Discrete Square Root

Discrete Square Root Problem

 The discrete square root problem is defined as the computation of x ∈ Z_n in

$$y = x^2 \pmod{n}$$

given *n* and *y*

- Depending on whether *n* is composite or prime, we have problems of different complexity
- First consider the case where the modulus is prime, for example, take p = 11, and square all group elements in Z_{11}^*

Discrete Square Root Mod p

- The square root of y modulo 11 may not exist for all y values, for example, $x^2 = y \pmod{11}$ for y = 2, 6, 7, 8, 10 does not have any solutions
- In general, the solution of x² = y (mod p) does not exist for (p-1)/2 values of y which are called quadratic nonresidues (QNR)
- If there is a square root x of y modulo 11, then $-x \pmod{11}$ is also a square root since $x^2 = (-x)^2 = y \pmod{p}$, for example, $2^2 = (-2)^2 = 9^2 = 4 \pmod{11}$ or $3^2 = (-3)^2 = 8^2 = 9 \pmod{11}$
- Two solutions x and -x of $x^2 = y \pmod{p}$ exist for the remaining (p-1)/2 values of y which are called quadratic residues (QR)

Discrete Square Root for $p = 3 \pmod{4}$

- Solving for $x = \sqrt{y} \pmod{p}$ for a prime p
- First, determine if there is a solution, i.e., if y is QR mod p
- Euler's theorem provides a simple test:

$$u = y^{(p-1)/2} \pmod{p} \rightarrow \begin{cases} u = 1 & \text{if } y \text{ is QR} \\ u = -1 & \text{if } y \text{ is QNR} \end{cases}$$

• If there is a solution, it can be found very quickly for half of the primes, namely, for primes with property $p = 3 \pmod{4}$, by computing

$$x = y^{(p+1)/4} \pmod{p}$$

Discrete Square Root Mod *p* Example

• Example:
$$x^2 = 5 \pmod{11}$$

- Euler's Theorem: $y^{(p-1)/2} = 5^{(11-1)/2} = 5^5 = 1 \pmod{11}$
- Since $11 = 3 \pmod{4}$, the solution is easily found as

$$x = y^{(p+1)/4} = 5^{(11+1)/4} = 5^3 = 125 = 4 \pmod{11}$$

Therefore, $x = \{4, -4\} = \{4, 7\}$ are the solutions of $x^2 = 5 \pmod{11}$

• What about the solution of $x^2 = 2 \pmod{11}$ Euler's Theorem: $y^{(p-1)/2} = 2^{(11-1)/2} = 2^5 = 32 = -1 \pmod{11}$ There is no solution for x in $x^2 = 2 \pmod{11}$

Discrete Square Root for $p = 1 \pmod{4}$

- To compute a square root mod p for primes p = 1 (mod 4), we first factor p − 1 and find s and odd m such that p − 1 = 2^s ⋅ m
- The algorithm starts with a random QNR, and finds $x = \sqrt{y} \mod p$ Take a random QNR z, i.e., { $z \mid z^{(p-1)/2} = -1 \pmod{p}$ } $a = y^m \pmod{p}$ $x = y^{(m+1)/2} \pmod{p}$ $b = z^m \pmod{p}$ for $i = s - 1, s - 2, \dots, 1$ if $a^{2^{i-1}} = -1 \pmod{p}$ $a = a \cdot b^2$ $x = x \cdot b$ $h = h^{2}$ return x

Discrete Square Root Mod *p* Example

• Prime p = 673, with $673 = 1 \pmod{4}$, and find $\sqrt{83} \pmod{673}$ Take z = 5, a QNR since $5^{(673-1)/2} = 5^{336} = -1 \pmod{673}$ $673 - 1 = 2^5 \cdot 21$, therefore, s = 5 and m = 21

i	$a^{2^{i-1}}$	а	X	Ь
		$83^{21} = 589$	$83^{(21+1)/2} = 190$	$5^{21} = 118$
4	$589^{2^3} = -1$	$589 \cdot 118^2 = 58$	$190 \cdot 118 = 211$	$118^2 = 464$
3	$58^{2^2} = 1$	58	211	$464^2 = 609$
2	$58^{2^1} = -1$	$58 \cdot 609^2 = 672$	211 · 629	$609^2 = 58$
1	$672^{2^0} = -1$	$672 \cdot 58^2 = 1$	$629 \cdot 58 = 140$	$58^2 = -1$

• Thus, we find the square root of 83 as x = 140, which satisfies

$$140^2 = 83 \pmod{673}$$

Discrete Square Root Mod n

 If n = pq, and we know the prime factors p and q, then the square root problem mod n can be converted into two separate square root problems mod p and mod q using the Chinese Remainder Theorem:

$$x^2 = y \pmod{pq}$$
 implies $\begin{cases} x^2 = y \pmod{p} \\ x^2 = y \pmod{p} \end{cases}$

We can then solve these two equations, and find two square roots from the first equation $\{x_p, -x_p\}$ and two square roots from the second equation $\{x_q, -x_q\}$, and combine them using the CRT

• There are 4 square roots of y modulo n for n = pq

$$CRT(x_p, x_q; p, q) \qquad CRT(x_p, -x_q; p, q) CRT(-x_p, x_q; p, q) \qquad CRT(-x_p, -x_q; p, q)$$

Discrete Square Root Mod n

- Consider solving for $x^2 = 177 \pmod{209}$ for $n = pq = 11 \cdot 19$
- Break them two separate square root problems with the help of the CRT:

$$x^2 = 177 \pmod{11 \cdot 19}$$
 implies $\begin{cases} x^2 = 177 = 1 \pmod{11} \\ x^2 = 177 = 6 \pmod{19} \end{cases}$

 The solution of x² = 1 (mod 11) is found easily as {1,-1} The solution of x² = 6 (mod 19) is found as {5,-5}:

$$x = y^{(p+1)/4} = 6^{(19+1)/4} = 6^5 = 5 \pmod{19}$$

 \bullet The CRT on 4 combinations: (1,5), (1,-5), (-1,5), and (-1,-5)

Simplified CRT with Two Primes

• Given the residues (r_p, r_q) of an integer x with respect to the primes (p, q), the CRT gives us x as

$$x = r_p \cdot c_1 \cdot \frac{pq}{p} + r_q \cdot c_2 \cdot \frac{pq}{q} = r_p \cdot c_1 \cdot q + r_q \cdot c_2 \cdot p \pmod{pq}$$

such that $c_1 = q^{-1} \pmod{p}$ and $c_2 = p^{-1} \pmod{q}$

- If we run the extended Euclidean algorithm with p and q as inputs, we will obtain the integers a and b such that $a \cdot p + b \cdot q = 1$, which implies that $a = p^{-1} = c_2 \pmod{q}$ and $b = q^{-1} = c_1 \pmod{p}$
- Therefore, the simplified CRT formula for two primes becomes

$$r_p \cdot b \cdot q + r_q \cdot a \cdot p \pmod{pq}$$

Discrete Square Root Mod *n* Example

• Applying the EEA for the primes p = 11 and q = 19, we find

$$7\cdot 11 - 4\cdot 19 = 1$$

we find a = 7 and b = -4, and thus, write the CRT sum as

$$r_p \cdot (-4) \cdot 19 + r_q \cdot 7 \cdot 11 = -76 \cdot r_p + 77 \cdot r_q \pmod{209}$$

• Using this formula on the 2 combinations of square roots, we find

$$CRT(1,5) = (-76) \cdot 1 + 77 \cdot 5 = 100 \pmod{209}$$
$$CRT(-1,5) = (-76) \cdot (-1) + 77 \cdot 5 = 43 \pmod{209}$$

The other 2 solutions will be the negatives of these numbers mod 209, and thus, the square roots are $\{43, 100, -43, -100\}$