
Elementary Number Theory GCD, Fermat, Euler, Modular Arithmetic

Elementary Number Theory

http://koclab.org Çetin Kaya Koç Winter 2017 1 / 21

http://koclab.org

Elementary Number Theory GCD, Fermat, Euler, Modular Arithmetic

Contents

Number Sets

GCD and Euclidean Algorithms

Binary GCD Algorithm

Modular Addition and Multiplication

Multiplicative Inverse

Modular Exponentiation

http://koclab.org Çetin Kaya Koç Winter 2017 2 / 21

http://koclab.org

Elementary Number Theory GCD, Fermat, Euler, Modular Arithmetic

Number Sets

We represent the set of integers as
Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
We denote the set of positive integers modulo n as
Zn = {0, 1, . . . , n − 1}
Elements of Zn can be thought of as equivalency classes

For n ≥ 2, every integer in a ∈ Z maps into one of the elements
r ∈ Zn using the division law a = q · n + r which is represented as
a ≡ r (mod n)

http://koclab.org Çetin Kaya Koç Winter 2017 3 / 21

http://koclab.org

Elementary Number Theory GCD, Fermat, Euler, Modular Arithmetic

Number Sets

Let Zn = {0, 1, 2, 3, 4}
Therefore, 0 represents the infinite set of negative and positive
integers: 0 ≡ {. . . ,−15,−10,−5, 0, 5, 10, 15 . . .}
Similarly, 1 represents the infinite set of negative and positive
integers: 1 ≡ {. . . ,−14,−9,−4, 1, 6, 11, 16, . . .}

http://koclab.org Çetin Kaya Koç Winter 2017 4 / 21

http://koclab.org

Elementary Number Theory GCD, Fermat, Euler, Modular Arithmetic

Number Sets

The symbol Z∗n represents the set of positive integers that are less
than n and relatively prime to n

If a ∈ Z∗n , then gcd(a, n) = 1

When n = p is prime, the set would be Z∗p = {1, 2, . . . , p − 1}
When n is not a prime, the number of elements that are less than n
and relatively prime to n is given as φ(n) = |Z∗n |
Euler’s Phi (totient) Function φ(n) is defined as the number of
numbers in the range [1, n − 1] that are relatively prime to n

http://koclab.org Çetin Kaya Koç Winter 2017 5 / 21

http://koclab.org

Elementary Number Theory GCD, Fermat, Euler, Modular Arithmetic

Greatest Common Divisor

Given two positive integers a and b, their greatest common divisor
(GCD) is denoted as g = gcd(a, b)

We can compute gcd(a, b) from the prime factorizations of a and b

a = pe11 · p
e2
2 · · · p

er
r

b = pf11 · p
f2
2 · · · p

fr
r

Zero exponents are used to make the set of primes p1, p2, . . . , pr the
same for both a and b

The GCD is computed as

gcd(a, b) = p
min(e1,f1)
1 · pmin(e2,f2)

2 · · · pmin(er ,fr)
r

However, integer factorization algorithms require exponential time

http://koclab.org Çetin Kaya Koç Winter 2017 6 / 21

http://koclab.org

Elementary Number Theory GCD, Fermat, Euler, Modular Arithmetic

GCD and Euclidean Algorithm

The most commonly used algorithm for computing the greatest
common divisor of two integers is the Euclidean algorithm

The Euclidean algorithm is based the property

gcd(a, b) = gcd(b, a− Q · b)

where Q is the integer division Q = ba/bc
By applying this reduction rule repeatedly, the Euclidean algorithm
obtains gcd(a, b) = gcd(g , 0) = g

For example, to compute gcd(56, 21), we perform the iterations

gcd(56, 21) → b56/21c = 2 → gcd(21, 56− 2 · 21)
gcd(21, 14) → b21/14c = 1 → gcd(14, 21− 1 · 14)

gcd(14, 7) → b14/7c = 2 → gcd(7, 14− 2 · 7)

gcd(7, 0) = 7

http://koclab.org Çetin Kaya Koç Winter 2017 7 / 21

http://koclab.org

Elementary Number Theory GCD, Fermat, Euler, Modular Arithmetic

GCD and Euclidean Algorithm

Given the positive integers a and b with a > b, the Euclidean
algorithm computes the greatest common divisor g in O(k) steps
where k is the number of bits in a

function EA(a, b)
Input: a, b with a > b
Output: g = gcd(a, b)
1: while b 6= 0
2: Q ← a/b
3: r ← a− Q · b
4: a← b
5: b ← r
6: return a

http://koclab.org Çetin Kaya Koç Winter 2017 8 / 21

http://koclab.org

Elementary Number Theory GCD, Fermat, Euler, Modular Arithmetic

GCD and Euclidean Algorithm Example

Given a = 117 and b = 45, the Euclidean Algorithm computes

a b Q r new a new b

117 45 2 27 45 27
45 27 1 18 27 18
27 18 1 9 18 9
18 9 2 0 9 0
9 0

The EA function returns 9 since gcd(117, 45) = 9

http://koclab.org Çetin Kaya Koç Winter 2017 9 / 21

http://koclab.org

Elementary Number Theory GCD, Fermat, Euler, Modular Arithmetic

Extended Euclidean Algorithm

Another important property of the GCD is that, if gcd(a, b) = g , then
there exists integers s and t such that

s · a + t · b = g

We can compute s and t using the extended Euclidean algorithm by
working back through the remainders in the Euclidean algorithm

For example, to find gcd(833, 301) = 7, we write

833− 2 · 301 = 231

301− 1 · 231 = 70

231− 3 · 70 = 21

70− 3 · 21 = 7

21− 3 · 7 = 0

http://koclab.org Çetin Kaya Koç Winter 2017 10 / 21

http://koclab.org

Elementary Number Theory GCD, Fermat, Euler, Modular Arithmetic

Extended Euclidean Algorithm

Since g = 7, we start with the 4th equation and plug in the remainder
value from the previous equation to this equation, and then move up

70− 3 · (231− 3 · 70) = 7

10 · 70− 3 · 231 = 7

10 · (301− 1 · 231)− 3 · 231 = 7

10 · 301− 13 · 231 = 7

10 · 301− 13 · (833− 2 · 301) = 7

−13 · 833 + 36 · 301 = 7

Therefore, we find s = −13 and t = 36

This implies g = s · a + t · b ⇒ 7 = (−13) · 833 + 36 · 301

http://koclab.org Çetin Kaya Koç Winter 2017 11 / 21

http://koclab.org

Elementary Number Theory GCD, Fermat, Euler, Modular Arithmetic

Computation of Multiplicative Inverse

The EEA allows us to compute the multiplicative inverse of an integer
a modulo another integer n, if gcd(a, n) = 1

The EEA obtains the identity g = s · a + t · b which implies

s · a + t · n = 1

s · a = 1 (mod n)

a−1 = s (mod n)

For example, gcd(23, 25) = 1, and the extended Euclidean algorithm
returns s = 12 and t = 11, such that

1 = 12 · 23− 11 · 25

therefore 23−1 = 12 (mod 25)

http://koclab.org Çetin Kaya Koç Winter 2017 12 / 21

http://koclab.org

Elementary Number Theory GCD, Fermat, Euler, Modular Arithmetic

Fermat’s Little Theorem

Theorem: If p is prime and gcd(a, p) = 1, then ap−1 = 1 (mod p)

For example, p = 7 and a = 2, we have ap−1 = 26 = 64 = 1 (mod 7)

FLT can be used to compute the multiplicative inverse if the modulus
is a prime number

a−1 = ap−2 (mod p)

since a−1 · a = ap−2 · a = ap−1 = 1 mod p

The converse of the FLT is not true: If an−1 = 1 (mod n) and
gcd(a, n) = 1, then n may or may not be a prime.

Example: gcd(2, 341) = 1 and 2340 = 1 (mod 341), but 341 is not
prime: 341 = 11 · 31

http://koclab.org Çetin Kaya Koç Winter 2017 13 / 21

http://koclab.org

Elementary Number Theory GCD, Fermat, Euler, Modular Arithmetic

Euler’s Phi Function

Euler’s Phi (totient) Function φ(n) is defined as the number of
numbers in the range [1, n − 1] that are relatively prime to n

Let n = 7, then φ(7) = 6 since for all a ∈ [1, 6], we have gcd(a, 7) = 1

If p is a prime, φ(p) = p − 1

For a positive power of prime, we have φ(pk) = pk − pk−1

If n and m are relatively prime, then φ(n ·m) = φ(n) · φ(m)

If all prime factors of n is known, then φ(n) is easily computed:

φ(n) = n ·
∏
p|n

(
1− 1

p

)

http://koclab.org Çetin Kaya Koç Winter 2017 14 / 21

http://koclab.org

Elementary Number Theory GCD, Fermat, Euler, Modular Arithmetic

Euler’s Theorem

Theorem: If gcd(a, n) = 1, then aφ(n) = 1 (mod n)

Example: n = 15 and a = 2, we have 2φ(15) = 28 = 256 = 1 mod 15

Euler’s theorem can be used to compute the multiplicative inverse for
any modulus:

a−1 = aφ(n)−1 (mod n)

however, this requires the computation of the φ(n) and therefore the
factorization of n

To compute 23−1 mod 25, we need φ(25) = φ(52) = 52 − 51 = 20,
and therefore,

23−1 = 2320−1 = 2319 = 12 (mod 25)

http://koclab.org Çetin Kaya Koç Winter 2017 15 / 21

http://koclab.org

Elementary Number Theory GCD, Fermat, Euler, Modular Arithmetic

Representing Numbers mod n

The elements of Zn can be represented in two distinct ways:
the Least Positive (LP) representation
the Least Magnitude (LM) representation

The Least Positive representation uses
Zn = {0, 1, 2, . . . , n − 1}
Example: the least positive representation mod 10
Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Example: the least positive representation mod 11
Z11 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

http://koclab.org Çetin Kaya Koç Winter 2017 16 / 21

http://koclab.org

Elementary Number Theory GCD, Fermat, Euler, Modular Arithmetic

Representing Numbers mod n

The Least Magnitude representation for n is odd
Zn = {−(n − 1)/2, . . . ,−2,−1, 0, 1, 2, . . . , (n − 1)/2}
Example: the least magnitude representation mod 11
Z11 = {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5}

The Least Magnitude representation for n is even
Either: Zn = {−n/2 + 1, . . . ,−2,−1, 0, 1, 2, . . . , n/2}
Or: Zn = {−n/2, . . . ,−2,−1, 0, 1, 2, . . . , n/2− 1}

Example: the least magnitude representation mod 10
Either: Z10 = {−4,−3,−2,−1, 0, 1, 2, 3, 4, 5}
Or: Z10 = {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4}

The LM property: a is LM mod n if |a| ≤ |n − a|

http://koclab.org Çetin Kaya Koç Winter 2017 17 / 21

http://koclab.org

Elementary Number Theory GCD, Fermat, Euler, Modular Arithmetic

Modular Arithmetic Operations

Given a positive odd n, how does one compute modular additions,
subtractions, multiplications, and exponentiations?

s = a + b (mod n) is computed in two steps: 1) add, 2) reduce

If a, b < n to start with, then the reduction step requires a subtraction

if s > n , then s = s − n

s = a− b (mod n) is computed similarly: 1) subtract, 2) reduce

The least positive representation is often preferred

The least positive representation uses unsigned arithmetic

Negative numbers are brought to the range [0, n − 1]

http://koclab.org Çetin Kaya Koç Winter 2017 18 / 21

http://koclab.org

Elementary Number Theory GCD, Fermat, Euler, Modular Arithmetic

Modular Multiplication

Modular Multiplication a · b (mod n) can be computed in two steps:

Multiplication step: c ← a · b
Reduction step: r ← c mod n

The reduction step may require division by n to obtain the remainder

a · b = c = Q · n + r

However, we do not need the quotient!

The division by n is an expensive operation

The Montgomery Multiplication: A new algorithm for performing
modular multiplication that does not require division by n

http://koclab.org Çetin Kaya Koç Winter 2017 19 / 21

http://koclab.org

Elementary Number Theory GCD, Fermat, Euler, Modular Arithmetic

Modular Exponentiation

The computation of b = ae (mod n): Perform the steps of the
exponentiation ae , reducing numbers at each step mod n

Reduction is required, otherwise ae doubles in size at each size

Exponentiation algorithms: binary method, m-ary methods, sliding
windows, power tree method, factor method

The binary method is the most commonly used algorithm

The binary method uses the binary expansion of the exponent
e = (ek−1ek−2 · · · e1e0), and performs squaring and multiplication
operations at each step

http://koclab.org Çetin Kaya Koç Winter 2017 20 / 21

http://koclab.org

Elementary Number Theory GCD, Fermat, Euler, Modular Arithmetic

Modular Exponentiation with Binary Method

Given the inputs a, n, and e = (ek−1ek−2 · · · e1e0)2, the binary
method computes b = ae (mod n) as follows

1: if ek−1 = 1 then b ← a else b ← 1
2: for i = k − 2 downto 0
2a: b ← b · b (mod n)
2b: if ei = 1 then b ← b · a (mod n)
3: return b

e = (1 10111) = 55

k = 6

e5 = 1⇒ b ← a

i → 4 3 2 1 0

ei → 1 0 1 1 1

Step 2a a2 a6 a12 a26 a54

Step 2b a3 a6 a13 a27 a55

http://koclab.org Çetin Kaya Koç Winter 2017 21 / 21

http://koclab.org

