Elliptic Curve Cryptography Fundamentals

Elliptic Curves

- An elliptic curve is the solution set of a nonsingular cubic polynomial equation in two unknowns over a field \mathcal{F}

$$
\mathcal{E}=\{(x, y) \in \mathcal{F} \times \mathcal{F} \mid f(x, y)=0\}
$$

- The general equation of a cubic in two variables is given by

$$
a x^{3}+b y^{3}+c x^{2} y+d x y^{2}+e x^{2}+f y^{2}+g x y+h x+i y+j=0
$$

- When $\operatorname{char}(\mathcal{F}) \neq\{2,3\}$, the short Weierstrass form is useful in cryptography

$$
y^{2}=x^{3}+a x+b
$$

- Also, the Edwards curves and Montgomery curves are useful in cryptography

Elliptic Curves over \mathcal{R}

- The field in which this equation solved can be an infinite field, such as \mathcal{C} (complex numbers), \mathcal{R} (real numbers), or \mathcal{Q} (rational numbers)
- Since

$$
\lim _{x \rightarrow \infty} y=\infty
$$

The point at infinity written as $\mathcal{O}=(\infty, \infty)$ is also considered as one of the solutions of the equation

- The elliptic curves over \mathcal{R} for different values of a and b make continuous curves on the plane, which have either one or two parts

Elliptic Curves over \mathcal{R}

Elliptic Curves over \mathcal{R}

- When the discriminant $\Delta=4 a^{3}+27 b^{2}=0$, the curve is singular
- $\Delta=419>0$ for $a=-4$ and $b=5$ (red, smooth)
- $\Delta=-229<0$ for $a=-4$ and $b=1$ (blue, smooth)
- $\Delta=0$ for $a=-4$ and $\sqrt{256 / 27}=3.079201$ (green, singular)

Singular vs Smooth Curves over \mathcal{R}

$\Delta=4 a^{3}+27 b^{2}=0$ for singular curves

Singular curve $y^{2}=x^{3}-3 x+2$ over \mathcal{R}
$\Delta=0$
Singular curve
Smooth curve
Smooth curve
$y^{2}=x^{3}$
over \mathcal{R}
$\Delta=0$

$$
\begin{gathered}
y^{2}=x^{3}+x+1 \\
\text { over } \mathcal{R} \\
\Delta=31
\end{gathered}
$$

$$
y^{2}=x^{3}-x
$$

$$
\text { over } \mathcal{R}
$$

$$
\Delta=-4
$$

Elliptic Curves over \mathcal{R}

Bezout Theorem

Theorem

A line that intersects an elliptic curve at 2 points crosses at a third point.

- Consider the elliptic curve and the linear equation together:

$$
\begin{aligned}
y^{2} & =x^{3}+a x+b \\
y & =c x+d
\end{aligned}
$$

- Substituting y from the second equation to the first one, we obtain a cubic equation in x

$$
x^{3}+a x+b=(c x+d)^{2}
$$

Elliptic Curve Chord

- This is simplified as

$$
x^{3}-c^{2} x^{2}+(a-2 c d) x+\left(b-d^{2}\right)=0
$$

- This is a cubic equation in x with real coefficients
- A cubic equation with real coefficients has either:
- 1 real and 2 complex (conjugate) roots, or
- 3 real roots
- Since we already have 2 real points on the curve (2 real roots), the third point must be real too

Elliptic Curve Chord with Line $y=x$

- For example, by solving $y^{2}=x^{3}-4 x$ with the linear equation $y=x$ together, we find $x^{3}-4 x=x^{2}$, and thus

$$
x\left(x^{2}-x-4\right)=0
$$

- This equation has 3 solutions: $x=0, x=\frac{1-\sqrt{17}}{2}$, and $x=\frac{1+\sqrt{17}}{2}$
- By evaluating the elliptic curve equation $y^{2}=x^{3}-4 x$ at these x values, we find the solution points as

$$
\left(\frac{1}{2}(1-\sqrt{17}), \sqrt{\frac{1}{2}(9-\sqrt{17})}\right), \quad(0,0), \quad\left(\frac{1}{2}(1+\sqrt{17}), \sqrt{\frac{1}{2}(9+\sqrt{17})}\right)
$$

- Approximate values of the points are

$$
(-1.56155,-1.56155), \quad(0,0), \quad(2.56155,2.56155)
$$

Elliptic Curve Chord with Line $y=x$

- This graph shows the elliptic curve equation $y^{2}=x^{4}-4 x$, the line $y=x$, and their 3 intersections

Elliptic Curve Chord with Line $y=1$

- By solving $y^{2}=x^{3}-4 x$ with the linear equation $y=1$ together, we find $x^{3}-4 x=1$, and thus $x^{3}-4 x-1=0$
- This equation in x has 3 solutions and their approximate values are $x=-1.86081, x=-0.254102$, and $x=2.11491$
- Approximate values of the points are

$$
(-1.86081,1), \quad(-0.254102,1), \quad(2.11491,1)
$$

Elliptic Curve Chord with Line $y=4 /(27)^{1 / 4}=1.75477$

- By solving $y^{2}=x^{3}-4 x$ with the linear equation $y=4 /(27)^{1 / 4}$ together, we obtain $x^{3}-4 x-16 / \sqrt{27}=0$
- This equation in x has 2 repeated solutions and 1 other solution as $-2 / \sqrt{3},-2 / \sqrt{3}$, and $4 / \sqrt{3}$
- Their approximate values of the points are

$$
(-1.1547,1.75477), \quad(-1.1547,1.75477), \quad(2.3094,1.75477)
$$

Elliptic Curve Chord with Line $x=-1 / 2$

- By solving $y^{2}=x^{3}-4 x$ with the linear equation $x=-1 / 2$ together, we obtain $y^{2}=-1 / 8+2=15 / 8$
- Solving for y, we find the two points

$$
(-1 / 2,-\sqrt{15 / 8}), \quad(-1 / 2, \sqrt{15 / 8})
$$

Elliptic Curve Chord and Tangent

Weierstrass Curve Chord-and-Tangent Rule

- The Weierstrass curves has a chord-and-tangent rule for adding two points on the curve to get a third point
- Together with this addition rule, the set of points on the curve forms an Abelian additive group in which the point at infinity is the zero element of the group
- The point at infinity, denoted as \mathcal{O} is also a solution of the Weierstrass equation $y^{2}=x^{3}+a x+b$
- The best way to explain the addition rule is to use geometry over \mathcal{R}

Weierstrass Curve Point Addition

Weierstrass Curve Point Addition

- The "point addition" is a geometric operation: a linear line that connects P_{1} and P_{2} also crosses the elliptic curve at a third point, which we will name as $-P_{3}$
- The new "sum" point $P_{3}=P_{1} \oplus P_{2}$ is the mirror image of $-P_{3}$ with respect to the x axis:

$$
\text { if } P_{3}=\left(x_{3}, y_{3}\right) \text { then }-P_{3}=\left(x_{3},-y_{3}\right)
$$

- The point at infinity \mathcal{O} acts as the neutral (zero) element

$$
\begin{aligned}
P \oplus \mathcal{O} & =\mathcal{O} \oplus P=P \\
P \oplus(-P) & =(-P) \oplus P=\mathcal{O}
\end{aligned}
$$

Weierstrass Curve Point Addition

- The addition rule for $P_{3}=P_{1} \oplus P_{2}$ can be algebraically obtained by first computing the slope m of the straight line that connects

$$
P_{1}=\left(x_{1}, y_{1}\right) \text { and } P_{2}=\left(x_{2}, y_{2}\right) \text { using }
$$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

- In the case of doubling $Q_{3}=Q_{1} \oplus Q_{1}=\left(x_{1}, y_{1}\right) \oplus\left(x_{1}, y_{1}\right)$, the slope m of the linear line is equal to the derivative of the elliptic curve equation $y^{2}=x^{3}+a x+b$ evaluated at point x_{1} as

$$
2 y y^{\prime}=3 x^{2}+a \quad \rightarrow \quad y^{\prime}=\frac{3 x^{2}+a}{2 y}=m
$$

Weierstrass Curve Point Addition

- Once the slope m is obtained, the linear equation can be written, and solved together with the elliptic curve equation to find x_{3} and y_{3}
- Since the slope is m, and the linear line goes through $\left(x_{1}, y_{1}\right)$, its equation would be of the form

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

- Therefore, the new coordinates of new point $\left(x_{3}, y_{3}\right)$ can be obtained by solving these two equations together

$$
\begin{aligned}
y^{2} & =x^{3}+a x+b \\
y & =m\left(x-x_{1}\right)+y_{1}
\end{aligned}
$$

Weierstrass Curve Point $P_{3}=P_{1} \oplus P_{2}$

- If $P_{1}=\mathcal{O}$, then $P_{3}=\mathcal{O} \oplus P_{2}=P_{2}$
- If $P_{2}=\mathcal{O}$, then $P_{3}=P_{1} \oplus \mathcal{O}=P_{1}$
- If $P_{2}=-P_{1}$, then $P_{3}=P_{1} \oplus\left(-P_{1}\right)=\mathcal{O}$
- Otherwise, first compute the slope using

$$
m= \begin{cases}\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { for } x_{1} \neq x_{2} \\ \frac{3 x_{1}^{2}+a}{2 y_{1}} & \text { for } x_{1}=x_{2} \text { and } y_{1}=y_{2}\end{cases}
$$

- Then, $\left(x_{3}, y_{3}\right)$ is computed using

$$
\begin{aligned}
& x_{3}=m^{2}-x_{1}-x_{2} \\
& y_{3}=m\left(x_{1}-x_{3}\right)-y_{1}
\end{aligned}
$$

Elliptic Curves over Finite Fields

- The field in which the Weierstrass equation solved can also be a finite field, which is of interest in cryptography
- Most common cases of finite fields are:
- Characteristic $p: \operatorname{GF}(p)$, where p is a large prime
- Characteristic 2: $\operatorname{GF}\left(2^{k}\right)$, where k is a small prime
- Characteristic $p: \operatorname{GF}\left(p^{k}\right)$, where p and k are small primes

Elliptic Curves over GF(p)

- In $\operatorname{GF}(p)$ for a prime $p \neq 2,3$, we can use the Weierstrass equation

$$
y^{2}=x^{3}+a x+b
$$

with the understanding that the solution of this equation and all field operations are performed in the finite field $\mathrm{GF}(p)$

- We will denote this group by $\mathcal{E}(a, b, p)$

An Elliptic Curve over GF(23)

- Consider the elliptic curve group $\mathcal{E}(1,1,23)$: The solutions of the equation with $a=1$ and $b=1$

$$
y^{2}=x^{3}+x+1
$$

over the finite field GF(23)

- We will obtain the elements of the group by solving this equation in $\mathrm{GF}(23)$ for all values of $x \in \mathcal{Z}_{23}^{*}$

An Elliptic Curve over GF(23)

- As we give a particular value for x, we obtain a quadratic equation in y modulo 23, whose solution will depend on whether the right hand side is a QR mod 23
- If (x, y) is a solution, so is $(x,-y)$ because $y^{2}=(-y)^{2}$, i.e., the elliptic curve is symmetric with respect to the x axis

An Elliptic Curve over GF(23)

- Starting with $x=0$, we get $y^{2}=1(\bmod 23)$ which immediately gives two solutions as $(0,1)$ and $(0,-1)=(0,22)$

An Elliptic Curve over GF(23)

- Similarly, for $x=1$, we obtain $y^{2}=3(\bmod 23)$
- This is a quadratic equation, the solution will depend on whether 3 is a quadratic residue (QR)
- Euler's test shows that 3 is a QR

$$
3^{(p-1) / 2}=3^{11}=1 \quad(\bmod 23)
$$

- When $p=3(\bmod 4)$, the solution for y can be found using

$$
y=3^{(p+1) / 4}=3^{6}=16 \quad(\bmod 23)
$$

- For $x=1$, we find a pair of solutions: $(1,16),(1,-16)=(1,7)$

An Elliptic Curve over GF(23)

- For $x=2$, we have $y^{2}=2^{3}+2+1=11(\bmod 23)$
- However, 11 is a quadratic non-residue (QNR) since

$$
11^{(p-1) / 2}=11^{11}=-1 \quad(\bmod 23)
$$

- There is no solution for $y^{2}=11(\bmod 23)$
- This elliptic curve does not have a point whose x coordinate is 2

An Elliptic Curve over GF(23)

- For $x=3$, we have $y^{2}=3^{3}+3+1=31=8(\bmod 23)$
- 8 is a QR since

$$
8^{(p-1) / 2}=8^{11}=1 \quad(\bmod 23)
$$

- We solve for $y^{2}=8(\bmod 23)$ using

$$
y=8^{(p+1) / 4}=8^{6}=13 \quad(\bmod 23)
$$

- We obtain the pair of coordinates: $(3,13),(3,-13)=(3,10)$

An Elliptic Curve over GF(23)

- Proceeding for the other values of $x \in \mathcal{Z}_{23}^{*}$, we find 27 solutions:

$(0,1)$	$(0,22)$	$(1,7)$	$(1,16)$	$(3,10)$	$(3,13)$
$(5,4)$	$(5,19)$	$(6,4)$	$(6,19)$	$(7,11)$	$(7,12)$

$(9,7)$
$(9,16) \quad(11,3)$
$(11,20)(12,4)(12,19)$
$(13,7) \quad(13,16) \quad(17,3) \quad(17,20) \quad(18,3) \quad(18,20)$
$(19,5)(19,18)$

- The solutions come in pairs (x, y) and $(x,-y)$
- Except one of them is alone: $(4,0)$
- For $x=4$, we have

$$
y^{2}=4^{3}+4+1=69=0 \quad(\bmod 23)
$$

which has only one solution $y=0$ and thus one point $(4,0)$

An Elliptic Curve over GF(23)

Elliptic Curve Point Addition over GF(23)

- Given $P_{1}=(3,10)$ and $P_{2}=(9,7)$, compute $P_{3}=P_{1} \oplus P_{2}$
- Since $x_{1} \neq x_{2}$, we have

$$
\begin{aligned}
m & =\left(y_{2}-y_{1}\right) \cdot\left(x_{2}-x_{1}\right)^{-1} \quad(\bmod 23) \\
& =(7-10) \cdot(9-3)^{-1}=(-3) \cdot 6^{-1}=11 \quad(\bmod 23) \\
x_{3} & =m^{2}-x_{1}-x_{2} \quad(\bmod 23) \\
& =11^{2}-3-9=17 \quad(\bmod 23) \\
y_{3} & =m\left(x_{1}-x_{3}\right)-y_{1} \quad(\bmod 23) \\
& =11 \cdot(3-17)-10=20 \quad(\bmod 23)
\end{aligned}
$$

- Thus, we have $\left(x_{3}, y_{3}\right)=(3,10) \oplus(9,7)=(17,20)$
- Question: Is the geometry of point addition still valid?

Elliptic Curve Point Addition over GF(23)

Elliptic Curve Point Doubling over GF(23)

- Given $P_{1}=(3,10)$, compute $P_{3}=P_{1} \oplus P_{1}$
- Since $x_{1}=x_{2}$ and $y_{1}=y_{2}$, we have

$$
\begin{aligned}
m & =\left(3 x_{1}^{2}+a\right) \cdot\left(2 y_{1}\right)^{-1} \quad(\bmod 23) \\
& =\left(3 \cdot 3^{2}+1\right) \cdot(20)^{-1} \quad(\bmod 23) \\
& =6 \\
x_{3} & =m^{2}-x_{1}-x_{2} \quad(\bmod 23) \\
& =6^{2}-3-3 \quad(\bmod 23) \\
& =7 \\
y_{3} & =m\left(x_{1}-x_{3}\right)-y_{1} \quad(\bmod 23) \\
& =6 \cdot(3-7)-10 \quad(\bmod 23) \\
& =12
\end{aligned}
$$

Elliptic Curve Point Doubling over GF(23)

- Thus, we have $\left(x_{3}, y_{3}\right)=(3,10) \oplus(3,10)=(7,12)$
- Question: Is the geometry of point doubling still valid?

Elliptic Curve Point Doubling over GF(23)

Elliptic Curve Point Multiplication

- The elliptic curve point multiplication operation takes an integer k and a point on the curve P, and computes

$$
[k] P=\overbrace{P \oplus P \oplus \cdots \oplus P}^{k \text { terms }}
$$

- This can be accomplished with the binary method, using the binary expansion of the integer $k=\left(k_{m-1} \cdots k_{1} k_{0}\right)_{2}$
- For example [17]P is computed using the addition chain

$$
P \xrightarrow{d}[2] P \xrightarrow{d}[4] P \xrightarrow{d}[8] P \xrightarrow{d}[16] P \xrightarrow{a}[17] P
$$

- The symbol \xrightarrow{d} stands for doubling, such as [2] $P \oplus[2] P=[4] P$
- The symbol \xrightarrow{a} stands for addition, such as $P \oplus[16] P=[17] P$

Number of Points on an Elliptic Curve

- The elliptic curve group $\mathcal{E}(1,1,23)$ had the following elements:

$(0,1)$	$(0,22)$	$(1,7)$	$(1,16)$	$(3,10)$	$(3,13)$	$(4,0)$
$(5,4)$	$(5,19)$	$(6,4)$	$(6,19)$	$(7,11)$	$(7,12)$	
$(9,7)$	$(9,16)$	$(11,3)$	$(11,20)$	$(12,4)$	$(12,19)$	
$(13,7)$	$(13,16)$	$(17,3)$	$(17,20)$	$(18,3)$	$(18,20)$	
$(19,5)$	$(19,18)$					

- There are 27 points in the above list
- Including the point at infinity \mathcal{O}, the elliptic curve group $\mathcal{E}(1,1,23)$ has $27+1=28$ elements
- The order of the group $\mathcal{E}(1,1,23)$ is 28

Order of Elliptic Curve Groups

- In order to use an elliptic curve group \mathcal{E} in cryptography, we need to know the order of the group, denoted as $\operatorname{order}(\mathcal{E})$
- The order of $\mathcal{E}(a, b, p)$ is always less than $2 p+1$
- The finite field has p elements, and we solve the equation

$$
y^{2}=x^{3}+a x+b
$$

for values of $x=0,1, \ldots, p-1$, and obtain a pair of solutions (x, y) and $(x,-y)$ for every x, we can have no more than $2 p$ points

- Including the point at infinity, the order is bounded as

$$
\operatorname{order}(\mathcal{E}(a, b, p)) \leq 2 p+1
$$

- The order of $\mathcal{E}(1,1,23)$ is 28 which is less than $2 \cdot 23+1=47$

Order of Elliptic Curve Groups

- However, this bound is not very precise
- As we discovered in finding the elements of $\mathcal{E}(1,1,23)$, not every x value yields a solution of the quadratic equation $y^{2}=x^{3}+x+1$
- For a solution to exists, $u=x^{3}+a x+b$ needs to be a $\mathrm{QR} \bmod p$
- Only half of the elements in $\operatorname{GF}(p)$ are QRs
- As x takes values in $G F(p)$, depending on whether

$$
u=x^{3}+a x+b
$$

is a QR or QNR, we will have a solution for $y^{2}=u(\bmod p)$ or not, respectively

- Therefore, the number of solutions will be less than $2 p$

Order of Elliptic Curve Groups

- If we define $\chi(u)$ as

$$
\chi(u)=\left\{\begin{array}{lll}
+1 & \text { if } u \text { is QR } \\
-1 & \text { if } u \text { is QNR }
\end{array}\right.
$$

we can write the number of solutions to $y^{2}=u(\bmod p)$ as $1+\chi(u)$

- Therefore, we find the size of the group including \mathcal{O} as

$$
\begin{aligned}
\operatorname{order}(\mathcal{E}) & =1+\sum_{x \in \mathrm{GF}(p)}\left(1+\chi\left(x^{3}+a x+b\right)\right) \\
& =p+1+\sum_{x \in \mathrm{GF}(p)} \chi\left(x^{3}+a x+b\right)
\end{aligned}
$$

which is a function of $\chi\left(x^{3}+a x+b\right)$ as x takes values in $\operatorname{GF}(p)$

Hasse Theorem

- As x takes values in $\operatorname{GF}(p)$, the value of $\chi\left(x^{3}+a x+b\right)$ will be equally likely as +1 and -1
- This is a random walk where we toss a coin p times, and take either a forward and backward step
- According to the probability theory, the sum $\sum \chi\left(x^{3}+a x+b\right)$ is of order \sqrt{p}
- More precisely, this sum is bounded by $2 \sqrt{p}$
- Thus, we have a bound on the order of $\mathcal{E}(a, b, p)$, due to Hasse:

Theorem

The order of an elliptic curve group over $G F(p)$ is bounded by

$$
p+1-2 \sqrt{p} \leq \operatorname{order}(\mathcal{E}) \leq p+1+2 \sqrt{p}
$$

Order of Elements

- The order of an element P is the smallest integer k such that

$$
[k] P=\overbrace{P \oplus P \oplus \cdots \oplus P}^{k \text { terms }}=\mathcal{O}
$$

- According to the Lagrange Theorem, the order of any point divides the order of the group
- The primitive element is defined as the element $P \in \mathcal{E}$ whose order $n=\operatorname{order}(P)$ is equal to the group order

$$
n=\operatorname{order}(P)=\operatorname{order}(\mathcal{E})
$$

- According to the Hasse Theorem, we have

$$
p+1-2 \sqrt{p} \leq \operatorname{order}(\mathcal{E}(a, b, p)) \leq p+1+2 \sqrt{p}
$$

Order of Elements

- For the group $\mathcal{E}(1,1,23)$, we have $\lceil\sqrt{23}\rceil=5$, and the bounds are

$$
14 \leq \operatorname{order}(\mathcal{E}(1,1,23)) \leq 34
$$

Indeed, we found it as $\operatorname{order}(\mathcal{E}(1,1,23))=28$

- According to the Lagrange Theorem, the element orders in $\mathcal{E}(1,1,23)$ can only be the divisors of 28 which are $1,2,4,7,14,28$
- The order of a primitive element is 28
- The order of \mathcal{O} is 1 since $[1] \mathcal{O}=\mathcal{O}$
- The order $(4,0)$ is 2 since $[2](4,0)=(4,0) \oplus(4,0)=\mathcal{O}$

Order of Elements

- Compute the order of the point $P=(11,3)$ in $\mathcal{E}(1,1,23)$

$$
\begin{aligned}
& {[2] P=(11,3) \oplus(11,3)=(4,0)} \\
& {[3] P=(11,3) \oplus(4,0)=(11,20) \leftarrow}
\end{aligned}
$$

- Note that

$$
[3] P=(11,20)=(11,-3)=-P
$$

- This gives

$$
[4] P=[3] P \oplus P=(-P) \oplus P=\mathcal{O}
$$

- Therefore, the order of $(11,3)$ is 4

Order of Elements

- Compute the order of the point $P=(1,7)$ in $\mathcal{E}(1,1,23)$

$$
\begin{aligned}
& {[2] P=(1,7) \oplus(1,7) \quad=(7,11)} \\
& {[3] P=(1,7) \oplus(7,11)=(18,20)} \\
& {[4] P=(7,11) \oplus(7,11)=(17,20)} \\
& {[7] P=(18,20) \oplus(17,20)=(11,3) \leftarrow} \\
& {[14] P=(11,3) \oplus(11,3)=(4,0)} \\
& {[21] P=(11,3) \oplus(4,0)=(11,20) \leftarrow}
\end{aligned}
$$

- Since the order of $(1,7)$ is not 2 , or 7 , or 14 , it must be 28
- Indeed $(11,20)$ and $(11,3)$ are negatives of one another

$$
[28] P=[7] P \oplus[21] P=(11,3) \oplus(11,-3)=\mathcal{O}
$$

- Therefore, the order of $P=(1,7)$ is 28 and $(1,7)$ is primitive

Elliptic Curve Group Order

- One remarkable property of the elliptic curve groups is that the order n can be a prime number, while the multiplicative group \mathcal{Z}_{p}^{*} order is always even: $p-1$
- When the group order is a prime, all elements of the group are primitive elements (except the neutral element \mathcal{O} whose order is 1)
- As a small example, consider $\mathcal{E}(2,1,5)$: The equation

$$
y^{2}=x^{3}+2 x+1 \quad(\bmod 5)
$$

has 6 finite solutions $(0,1),(0,4),(1,2),(1,3),(3,2)$, and $(3,3)$

- Including \mathcal{O}, this group has 7 elements, and thus, its order is a prime number and all elements (except \mathcal{O}) are primitive

Elliptic Curve Point Multiplication

- The elliptic curve point multiplication operation is the computation of the point $Q=[k] P$ given an integer k and a point on the curve P

$$
Q=[k] P=\overbrace{P \oplus P \oplus \cdots \oplus P}^{k \text { terms }}
$$

- If the order of the point P is n, we have $[n] P=\mathcal{O}$
- Thus, the computation of $[k] P$ effectively gives

$$
[k] P=[k \bmod n] P
$$

- Similarly, we have

$$
\begin{aligned}
{[a] P \oplus[b] P } & =[a+b \bmod n] P \\
{[a][b] P } & =[a \cdot b \bmod n] P
\end{aligned}
$$

Elliptic Curve DLP

- Once we have a primitive element $P \in \mathcal{E}$ whose order n equal to the group order, we can execute the steps of the Diffie-Hellman key exchange algorithm using the elliptic curve group \mathcal{E}
- Diffie-Hellman works over any group as long as the DLP in that group is a difficult problem
- The Elliptic Curve DLP is defined as the computation of the integer k given P and Q such that

$$
Q=[k] P=\overbrace{P \oplus P \oplus \cdots \oplus P}^{k \text { terms }}
$$

- The ECDLP requires an exhaustive search on the integer k
- No subexponential algorithm for the ECDLP exists as of yet

Elliptic Curve Diffie-Hellman

- A and B agree on the elliptic curve group \mathcal{E} of order n and a primitive element $P \in \mathcal{E}$ (whose order is also n)
- This is done in public: \mathcal{E}, n, and P are known to the adversary
- A selects integer $a \in[2, n-1]$, computes $Q=[a] P$, and sends Q to B
- B selects integer $b \in[2, n-1]$, computes $R=[b] P$, and sends R to A
- A receives R, and computes $S=[a] R$
- B receives Q, and computes $S=[b] Q$

$$
\begin{aligned}
& S=[a] R=[a][b] P=[a \cdot b \bmod n] P \\
& S=[b] Q=[b][a] P=[b \cdot a \bmod n] P
\end{aligned}
$$

Elliptic Curve Diffie-Hellman

