Discrete Square Root

Discrete Square Root Problem

- The discrete square root problem is defined as the computation of $x \in \mathcal{Z}_{n}$ in

$$
y=x^{2} \quad(\bmod n)
$$

given n and y

- Depending on whether n is composite or prime, we have problems of different complexity
- First consider the case where the modulus is prime, for example, take $p=11$, and square all group elements in \mathcal{Z}_{11}^{*}

$$
\begin{array}{ccccccccccc}
x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
x^{2} & 1 & 4 & 9 & 5 & 3 & 3 & 5 & 9 & 4 & 1
\end{array}
$$

Discrete Square Root Mod p

- The square root of y modulo 11 may not exist for all y values, for example, $x^{2}=y(\bmod 11)$ for $y=2,6,7,8,10$ does not have any solutions
- In general, the solution of $x^{2}=y(\bmod p)$ does not exist for $(p-1) / 2$ values of y which are called quadratic nonresidues (QNR)
- If there is a square root x of y modulo 11 , then $-x(\bmod 11)$ is also a square root since $x^{2}=(-x)^{2}=y(\bmod p)$, for example, $2^{2}=(-2)^{2}=9^{2}=4(\bmod 11)$ or $3^{2}=(-3)^{2}=8^{2}=9(\bmod 11)$
- Two solutions x and $-x$ of $x^{2}=y(\bmod p)$ exist for the remaining $(p-1) / 2$ values of y which are called quadratic residues (QR)

Discrete Square Root for $p=3(\bmod 4)$

- Solving for $x=\sqrt{y}(\bmod p)$ for a prime p
- First, determine if there is a solution, i.e., if y is $\mathrm{QR} \bmod p$
- Euler's theorem provides a simple test:

$$
u=y^{(p-1) / 2}(\bmod p) \rightarrow \begin{cases}u=1 & \text { if } y \text { is QR } \\ u=-1 & \text { if } y \text { is QNR }\end{cases}
$$

- If there is a solution, it can be found very quickly for half of the primes, namely, for primes with property $p=3(\bmod 4)$, by computing

$$
x=y^{(p+1) / 4} \quad(\bmod p)
$$

Discrete Square Root Mod p Example

- Example: $x^{2}=5(\bmod 11)$
- Euler's Theorem: $y^{(p-1) / 2}=5^{(11-1) / 2}=5^{5}=1(\bmod 11)$
- Since $11=3(\bmod 4)$, the solution is easily found as

$$
x=y^{(p+1) / 4}=5^{(11+1) / 4}=5^{3}=125=4 \quad(\bmod 11)
$$

Therefore, $x=\{4,-4\}=\{4,7\}$ are the solutions of $x^{2}=5(\bmod 11)$

- What about the solution of $x^{2}=2(\bmod 11)$

Euler's Theorem: $y^{(p-1) / 2}=2^{(11-1) / 2}=2^{5}=32=-1(\bmod 11)$ There is no solution for x in $x^{2}=2(\bmod 11)$

Discrete Square Root for $p=1(\bmod 4)$

- To compute a square root $\bmod p$ for primes $p=1(\bmod 4)$, we first factor $p-1$ and find s and odd m such that $p-1=2^{s} \cdot m$
- The algorithm starts with a random QNR, and finds $x=\sqrt{y} \bmod p$

Take a random QNR z, i.e., $\left\{z \mid z^{(p-1) / 2}=-1(\bmod p)\right\}$

$$
\begin{aligned}
& a=y^{m}(\bmod p) \\
& x=y^{(m+1) / 2}(\bmod p) \\
& b=z^{m}(\bmod p) \\
& \text { for } i=s-1, s-2, \ldots, 1 \\
& \quad \text { if } a^{2^{i-1}}=-1(\bmod p) \\
& \quad a=a \cdot b^{2} \\
& \quad x=x \cdot b \\
& b=b^{2}
\end{aligned}
$$

return x

Discrete Square Root Mod p Example

- Prime $p=673$, with $673=1(\bmod 4)$, and find $\sqrt{83}(\bmod 673)$ Take $z=5$, a QNR since $5^{(673-1) / 2}=5^{336}=-1(\bmod 673)$ $673-1=2^{5} \cdot 21$, therefore, $s=5$ and $m=21$

i	$a^{2^{i-1}}$	a	x	b
		$83^{21}=589$	$83^{(21+1) / 2}=190$	$5^{21}=118$
4	$589^{2^{3}}=-1$	$589 \cdot 118^{2}=58$	$190 \cdot 118=211$	$118^{2}=464$
3	$58^{2^{2}}=1$	58	211	$464^{2}=609$
2	$58^{2^{1}}=-1$	$58 \cdot 609^{2}=672$	$211 \cdot 629$	$609^{2}=58$
1	$672^{2^{0}}=-1$	$672 \cdot 58^{2}=1$	$629 \cdot 58=140$	$58^{2}=-1$

- Thus, we find the square root of 83 as $x=140$, which satisfies

$$
140^{2}=83 \quad(\bmod 673)
$$

Discrete Square Root Mod n

- If $n=p q$, and we know the prime factors p and q, then the square root problem mod n can be converted into two separate square root problems mod p and $\bmod q$ using the Chinese Remainder Theorem:

$$
x^{2}=y \quad(\bmod p q) \quad \text { implies } \quad \begin{cases}x^{2}=y & (\bmod p) \\ x^{2}=y & (\bmod q)\end{cases}
$$

We can then solve these two equations, and find two square roots from the first equation $\left\{x_{p},-x_{p}\right\}$ and two square roots from the second equation $\left\{x_{q},-x_{q}\right\}$, and combine them using the CRT

- There are 4 square roots of y modulo n for $n=p q$

$$
\begin{aligned}
\operatorname{CRT}\left(x_{p}, x_{q} ; p, q\right) & \operatorname{CRT}\left(x_{p},-x_{q} ; p, q\right) \\
\operatorname{CRT}\left(-x_{p}, x_{q} ; p, q\right) & \operatorname{CRT}\left(-x_{p},-x_{q} ; p, q\right)
\end{aligned}
$$

Discrete Square Root Mod n

- Consider solving for $x^{2}=177(\bmod 209)$ for $n=p q=11 \cdot 19$
- Break them two separate square root problems with the help of the CRT:

$$
x^{2}=177 \quad(\bmod 11 \cdot 19) \quad \text { implies }\left\{\begin{array}{l}
x^{2}=177=1 \quad(\bmod 11) \\
x^{2}=177=6 \quad(\bmod 19)
\end{array}\right.
$$

- The solution of $x^{2}=1(\bmod 11)$ is found easily as $\{1,-1\}$ The solution of $x^{2}=6(\bmod 19)$ is found as $\{5,-5\}$:

$$
x=y^{(p+1) / 4}=6^{(19+1) / 4}=6^{5}=5 \quad(\bmod 19)
$$

- The CRT on 4 combinations: $(1,5),(1,-5),(-1,5)$, and $(-1,-5)$

Simplified CRT with Two Primes

- Given the residues $\left(r_{p}, r_{q}\right)$ of an integer x with respect to the primes (p, q), the CRT gives us x as

$$
x=r_{p} \cdot c_{1} \cdot \frac{p q}{p}+r_{q} \cdot c_{2} \cdot \frac{p q}{q}=r_{p} \cdot c_{1} \cdot q+r_{q} \cdot c_{2} \cdot p \quad(\bmod p q)
$$

such that $c_{1}=q^{-1}(\bmod p)$ and $c_{2}=p^{-1}(\bmod q)$

- If we run the extended Euclidean algorithm with p and q as inputs, we will obtain the integers a and b such that $a \cdot p+b \cdot q=1$, which implies that $a=p^{-1}=c_{2}(\bmod q)$ and $b=q^{-1}=c_{1}(\bmod p)$
- Therefore, the simplified CRT formula for two primes becomes

$$
r_{p} \cdot b \cdot q+r_{q} \cdot a \cdot p \quad(\bmod p q)
$$

Discrete Square Root Mod n Example

- Applying the EEA for the primes $p=11$ and $q=19$, we find

$$
7 \cdot 11-4 \cdot 19=1
$$

we find $a=7$ and $b=-4$, and thus, write the CRT sum as

$$
r_{p} \cdot(-4) \cdot 19+r_{q} \cdot 7 \cdot 11=-76 \cdot r_{p}+77 \cdot r_{q} \quad(\bmod 209)
$$

- Using this formula on the 2 combinations of square roots, we find

$$
\begin{aligned}
\operatorname{CRT}(1,5) & =(-76) \cdot 1+77 \cdot 5=100 \quad(\bmod 209) \\
\operatorname{CRT}(-1,5) & =(-76) \cdot(-1)+77 \cdot 5=43 \quad(\bmod 209)
\end{aligned}
$$

The other 2 solutions will be the negatives of these numbers mod 209, and thus, the square roots are $\{43,100,-43,-100\}$

