- Every $\pm x$ maps to the same $y$
- For every $x$ there are two $\pm y$ values
- If $(x, y) \in \mathcal{E}(d, p)$, so is $(y, x) \in \mathcal{E}(d, p)$
- Therefore, if $(x, y) \in \mathcal{E}(d, p)$, then all of these points are too:
$(x, y),(x,-y),(-x, y),(-x,-y)$
$(y, x),(y,-x),(-y, x),(-y,-x)$


## Edwards Curve: $x^{2}+y^{2}=1+5 x^{2} y^{2}$ in GF(23)

- We only need to test positive $x$ values, $x \in[2,11]$
- For $\bmod p$ this implies testing for $x \in[2,(p-1) / 2]$

| $x$ | $R(x)$ | $R(x)^{11}$ | $y=R(x)^{6}$ if $R(x)^{11}=1$ |
| :---: | :---: | :---: | :--- |
| 2 | 5 | -1 |  |
| 3 | 19 | -1 |  |
| 4 | 13 | 1 | $\pm 6$ |
| 5 | 18 | 1 | $\pm 8$ |
| 6 | 16 | 1 | $\pm 4$ |
| 7 | 10 | -1 |  |
| 8 | 2 | 1 | $\pm 5$ |
| 9 | 15 | -1 |  |
| 10 | 22 | -1 |  |
| 11 | 20 | -1 |  |

## Edwards Curve: $x^{2}+y^{2}=1+5 x^{2} y^{2}$ in GF(23)

- Therefore, we find all elements $\mathcal{E}(5,23)$

| $(0,1)$ | $(0,-1)$ |  |  |
| :--- | :--- | :--- | :--- |
| $(1,0)$ | $(-1,0)$ |  |  |
| $(4,6)$ | $(4,-6)$ | $(-4,6)$ | $(-4,-6)$ |
| $(6,4)$ | $(6,-4)$ | $(-6,4)$ | $(-6,-4)$ |
| $(5,8)$ | $(5,-8)$ | $(-5,8)$ | $(-5,-8)$ |
| $(8,5)$ | $(8,-5)$ | $(-8,5)$ | $(-8,-5)$ |

- Since there are 20 elements, $\operatorname{order}(\mathcal{E}(5,23))=20$
- Hasse theorem applies

$$
23-2 \sqrt{23} \leq \operatorname{order}(\mathcal{E}(5,23)) \leq 23+2 \sqrt{23}
$$

- Furthermore, the factors 20 are $1,2,4,5,10,20$
- Therefore, element orders can only be one of these integers


## Edwards Curve: $x^{2}+y^{2}=1+5 x^{2} y^{2}$ in GF(23)

- Group order: 20
- Order 1 element: $(0,1)$
- Order 2 element: $(0,-1)$
- Order 4 elements: $(1,0),(-1,0)$
- Order 5 elements: $(4,6),(-4,6)$ and $(8,-5),(-8,-5)$
- Order 10 elements: $(4,-6),(-4,-6)$ and $(8,5),(-8,5)$
- Order 20 elements:
$(6,4),(6,-4),(-6,4),(-6,-4)$
$(5,8),(5,-8),(-5,8),(-5,-8)$
- The set of order 20 elements are all primitive


## A Complexity Result

- We know that $\mathcal{E}(d, p)$ has identity $(0,1)$
- The element $(0,-1)$ is of order 2
- What are the orders of the other elements?
- Suppose $p, q$ are prime numbers with $p=4 q-1$.
- A few such $(p, q)$ pairs are $(11,3),(19,5),(331,83)$, (1314883, 328721), (2760727332067, 690181833017)
- Consider the Edwards group $\mathcal{E}(d, p)$ with $d=-1$, which is a non square in $\operatorname{GF}(p)$


## Theorem

Given primes $p$ and $q$ with $p=4 q-1$, the elements $(x, y) \in \mathcal{E}(-1, p)$ are of order $q, 2 q$ or $4 q$, except $(0,1)$ and $(0,-1)$ whose orders are 1 and 2 .

