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Side-Channel Cryptanalysis

Cryptographic
Box

Messages Ciphertexts

Key

side-channel

Mi Ci

Adversary

Cryptographic algorithms must run on a real device

Devices have physical properties

Devices will emanate information regarding cryptographic algorithm,
key, and message

Adversary having access to these side channels will extract
information

Timing
Power
Electromagnetic
Acoustic
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Side-Channel Cryptanalysis

A new area of applied cryptography

The study of breaking cryptosystems using side-channel information

Timing attacks exploit time differences occurring for various input
values

Power attacks exploit the instantaneous power consumption during
critical phases of the cryptographic code

Electromagnetic attacks exploit the instantaneous electromagnetic
emanations during critical phases of the cryptographic code
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Equipment Setup for Power and Timing Analysis
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Information Leakage

The power consumption of a chip depends on the manipulated data
and the executed instruction

Information leakage model (assumption): The consumed power is
related to the Hamming weight of data (or address, op code)

H(0) = 0

H(1) = H(2) = H(4) = H(8) = · · · = 1

H(3) = H(5) = H(6) = H(9) = · · · = 2

· · ·
H(Pi ⊕ Pi−1)
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Information Leakage

Load P1 and XOR with P2 = 0 such that P1 = 0, 1, 7, 255
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Information Leakage

H(P1 ⊕ 184) for P1 = 0, 1, 2, . . . , 255
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Simple Power Analysis (SPA)

The objective is to find the secret or private key

Algorithm is known

Implementation is unknown however some background is available

Reverse engineering is required

A single power curve may be sufficient

A known plaintext, ciphertext pair may be required
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SPA Attack on RSA Signature Operation

The signature computation

s = µ(m)d (mod n)

n is large modulus, say 1024 bits or more

m is the message

µ(m) is the padded and hashed message

s is the signature

d is the private key such that e · d = 1 (mod φ(n))

The attacker aims to obtain d
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SPA Attack on RSA Signature Operation

Implementation details:

n, m, s, and d are 128-byte buffers
the binary method of exponentiation
the exponent bits are scanned from MSB to LSB
k is the bit size of d

Input: m, d = (dk−1, . . . , d0)2, n
Output: s = md (mod n)
1. s ← 1
2. For i = k − 1 downto 0

s ← s · s (mod n)
If di = 1 then s ← s ·m (mod n)

3. Return s
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SPA Attack on RSA Signature Operation

Test key value: 0F 00 F0 00 FF 00

http://koclab.cs.ucsb.edu ITU Fall 2016 12 / 91

http://koclab.cs.ucsb.edu


Cryptographic Engineering Side-Channel Attacks and Countermeasures

SPA Attack on RSA Signature Operation

Test key value: 2E C6 91 5B F9 4A
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SPA Attack on RSA Signature Operation

SPA uses implementation details

SPA requires:

algorithm knowledge,
reverse engineering,
representation tuning, and
playing with implementation assumptions

SPA depends on

Algorithm implementation
Application constraints
The technology (electrical properties) of the chip
Possible countermeasures
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Countermeasures Against SPA Attack

What is a countermeasure? Anything that foils the attack

Basic countermeasure: remove code branches that depend on secret
or private key bits

Advanced countermeasure:

Algorithm specification refinement
Data whitening (blinding)
Make changes in the instruction set
Electrical behavior changes (current scramblers, coprocessor usage)
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Timing Attacks

Processing time depends on the value of the secret key bit

It leaks information about it

There are ways to measure it

Timing attack conditions

The processing should be monitored
Processing durations need to be recorded
Some basic computational and statistical tools are needed
Knowledge of the implementation will be required
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Timing Attacks

The code starts unconditionally

The test is based on secret bit

Depending on the Boolean
condition the process may be
long (t1) or short (t2)

The code continues
unconditionally

Begin

Decision

Process2
Process1

End

True False

t2t1
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Timing Attacks

The term “Timing Attack” was introduced by Paul Kocher in 1996

First practical attacks in Crypto 1997 Conference

Applicable to RSA and in fact all cryptosystems

Basic mathematical operations
Modular exponentiation
Cryptographic algorithms

Knowledge and variability of messages are needed

Time measurements must be accurate to within few clock cycles
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Attacking RSA Algorithm

The standard RSA exponentiation s = md (mod n)

The Montgomery method for modular multiplication

Timing variations in Montgomery due to Subtraction Step

The binary method of exponentiation yields bits of d
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The Binary Method of Exponentiation

Input: m, d , n

m: message which is k bits

(d , n): the RSA private key, k bits each

Output: s = md (mod n)

m: signature which is k bits

Input: m, d = (dk−1, . . . , d0)2, n
Output: s = md (mod n)
1. s ← 1
2. For i = k − 1 downto 0

s ← s · s (mod n)
If di = 1 then s ← s ·m (mod n)

3. Return s
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The Montgomery Modular Multiplication

The Montgomery modular multiplication (�) is a special, high-speed
modular multiplication algorithm

It is significantly faster than Multiply-and-Reduce algorithm

It produces a result in the range [0, 2n)

A subtraction may be required to fully reduce mod n

Multiply step for bit di

If d [i ] = 1 then s = s �m (mod n)

Step 1: The multiply-add steps of Montgomery multiplication

Step 2: The optional subtraction by n (if the result > n)
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Attacking RSA Algorithm

Assume, higher (i − 1) bits of the exponent d are already known

That is, we know d [k − 1], d [k − 2], . . . , d [k − (i − 1)]

Knowing the message m, we can compute the intermediate value of
the signature s after the square operation for index (k − i)

We can also determine whether the Montgomery multiplication
operation s �m (mod n) will cause a subtraction

However, we do not know the value of the bit d [k − i ]

If d [k − i ] = 0, there will not be a Montgomery multiplication (and
thus no subtraction either)
if d [k − i ] = 1, there will be a Montgomery multiplication and we have
determined whether there will be a subtraction or not
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Description of the Attack

Sign L messages using (d , n) and obtain signatures and timings

Let S the set of messages: S = {m1,m2, . . . ,mL}
Let T the set of timings: S = {t1, t2, . . . , tL} such that ti is the
timing for processing the message mi

Assume d [k − i ] = 1

Partition S into two disjoint subsets: S0 and S1 such that

S0 = {m : s � (mod n) implies no subtraction}
S1 = {m : s � (mod n) implies subtraction}
Compute the mean time T 0 of the messages in S0
Compute the mean time T 1 of the messages in S1
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Description of the Attack

Case d [k − i ] = 0
Global times for sets S0 and S1 are not statistically distinguishable
since the split is based on a multiplication which does not occur

Case d [k − i ] = 1
Global times for sets S0 and S1 show a statistical difference to the
optional multiplication since it does occur

Time measurements validate or invalidate the assumption:

If T 0 − T 1 � 0, the assumption is valid, that is d [k − i ] = 1

If T 0 − T 1 ≈ 0, the assumption is wrong, that is d [k − i ] = 0
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Conclusions

For 128 bits, the attack recovers 2 bits/sec for L = 10, 000

For 512 bits, the attack recovers 1 bits/sec for L = 100, 000

Together with other side-channel attacks they become more efficient

A real threat for many devices

It works against computers, servers, not just smart cards

There are solutions

A basic countermeasure would be to create constant-time processing

Blinding (whitening or randomization) approaches also work
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Differential Power Analysis

Also invented by Paul Kocher (1998)

A powerful and generic power attack

DPA uses statistics and signal processing

DPA requires known random messages

DPA targets a known algorithm

Applicable to a smart card

Big noise in crypto community

Big fear in the smart card industry
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Acquisition Procedure
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Acquisition Procedure

Apply the algorithm L times, 103 < L < 105

Cryptographic
Algorithm

Messages Ciphertexts

Key

Power 
Consumption

Curves

Mi Ci

Wi
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Selection and Prediction

Assume the message is processed by a known deterministic function f
(transfer, permutation)

Knowing the message, one can recompute its image through f offline

Mi −→ f −→ M ′i = f (Mi )

Now select a single bit from M ′ buffer

One can predict the true story of its variations for i = 0, 1, . . . , L− 1

i Message bit
0 2A5A058FC295ED 0
1 17BD152B330F0A 1
2 BD9D5EE99FE1F8 0
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DPA Operator and Curve

DPA curve construction
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DPA Operator and Curve

DPA curves for different selection bits
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DPA Operator and Curve

Spikes explanation: Hamming weight of the byte of the selection bits

∆ = E (HW1)− E (HW0) = 1

The peak height is proportional to
√
L

If prediction was wrong, the selection bit would random

E (HW1) = E (HW0) = 4 ⇒ ∆ = 0
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DPA on RSA

The entire key (the private exponent d) is not handled together,
rather bit by bit in progression

The prediction can be done by time slices

Prediction of the next bit requires the previous bit to be broken
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RSA Primitive

Key generation:

Input: Key length k
Output: n = p · q such that |n| = k
gcd(e, φ(n)) = 1 and d = e−1 (mod φ(n))
Public key: (e, n) and Private key d

Plain RSA encryption:

Input: Message m and public key (e, n)
Output: Ciphertext c = me (mod n)

Plain RSA decryption:

Input: Ciphertext c and private key d
Output: Message m = cd (mod n)
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RSA Encryption in Practice

Plain RSA is insecure

Encryption should be probabilistic
Plain RSA is multiplicatively homomorphic

RSA-OAEP

Optimal Asymmetric Encryption Padding

c = µOAEP(m, r)e (mod n)

where r is random
OAEP is proposed by Bellare and Rogaway in 1994
It is included in PKCS1 and NIST Standards
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RSA Signature in Practice

Plain RSA signature is universally forgeable

Messages should be appropriately padded and hashed

RSA signature primitive

Setup n = p · q with p and q are prime
The public and private exponents satisfy e · d = 1 (mod φ(n))
Public parameters (e, n)
Private parameters (d , n)

Signature on message m

s = µ(m)d (mod n)

Verification of the signature s

se
?
= µ(m) (mod n)
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RSA Countermeasures

The binary method of exponentiation leaks information on private key

Cryptographic
Box

Messages Ciphertexts

Key

side-channel

Mi Ci

Adversary
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Square-and-Multiply Algorithm

The binary method is also known as Square-and-multiply algorithm

Input: m, d = (dk−1, . . . , d0)2, n
Output: s = md (mod n)
1. R0 ← 1
2. For i = k − 1 downto 0

R0 ← R2
0 (mod n)

If di = 1 then R0 ← R0 ·m (mod n)
3. Return R0

It performs exponentiation left to right

2 Temporary variables R0 and m

Susceptible to SPA-type attacks
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Square-and-Multiply Algorithm

The key: 2E C6 91 5B F9 4A
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Square-and-Multiply-Always Algorithm

One way to avoid leakage is to square and multiply at every step

Input: m, d = (dk−1, . . . , d0)2, n
Output: s = md (mod n)
1. R0 ← 1 ; R1 ← 1
2. For i = k − 1 downto 0

R0 ← R2
0 (mod n)

b ← 1− di ; Rb ← Rb ·m (mod n)
3. Return R0

When b = 1 (i.e., di = 0), there is a dummy multiplication

The power trace is a regular succession of squares and multiplies

3 Temporary variables: R0, R1 and m

Not susceptible to SPA-type attacks

Susceptible to Safe-Error attacks
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Safe-Error Attacks

Timely induce a fault into ALU during multiply operation at step i

Check the output

If the result is incorrect (invalid signature or error notification), then
the error was effective ⇒ di = 1
If the result is correct, then the multiplication was dummy (safe error)
⇒ di = 0

Re-iterate the attack for another value of i
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Montgomery Powering Ladder

Montgomery exponentiation algorithm

Input: m, d = (dk−1, . . . , d0)2, n
Output: s = md (mod n)
1. R0 ← 1 ; R1 ← m
2. For i = k − 1 downto 0

b ← 1− di ; Rb ← R0 · R1 (mod n)
Rdi ← R2

di
(mod n)

3. Return R0

This algorithm behaves regularly without dummy operations

2 Temporary variables: R0 and R1

Not susceptible to SPA-type attacks

Not susceptible to Safe-Error attacks
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Square-and-Multiply Algorithm Example

e = 9 = (1001)2

Square-and-Multiply Algorithm

Start with R0 = 1

i di Step 2a Step 2b

3 1 R0 = R2
0 = 1 R0 = R0m = m

2 0 R0 = R2
0 = m2

1 0 R0 = R2
0 = m4

0 1 R0 = R2
0 = m8 R0 = R0m = m9

Result: R0 = m9

Total of 4 squarings and 2 multiplications
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Square-and-Multiply-Always Algorithm Example

e = 9 = (1001)2

Square-and-Multiply-Always Algorithm

Start with R0 = 1 and R1 = 1

i di b Step 2a Step 2b

3 1 0 R0 = R2
0 = 1 R0 = R0m = m

2 0 1 R0 = R2
0 = m2 R1 = R1m = m

1 0 1 R0 = R2
0 = m4 R1 = R1m = m2

0 1 0 R0 = R2
0 = m8 R0 = R0m = m9

Result: R0 = m9

Total of 4 squarings and 4 multiplications
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Montgomery Powering Ladder Algorithm Example

e = 9 = (1001)2

Montgomery Powering Ladder Algorithm

Start with R0 = 1 and R1 = m

i di b Step 2a Step 2b

3 1 0 R0 = R0R1 = m R1 = R2
1 = m2

2 0 1 R1 = R0R1 = m3 R0 = R2
0 = m2

1 0 1 R1 = R0R1 = m5 R0 = R2
0 = m4

0 1 0 R0 = R0R1 = m9 R1 = R2
1 = m10

Result: R0 = m9

Total of 4 squarings and 4 multiplications
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Comparing Exponentiation Algorithms

Temporary Number of
Algorithm Variables Squ & Mul

Square-and-Multiply 2 k + k/2
Square-and-Multiply-Always 3 k + k
Montgomery Powering Ladder 2 k + k

Are there better algorithms?

Is it possible to compute me (mod n) in a secure way, without
introducing extra multiplications?

The Atomic Square-and-Multiply algorithms by Marc Joye require
k + k/2 squarings and multiplications as in the classical (unprotected)
algorithm
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Atomic Square-and-Multiply Algorithm

Atomic Square-and-Multiply Algorithm by Marc Joye

Input: m, d = (dk−1, . . . , d0)2, n
Output: s = md (mod n)
1. R0 ← 1 ; R1 ← m ; i ← k − 1 ; b ← 0
2. While i ≥ 0

R0 ← R0 · Rb (mod n)
b ← b ⊕ di ; i ← i − b̄

3. Return R0

This algorithm behaves regularly without dummy operations

2 Temporary variables: R0 and R1
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Atomic Square-and-Multiply Algorithm Example

e = 9 = (1001)2

Atomic Square-and-Multiply Algorithm by Marc Joye

Start with R0 = 1, R1 = m, i = k − 1 = 3, and b = 0

i di b Step 2a Step 2b

3 1 0 R0 = R0R0 = 1 b = b ⊕ di = 1 ; i = i − b̄ = 3

3 1 1 R0 = R0R1 = m b = b ⊕ di = 0 ; i = i − b̄ = 2

2 0 0 R0 = R0R0 = m2 b = b ⊕ di = 0 ; i = i − b̄ = 1

1 0 0 R0 = R0R0 = m4 b = b ⊕ di = 0 ; i = i − b̄ = 0

0 1 0 R0 = R0R0 = m8 b = b ⊕ di = 1 ; i = i − b̄ = 0

0 1 1 R0 = R0R1 = m9 b = b ⊕ di = 0 ; i = i − b̄ = −1

Result: R0 = m9

Total of 4 squarings and 2 multiplications
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Right-to-Left Binary Algorithm

The classical Right-to-Left Binary Algorithm

Input: m, d = (dk−1, . . . , d0)2, n
Output: s = md (mod n)
1. R0 ← 1 ; R1 ← m ; i ← 0
2. While i ≤ k − 1

If di = 1 then R0 ← R0 · R1 (mod n)
R1 ← R2

1 (mod n) ; i ← i + 1
3. Return R0
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Right-to-Left Binary Algorithm Example

e = 9 = (1001)2

The classical Right-to-Left Binary Algorithm

Start with R0 = 1, R1 = m, and i = 0

i di Step 2a Step 2b

0 1 R0 = R0R1 = m R1 = R2
1 = m2 ; i = i + 1 = 1

1 0 R1 = R2
1 = m4 ; i = i + 1 = 2

2 0 R1 = R2
1 = m8 ; i = i + 1 = 3

3 1 R0 = R0R1 = m9 R1 = R2
1 = m16 ; i = i + 1 = 4

Result: R0 = m9

Total of 4 squarings and 2 multiplications
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Atomic Right-to-Left Binary Algorithm

The atomic Right-to-Left Binary Algorithm by Marc Joye

Input: m, d = (dk−1, . . . , d0)2, n
Output: s = md (mod n)
1. R0 ← 1 ; R1 ← m ; i ← 0 ; b ← 1
2. While i ≤ k − 1

b ← b ⊕ di
Rb ← RbR1 (mod n) ; i ← i + b

3. Return R0
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Atomic Right-to-Left Binary Algorithm Example

e = 9 = (1001)2

Atomic Right-to-Left Binary Algorithm by Marc Joye

Start with R0 = 1, R1 = m, i = 0, and b = 1

i di b Step 2a Step 2b

0 1 1 b = b ⊕ di = 0 R0 = R0R1 = m ; i = i + b = 0

0 1 0 b = b ⊕ di = 1 R1 = R1R1 = m2 ; i = i + b = 1

1 0 1 b = b ⊕ di = 1 R1 = R1R1 = m4 ; i = i + b = 2

2 0 1 b = b ⊕ di = 1 R1 = R1R1 = m8 ; i = i + b = 3

3 1 1 b = b ⊕ di = 0 R0 = R0R1 = m9 ; i = i + b = 3

3 1 0 b = b ⊕ di = 1 R1 = R1R1 = m16 ; i = i + b = 4

Result: R0 = m9

Total of 4 squarings and 2 multiplications
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Preventing Side-Channel Attacks

For SPA-type attacks: Use Montgomery ladder or Atomic algorithms
of Marc Joye

However, these algorithms are not sufficient to thwart DPA-like
attacks

To circumvent the DPA-type attacks, we use data whitening, or
randomization, or blinding

For RSA, randomization of m, d , or n is used in the computation of
s = md (mod n)
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DPA-Type Countermeasures — Randomizing m

For a random r compute

m∗ = r e ·m (mod n)
s∗ = (m∗)d (mod n)
s = s∗ · r−1 (mod n)

If e is unknown, compute

m∗ = r ·m (mod n)
s∗ = (m∗)d (mod n)
s = s∗ · r−d (mod n)

For a short random r < 2u, compute

m∗ = m + r · n
n∗ = 2u · n
s∗ = (m∗)d (mod n∗)
s = s∗ · r−d (mod n)
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DPA-Type Countermeasures — Randomizing d

For a random r compute

d∗ = d + r · φ(n)

s = md∗
(mod n)

If φ(n) is unknown, compute

d∗ = d + r · (e · d − 1)

s = sd
∗

(mod n)

If e is unknown, for random r < d , compute

d∗ = d − r

s∗1 = md∗
(mod n)

s∗2 = mr (mod n)

s = s∗1 · s∗2 (mod n)
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DPA-Type Countermeasures — Randomizing n

This technique can be combined with previous ones
Randomizing n also protects against fault attacks

For short random numbers r1 and r2 > r1, compute

m∗ = m + r1 · n
n∗ = r2 · n
s∗ = (m∗)d (mod n∗)

s = s∗ (mod n)

For short random numbers r1 and r2 > r1, compute

m∗ = m + r1 · n
n∗ = r2 · n
s∗ = (m∗)d (mod n∗)

Y = (m∗)d mod φ(r2) (mod r2)

c = (S∗ − Y + 1) (mod r2)

s = (s∗)c (mod n)
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Fault Attacks

Safe-error attack was a type of fault attack

Timely induce a fault into ALU during multiply operation at step i

Check the output

If the result is incorrect (invalid signature or error notification), then
the error was effective ⇒ di = 1
If the result is correct, then the multiplication was dummy (safe error)
⇒ di = 0

Re-iterate the attack for another value of i

It was introduced into the RSA when Square-and-Multiply-Always
algorithm was used
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Fault Attack Assumptions

Precise bit errors

The attacker can cause a fault in a single bit
Full control over the timing and location of the fault

Precise byte errors

The attacker can cause a fault in a single byte
Full control over the timing but only partial control over the location
(e.g., which byte is affected)

Unknown byte errors

The attacker can cause a fault in a single byte
Partial control over the timing and location of the fault

Random errors

Partial control over the timing and no control over the location
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GCD Attack

GCD attack is possible if the CRT version of RSA signature
computation is used

Computation of a signature y = xd (mod n) using CRT

yp = xdp (mod p) with dp = d (mod p − 1)

yq = xdq (mod q) with dq = d (mod q − 1)

y = CRT(yp, yq) = yp + p · [ip · (yq − yp) mod q]
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GCD Attack

Assume that due to the fault in ALU, yp is incorrectly computed

The prime factor q can be obtained from the incorrect ŷp using

gcd(ŷ e − x mod n, n) = q

Because

ŷ e − x = ŷ ep − x 6= 0 (mod n) ⇐⇒ p - (ŷ ep − x)

ŷ e − x = ŷ eq − x = 0 (mod n) ⇐⇒ q | (ŷ ep − x)
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GCD Attack Demonstration

Let p = 17 and q = 19, which gives n = p · q = 323 and
φ(n) = (p − 1) · (q − 1) = 288

Select e = 23, since gcd(e, φ(n)) = gcd(23, 288) = 1

Compute d = e−1 (mod n), which gives d = 263

Select x = 100

We compute y = xd (mod n), which gives y = 25
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GCD Attack Demonstration

In order to apply CRT, we first compute

dp = d mod (p − 1) → dp = 263 mod 16 → dp = 7
dq = d mod (q − 1) → dq = 263 mod 18 → dq = 11
ip = p−1 mod q → ip = 17−1 mod 19 → ip = 9

Mod p exponentation:

yp = xdp (mod p) → yp = 1007 mod 17 → yp = 8

Mod q exponentation:

yq = xdq (mod q) → yq = 10011 mod 19 → yq = 6

The CRT produces

y = yp + p · [ip · (yq − yp) mod q]

= 8 + 17 · [9 · (6− 8) mod 19]

= 25
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GCD Attack Demonstration

Now assume that yp was incorrectly computed

Instead of yp = 8, we compute ŷp = 10d due to a fault in ALU

This incorrect value ŷp = 10 would be used in the CRT computation

ŷ = ŷp + p · [ip · (yq − ŷp) mod q]

= 10 + 17 · [9 · (6− 10) mod 19]

= 44

This resulting incorrect value ŷ = 44 allows us to obtain q using

q = gcd(ŷ e − x mod n, n)

= gcd(4423 − 100 mod 323, 323)

= gcd(5− 100 mod 323, 323)

= gcd(−95 mod 323, 323)

= gcd(238, 323)

= 17
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Countermeasures Against GCD Attack

Recomputation

It does not detect permanent errors
It doubles the computation time

Verification

It may double the computation time
It requires the knowledge of e

http://koclab.cs.ucsb.edu ITU Fall 2016 64 / 91

http://koclab.cs.ucsb.edu


Cryptographic Engineering Side-Channel Attacks and Countermeasures

Countermeasures Against GCD Attack

Shamir’s method

Choose a small random r

Compute yrp = xd mod φ(rp) mod rp

Compute yrq = xd mod φ(rq) mod rq

If yrp 6= yrq (mod r), output ERROR and stop

Output y = CRT(yrp mod p, yrq mod q)

Shamir’s method requires the knowledge of d

However, in CRT, only dp and dq are available
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RSA Error Detection – The Standard Mode

Compute z = xd (mod rn)

Compute yr = xd mod φ(r) (mod r)
(Note that r can be chosen prime, this φ(r) = r − 1)

If yr 6= z (mod r), output ERROR and stop

Output y = z (mod n)
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RSA Error Detection – The CRT Mode

Compute z1 = xdp (mod r1p)

Compute yr1 = xdp mod φ(r1) (mod r1)

If yr1 6= z1 (mod r1), output ERROR and stop

Compute z2 = xdq (mod r2q)

Compute yr2 = xdq mod φ(r2) (mod r2)

If yr2 6= z2 (mod r2), output ERROR and stop

Output y = CRT(z1 mod p, z2 mod q)
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Micro-Architectural Side-Channel Attacks

Historical targets of side-channel attacks were smart cards

The vulnerability of computer systems (e.g., remote servers) was not
known until Brumley and Boneh Attack (2003)

This remote timing attack on RSA (OpenSSL implementation on a
web server) shows the practicality of such attacks

The attack revealed 1024-bit RSA key of a server over a LAN

Remote RSA attack was improved, now requiring < 100, 000 queries
(while the original attack needed 1.4 million queries)

Knows
n, e

Secrets
d , p, q
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Micro-Architectural Side-Channel Attacks

Side-channel attacks can be applied to the PC as well

This is rather interesting since maturing Trusted Computing efforts
promise a “trusted environment” with isolated execution for
applications, etc.

These new side-channel attacks are different from embedded
platforms

The PC platform environment is quite different from the embedded
security platforms.

Only pure “unprivileged” software-based attacks are really interesting
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Micro-Architectural Side-Channel Attacks

Since the power is not easily observable in a complicated device such
as PC, the timing variations are targeted

Timing variances exploited in timing attacks are caused by:

Different data-dependent execution paths
Different (number of) instructions executed in those paths

In general, micro-architectural attacks exploit timing and access
variations caused by the components of the CPU (even if the same
sequence instructions are always executed)
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Micro-Architectural Side-Channel Attacks

Micro-architectural side-channel attacks are a new class of attacks
that exploit the micro-architecture and throughput-oriented internal
functionality of modern processor components

Micro-architectural attacks exploit the execution time variations
caused by CPU components

Currently there are 4 types of Micro-Architectural Attacks:

Cache Analysis
Branch Prediction Analysis
Instruction Cache
Shared Functional Units
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Micro-Architectural Side-Channel Attacks

These attacks capitalize on the situations where several applications
share the same processor resources

The shared usage between spy and crypto process allows a spy
process running in parallel to the victim process to extract critical
information like secret keys.

On powerful PC-platforms many applications can run in parallel:

Either quasi-parallel enabled by OS scheduling, or
More or less explicitly parallel depending on the degree of additional
hardware, such dual processors, multicores, and simultaneous multi
threading
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Micro-Architectural Side-Channel Attacks

Thus, several applications share the same processor and its resources,
and also at more or less the same time

Therefore, when a highly critical crypto algorithm is executed, there is
the potential threat that a malicious or so called spy process is
executed in parallel with the crypto process which might try to
extract critical or secret information by “spying” on the crypto
process during its execution
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Cache Attacks

Cache is a small and fast storage area used by the CPU to reduce the
average time to access main memory.

It stores copies of the most frequently used data

When a CPU needs to read a location in main memory, it first checks
to see if the data is already in the cache

Cache Hit: data is already in the cache; CPU immediately uses this
data in cache.
Cache Miss: data is not in the cache; CPU reads it from the memory
and stores a copy in the cache.

Cache Block: The minimum amount of data that can be read from
the main memory into the cache at once

Each cache miss causes a cache block to be retrieved from a higher
level memory.
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Cache Attacks

Cache attacks exploit the cache behavior (i.e., cache hit/miss
statistics) of cryptosystems

Cache architecture leaks information about memory access patterns

The sources of information leakage:

Execution Time: cache misses take more time than a cache hit
Power Consumption: cache misses require more power than a cache hit

Cryptosystems have data dependent memory access patterns

Once the access patterns are extracted, an adversary may recover the
secret key
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Cache Attacks

An access to “Data Structure 1” may evict adversary’s data and vice
versa

An adversary can infer if/when “Data Structure 1” is accessed during
the encryption
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Cache Attacks

Adversary reads the garbage data via the ”Spy Process”

Case 1: “Data Structure 1” is accessed

Case 2: “Data Structure 1” is not accessed

Spy process reads the garbage data again

Case 1: takes more time to read it
Case 2: takes less time to read it
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Branch Prediction Attack (BPA)

A very new software side-channel enabled by the branch prediction
capability common to all modern CPUs

The penalty paid (extra clock cycles) for a mispredicted branch can
be used for cryptanalysis of cryptographic primitives that employ a
data-dependent program flow

BPA allows an unprivileged process to attack other processes running
in parallel on the same processor

Works despite of sophisticated partitioning methods such as memory
protection, sandboxing or even virtualization

Public-key ciphers like RSA and ECC are susceptible to BP attacks
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Branch Prediction Attack

Superscalar processors have to execute instructions speculatively to
overcome control hazards

Branch prediction units try to predict the most likely execution path
after a branch

A branch instruction is a point in the instruction stream of a program
where the next instruction is not necessarily the next sequential one

For conditional branches, the decision to take the branch or not to
take depends on some condition that must be evaluated in order to
make the correct decision

During this evaluation period, the processor speculatively executes
instructions from one of the possible execution paths instead of
stalling and awaiting for the decision to come through

http://koclab.cs.ucsb.edu ITU Fall 2016 79 / 91

http://koclab.cs.ucsb.edu


Cryptographic Engineering Side-Channel Attacks and Countermeasures

Branch Prediction Attacks

Due to the deep
pipelining 
of the instruction 
sequences

A branch operation 
could stall the pipelineIntroducing misprediction

delays up to 150 cycles
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Branch Prediction Attack

A branch predictor determines whether a conditional branch in the
instruction flow of a program is likely to be taken or not

Branch predictors are crucial in today’s modern,
superscalar processors for achieving high performance

They allow processors to fetch and execute instructions
without waiting for a branch to be resolved

Almost all pipelined processors do branch prediction of some form, because
they must guess the address of the next instruction to fetch before the
current instruction has been executed

Branch prediction is not the same as branch target prediction

Branch target prediction attempts to guess the target of the branch or
unconditional jump before it is computed by parsing the instruction itself
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Branch Prediction Attack

BPU consists of mainly two “logical” parts: the branch target buffer (BTB)
and the branch predictor logic

BTB is the buffer where the CPU stores
the target addresses of the previously
executed branches

BTB is limited in size, the CPU can store
only a number of such target addresses,
and previously stored addresses are evicted
from the BTB if a new address needs to
be stored instead

The predictor is that part of the BPU that
makes the prediction on the outcome of
the branch
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Branch Prediction Attack

BPA uses the branch misprediction delays to break cryptographic
primitives using a data-dependent program flow

BPA also allows an unprivileged process to attack other processes
running in parallel on the same processor even in the presence of
sophisticated partitioning methods such as memory protection,
sandboxing or even virtualization

4 different branch prediction attacks are proposed:

Exploiting the Predictor directly (Direct Timing Attack)
Forcing the BPU to the Same Prediction (Asynchronous Attack)
Forcing the BPU to the Same Prediction (Synchronous Attack)
Trace-driven Attack against the BTB (Simple Prediction Attack)
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Direct Timing Attack (DTA)

DTA relies on the fact that the prediction algorithms are deterministic
(i.e., predictable)

DTA assumes that an adversary attacks an RSA cipher with a private
exponent d and knows the first (the most significant) i bits of d and
is trying to reveal di .

http://koclab.cs.ucsb.edu ITU Fall 2016 84 / 91

http://koclab.cs.ucsb.edu


Cryptographic Engineering Side-Channel Attacks and Countermeasures

Direct Timing Attack

For any message m, the adversary can simulate the first i steps of the
operation and obtain the intermediate result that will be the input of
the (i + 1)th squaring

Then, the attacker creates 4 different message sets M1, M2, M3, and
M4, such that

If the difference between the average execution time of M1 and M2 is
more significant than that of M3 and M4, then the attacker guesses
that di = 1. Otherwise di should be 0
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Implications of Micro-Architectural Attacks (MAA)

The micro-architectural attacks work despite of sophisticated
partitioning and protection methods such as memory protection,
sandboxing, and virtualization

They can impact: Multiuser systems, VPNs, Virtual machines,
Trusted computing, Sandboxes (JVM, JavaScript), and Remote
attacks

They are:

Easy to deploy – pure software attacks
Hard to detect
Hard to protect efficiently
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Software Countermeasures against MAA

OpenSSL had gone into several revisions and implemented many
software countermeasures

Yet, new micro-architectural vulnerabilities of OpenSSL are being
discovered

Are software countermeasures sufficient?

Solving the problem in software means solving it one by one
Software solutions are algorithm- and attack-specific
They incur high performance overhead
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Hardware Countermeasures against MAA

Hardware countermeasures:

Solving it in hardware may mean solving it for all
They may not be algorithm-specific
They may have much less overhead

Possible branch prediction countermeasures:

Randomizable branch prediction
Partitioned Branch Target Buffers
Locking mechanism for BTB
Protected BTB area
Flushing mechanism for BTB
Dynamically disabling branch predictions

http://koclab.cs.ucsb.edu ITU Fall 2016 88 / 91

http://koclab.cs.ucsb.edu


Cryptographic Engineering Side-Channel Attacks and Countermeasures

Hardware Countermeasures against MAA

Randomizable Prediction:

Modify the prediction output

BPU can output random predictions for critical branches
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Hardware Countermeasures against MAA

Protected Branch Target Buffer:

Allow critical code to benefit from using a protected buffer

The entries in PBTB can be handled in a more secure way
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Final Recommendations Against Side-Channel Attacks

Always consider side-channel attacks when implementing
cryptographic functions

Check that the countermeasures do not introduce new vulnerabilities

Avoid decisional tests

Randomize execution

Combine hardware and software protections

Always prefer cryptographic standards
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