CS 292F Elliptic Curve Cryptography

Winter Term 2017

Homework Assignment 01:

1. Compute $19^{-1}(\bmod 58)$ using the EEA.
2. Compute $25^{-1}(\bmod 113)$ using the Fermat's method.
3. Compute $\phi(248)$ using the properties of Euler Phi Function.
4. Compute $23^{-1}(\bmod 248)$ using the Euler's method.
5. Compute $23^{24}(\bmod 31)$ by hand using binary exponentiation method.
6. Compute X using the Chinese remainder algorithm, such that X has the remainders $(1,2,3,4)$ with respect to the moduli $(11,13,15,17)$.
7. Find all primitive elements in the group $G=\left(Z_{23}^{*}, * \bmod 23\right)$.
8. Consider the field $\operatorname{GF}\left(2^{6}\right)$ with the irreducible polynomial $p(x)=x^{6}+$ $x+1$. Perform the following operations:

$$
\begin{aligned}
& \left(x^{5}+x^{2}\right)+\left(x^{4}+x^{2}+x\right) \\
& \left(x^{5}+x^{2}\right) \times\left(x^{4}+x^{2}+x\right)
\end{aligned}
$$

9. Show that an irreducible binomial of degree 4 over GF(2) does not exist by trying all possible candidates.
10. Solve for x in $x^{2}=239(\bmod 323)$, and find all square roots. Note that $323=17 \times 19$.

Due 5pm Thursday January 26

Either, upload an electronic copy to the Dropbox link or bring a paper copy to the class. Electronic copy of your homework can be in Text or PDF. You could also scan/pdf your handwritten work; however, do not send lowresolution or small phone-camera images.

