Public-Key Cryptography

Çetin Kaya Koç
koc@cs.ucsb.edu

Secure Communication over an Insecure Channel

Secret-Key Cryptography

Encryption and decryption functions: $E(\cdot) \& D(\cdot)$ Encryption and decryption keys: $K_{e} \& K_{d}$ Plaintext and ciphertext: $M \& C$

Secret-Key Cryptography

- $C=E_{K_{e}}(M)$ and $M=D_{K_{d}}(C)$
- Either $E(\cdot)=D(\cdot)$ and $K_{e} \neq K_{d}$
K_{d} is easily deduced from K_{e} K_{e} is easily deduced from K_{d}
- Or $E(\cdot) \neq D(\cdot)$ and $K_{e}=K_{d}$
$D(\cdot)$ is easily deduced from $E(\cdot)$
$E(\cdot)$ is easily deduced from $D(\cdot)$

Example: Hill Algebra

- Encoding: $\{a, b, \ldots, z\} \longrightarrow\{0,1, \ldots, 25\}$
- Select a $d \times d$ matrix \mathcal{A} of integers and find its inverse $\mathcal{A}^{-1} \bmod 26$
- For example, for $d=2$

$$
\mathcal{A}=\left[\begin{array}{ll}
3 & 3 \\
2 & 5
\end{array}\right] \quad \text { and } \quad \mathcal{A}^{-1}=\left[\begin{array}{cc}
15 & 17 \\
20 & 9
\end{array}\right]
$$

Verify:

$$
\left[\begin{array}{ll}
3 & 3 \\
2 & 5
\end{array}\right]\left[\begin{array}{cc}
15 & 17 \\
20 & 9
\end{array}\right]=\left[\begin{array}{ll}
105 & 78 \\
130 & 79
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right](\bmod 26)
$$

Hill Cipher

- Encryption function: $c=E(m)=\mathcal{A} m(\bmod 26)$
- Decryption function: $m=D(c)=\mathcal{A}^{-1} c(\bmod 26)$
- m and c are $d \times 1$ vectors of plaintext and ciphertext letter encodings
- Encryption key K_{e} : \mathcal{A}
- Decryption key $K_{d}: \mathcal{A}^{-1}(\bmod 26)$
- \mathcal{A} and \mathcal{A}^{-1} are $d \times d$ matrices such that $\operatorname{det}(\mathcal{A}) \neq 0(\bmod 26)$ and \mathcal{A}^{-1} is the inverse of $\mathcal{A} \bmod 26$

Secret-Key versus Public-Key Cryptography

- Secret-Key Cryptography:
- Requires establishment of a secure channel for key exchange
- Two parties cannot start communication if they never met
- Secure communication of n parties requires $n(n-1) / 2$ keys
- Keys are "shared", rather than "owned" (secret vs private)
- Public-Key Cryptography:
- No need for a secure channel
- May require establishment of a public-key directory
- Two parties can start communication even if they never met
- Secure communication of n parties requires n keys
- Keys are "owned', rather than "shared"
- Ability to "sign" digital data (secret vs private)

Diffie-Hellman Key Exchange Method

- Martin Hellman (1945): American cryptologist and co-inventor of public key cryptography in cooperation with Whitfield Diffie and Ralph Merkle at Stanford
- Bailey Whitfield Diffie (1944) is an American cryptographer and co-inventor of public key cryptography
- Diffie and Hellman's paper "New Directions in Cryptography" was published IEEE Tran. Information Theory in Nov 1976
- It introduced a radically new method of distributing cryptographic keys, that went far toward solving one of the fundamental problems of cryptography, key distribution
- It has become known as Diffie-Hellman key exchange.

Diffie-Hellman Key Exchange Method

- A and B agree on a prime p and a primitive element g of \mathcal{Z}_{p}^{*}
- This is accomplished in public: p and g are known to the adversary
- A selects $a \in \mathcal{Z}_{p}^{*}$, computes $s=g^{a}(\bmod p)$, and sends s to B
- B selects $b \in \mathcal{Z}_{p}^{*}$, computes $r=g^{b}(\bmod p)$, and sends r to A
- A computes $K=r^{a}(\bmod p)$
- B computes $K=s^{b}(\bmod p)$

$$
\begin{aligned}
& K=r^{a}=\left(g^{b}\right)^{a}=g^{a b} \quad(\bmod p) \\
& K=s^{b}=\left(g^{a}\right)^{b}=g^{a b} \quad(\bmod p)
\end{aligned}
$$

Diffie-Hellman Key Exchange Method

Discrete Logarithm Problem

- The adversary knows the group: p and g
- The adversary also sees (obtains copies of) $s=g^{a}$ and $r=g^{b}$
- The discrete logarithm problem (DLP): the computation of $x \in \mathcal{Z}_{p}^{*}$ in

$$
y=g^{x} \quad(\bmod p)
$$

given p, g, and y

- Example: Given $p=23$ and $g=5$, find x such that

$$
10=5^{x} \quad(\bmod 23)
$$

Answer: $x=3$

Discrete Logarithm Problem

- Given $p=158\left(2^{800}+25\right)+1=$

1053546280395016975304616582933958731948871814925913489342 6087342587178835751858673003862877377055779373829258737624 5199045043066135085968269741025626827114728303489756321430 0237166369174066615907176472549470083113107138189921280884 003892629359
and $g=3$, find $x \in \mathcal{Z}_{p}^{*}$ such that

$$
2=3^{x} \quad(\bmod p)
$$

Answer: ?

- How difficult is it to find x ?

Diffie-Hellman Key Exchange Method

- The Diffie-Hellman algorithm allows two parties to agree on a key that is known only to them, except that the adversary can solve the DLP
- Once the secret key (shared key) is established, the parties can use a secret-key cryptographic algorithm to encrypt and decrypt
- However, we still have the problem of establishing $n(n-1) / 2$ keys between n parties, and other difficulties of the secret-key cryptography also remain
- But, we no longer need a (secret-key type) secure channel - the Diffie-Hellman algorithm gave us a secure channel, whose security depends on computational difficulty of the DLP
- The Diffie-Hellman algorithm is not a public-key encryption method

Public-Key Cryptography

- The functions $C(\cdot)$ and $D(\cdot)$ are inverses of one another

$$
C=E_{K_{e}}(M) \text { and } M=D_{K_{d}}(C)
$$

- Encryption and decryption processes are asymmetric:

$$
K_{e} \neq K_{d}
$$

- K_{e} is public, known to everyone
- K_{d} is private, known only to the user
- K_{e} may be easily deduced from K_{d}
- However, K_{d} is NOT easily deduced from K_{e}

