Public-Key Cryptography

Çetin Kaya Koç koc@cs.ucsb.edu

Public Key Cryptography Diffie-Hellman, Discrete Logarithr

Secure Communication over an Insecure Channel

Secret-Key Cryptography

Encryption and decryption functions: $E(\cdot) \& D(\cdot)$ Encryption and decryption keys: $K_e \& K_d$ Plaintext and ciphertext: M & C

Secret-Key Cryptography

•
$$C = E_{K_e}(M)$$
 and $M = D_{K_d}(C)$

• Either
$$E(\cdot) = D(\cdot)$$
 and $K_e
eq K_d$

 K_d is easily deduced from K_e K_e is easily deduced from K_d

• Or
$$E(\cdot) \neq D(\cdot)$$
 and $K_e = K_d$

 $D(\cdot)$ is easily deduced from $E(\cdot)$ $E(\cdot)$ is easily deduced from $D(\cdot)$

Example: Hill Algebra

- Encoding: $\{a, b, \dots, z\} \longrightarrow \{0, 1, \dots, 25\}$
- Select a $d \times d$ matrix \mathcal{A} of integers and find its inverse $\mathcal{A}^{-1} \mod 26$
- For example, for d = 2

$$\mathcal{A} = \left[\begin{array}{cc} 3 & 3 \\ 2 & 5 \end{array} \right] \quad \text{and} \quad \mathcal{A}^{-1} = \left[\begin{array}{cc} 15 & 17 \\ 20 & 9 \end{array} \right]$$

Verify:

$$\begin{bmatrix} 3 & 3 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 15 & 17 \\ 20 & 9 \end{bmatrix} = \begin{bmatrix} 105 & 78 \\ 130 & 79 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \pmod{26}$$

Hill Cipher

- Encryption function: $c = E(m) = A m \pmod{26}$
- Decryption function: $m = D(c) = A^{-1} c \pmod{26}$
- *m* and *c* are $d \times 1$ vectors of plaintext and ciphertext letter encodings
- Encryption key K_e : A
- Decryption key K_d : $\mathcal{A}^{-1} \pmod{26}$
- \mathcal{A} and \mathcal{A}^{-1} are $d \times d$ matrices such that $\det(\mathcal{A}) \neq 0 \pmod{26}$ and \mathcal{A}^{-1} is the inverse of $\mathcal{A} \mod 26$

Secret-Key versus Public-Key Cryptography

• Secret-Key Cryptography:

- Requires establishment of a secure channel for key exchange
- Two parties cannot start communication if they never met
- Secure communication of *n* parties requires n(n-1)/2 keys
- Keys are "shared", rather than "owned" (secret vs private)
- Public-Key Cryptography:
 - No need for a secure channel
 - May require establishment of a public-key directory
 - Two parties can start communication even if they never met
 - Secure communication of *n* parties requires *n* keys
 - Keys are "owned', rather than "shared"
 - Ability to "sign" digital data (secret vs private)

- Martin Hellman (1945): American cryptologist and co-inventor of public key cryptography in cooperation with Whitfield Diffie and Ralph Merkle at Stanford
- Bailey Whitfield Diffie (1944) is an American cryptographer and co-inventor of public key cryptography
- Diffie and Hellman's paper "New Directions in Cryptography" was published *IEEE Tran. Information Theory* in Nov 1976
- It introduced a radically new method of distributing cryptographic keys, that went far toward solving one of the fundamental problems of cryptography, key distribution
- It has become known as Diffie-Hellman key exchange.

- A and B agree on a prime p and a primitive element g of \mathcal{Z}_p^*
- This is accomplished in public: p and g are known to the adversary
- A selects $a \in \mathcal{Z}_p^*$, computes $s = g^a \pmod{p}$, and sends s to B
- B selects $b \in \mathcal{Z}_p^*$, computes $r = g^b \pmod{p}$, and sends r to A
- A computes $K = r^a \pmod{p}$
- B computes $K = s^b \pmod{p}$

$$K = r^a = (g^b)^a = g^{ab} \pmod{p}$$

 $K = s^b = (g^a)^b = g^{ab} \pmod{p}$

Discrete Logarithm Problem

- The adversary knows the group: p and g
- The adversary also sees (obtains copies of) $s = g^a$ and $r = g^b$
- The discrete logarithm problem (DLP): the computation of x ∈ Z^{*}_p in

$$y = g^{\times} \pmod{p}$$

given p, g, and y

• Example: Given p = 23 and g = 5, find x such that

$$10 = 5^x \pmod{23}$$

Answer: x = 3

Discrete Logarithm Problem

• Given $p = 158(2^{800} + 25) + 1 =$

1053546280395016975304616582933958731948871814925913489342 6087342587178835751858673003862877377055779373829258737624 5199045043066135085968269741025626827114728303489756321430 0237166369174066615907176472549470083113107138189921280884 003892629359

and g = 3, find $x \in \mathcal{Z}_p^*$ such that

$$2=3^x \pmod{p}$$

Answer: ?

• How difficult is it to find x?

- The Diffie-Hellman algorithm allows two parties to agree on a key that is known only to them, except that the adversary can solve the DLP
- Once the secret key (shared key) is established, the parties can use a secret-key cryptographic algorithm to encrypt and decrypt
- However, we still have the problem of establishing n(n-1)/2 keys between n parties, and other difficulties of the secret-key cryptography also remain
- But, we no longer need a (secret-key type) secure channel the Diffie-Hellman algorithm gave us a secure channel, whose security depends on computational difficulty of the DLP
- The Diffie-Hellman algorithm is not a public-key encryption method

Public-Key Cryptography

• The functions $C(\cdot)$ and $D(\cdot)$ are inverses of one another

$$C = E_{K_e}(M)$$
 and $M = D_{K_d}(C)$

• Encryption and decryption processes are asymmetric:

$$K_e \neq K_d$$

- K_e is **public**, known to everyone
- K_d is **private**, known only to the user
- K_e may be easily deduced from K_d
- However, K_d is **NOT** easily deduced from K_e