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Exponentiation and Logarithms in a General Group

In a multiplicative group (S ,⊗) with a primitive element g ∈ S , the
exponentiation operation for a positive x is the computation of y in

y = g x =

x terms︷ ︸︸ ︷
g ⊗ g ⊗ · · · ⊗ g

On the other hand, in an additive group (S ,⊕) with a primitive
element g ∈ S , the point multiplication operation is the computation
of y in

y = [x ]g =

x terms︷ ︸︸ ︷
g ⊕ g ⊕ · · · ⊕ g

In both cases, the discrete logarithm problem (DLP) is defined as:

Given y and g , Compute x
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Discrete Logarithms in Public-Key Cryptography

If the DLP is difficult in a given group, we can use it to implement
several public-key cryptographic algorithms, for example,
Diffie-Hellman key exchange method, ElGamal public-key encryption
method, and the Digital Signature Algorithm

Two types of groups are noteworthy:

The multiplicative group Z∗
p of integers modulo a prime p

The additive group of elliptic curves defined over finite fields

The DLP problem in these groups are known to be difficult
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Discrete Logarithm in (Zn,+ mod n)

There may also be other groups worth considering

However, the DLP is trivial in many groups

For example, the DLP in additive mod p group is trivial

“Exponentiation” in this group is defined as

y = [x ]g =

x terms︷ ︸︸ ︷
g + g + · · ·+ g

where g is a primitive element in the group, x is an integer, y is an
element of the group (an integer in Zn), and the + operation is the
addition mod n
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Discrete Logarithm in (Zn,+ mod n)

x is easily solvable from the above since

x = g−1 · y (mod n)

where y−1 is the multiplicative inverse of y mod n

Consider (Z11,+ mod 11) where any nonzero element is primitive

Any DLP in (Z11,+ mod 11) is easily solvable, for example,

2 = [x ]3 (mod 11)

is solved as

x = 3−1 · 2 (mod 11)

= 4 · 2 (mod 11)

= 8
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Discrete Logarithms in GF(2k)

On the other hand, the DLP in the multiplicative group of GF(2k) is
also known to be rather easy (but not trivial)

The multiplicative group of GF(2k) consists of

The set S = GF(2k)− {0}
The group operation multiplication mod p(x)
p(x) is the irreducible polynomial generating the field GF(2k)
The group order is 2k − 1
The group order is prime, when 2k − 1 is prime,
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Discrete Logarithms in GF(2k)

Consider the multiplicative group of GF(23)

The set is S = {1, x , x + 1, x2, x2 + 1, x2 + x , x2 + x + 1}
The operation is the multiplication mod p(x) = x3 + x + 1

The group order is 7, which happens to be prime

Thus, all elements of the set is primitive, except 1

Let us take g = x

The powers x i for i = 1, 2, . . . , 7 generates all elements of the set S

{x i (mod p(x)) | i = 1, 2, . . . , 7} =

{x , x2, x + 1, x2 + x , x2 + x + 1, x2 + 1, 1}
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Discrete Logarithms in GF(2k)

Consider the DLP in GF(23)

xa = x2 + x (mod x3 + x + 1)

where a is the unknown, to be computed (the DL)

Which power of x is equal to x2 + x (mod x3 + x + 1) ?

We can solve this particular DLP using exhaustive search

There are 7 candidates for a, and we find it as a = 4

The general DLP seems difficult

Don Coppersmith proved that it is easy (but not trivial)
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Exponentiation and Discrete Logarithms in Z∗p

Consider the multiplicative group Z∗p of integers modulo a prime p
and a primitive element g ∈ Z∗p
The exponentiation operation is the computation of y in

y = g x =

x terms︷ ︸︸ ︷
g · g · · · g (mod p)

for a positive integer x

The discrete logarithm problem in this group is defined to be the
computation of x , given y , g , and p

Example: Given p = 23 and g = 5, find x such that

11 = 5x (mod 23)

Answer: x = 9
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Discrete Logarithms in Z∗p

Given p = 158(2800 + 25) + 1 =

1053546280395016975304616582933958731948871814925913489342
6087342587178835751858673003862877377055779373829258737624
5199045043066135085968269741025626827114728303489756321430
0237166369174066615907176472549470083113107138189921280884
003892629359

and g = 17, find x ∈ Z∗p such that

2 = 17x (mod p)

Answer: ?
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Discrete Logarithm Notation

The computation of x in y = g x (mod p) is called the DLP

Here x is equal to the discrete analogue of the logarithm

x = logg y (mod p − 1)

The modulus is p − 1 since the powers are added and multiplied mod
p − 1 according to Fermat’s Theorem

The logarithm notation is particularly useful

For example, 215 = 27 (mod 29) implies

log2 27 = 15 (mod 28)
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Discrete Logarithm Notation

The logarithm notation allows us to compute new discrete logarithms

For example

logg (a · b mod p) = logg a + logg b (mod p − 1)

Similarly

logg (ae · bf mod p) = e · logg a + f · logg b (mod p − 1)
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Discrete Logarithm Notation

For example,

215 = 27 (mod 29)

222 = 5 (mod 29)

This implies

log2 27 = 15 (mod 28)

log2 5 = 22 (mod 28)

We can now write

log2 27 + log2 5 = log2(27 · 5 mod 29) (mod 28)

= log2 19 (mod 28)

15 + 22 = 9 (mod 28)

Therefore: log2 19 = 9 (mod 28) ⇒ 29 = 19 (mod 29)
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Exhaustive Search

Since x ∈ Z∗p , we can perform search, and try all possible values of x :

for i = 1 to p − 1
z = g i (mod p)
if y = z

return x = i

This algorithm computes ith power of g mod p at each step
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Exhaustive Search

The ith power of g need not be computed from scratch at each step

z = g
for i = 2 to p − 1

z = g · z (mod p)
if y = z

return x = i

This algorithm requires p − 2 multiplications

The multiplications of k-bit operands are of order O(k2)

The search complexity is exponential in k

O(pk2) = O(2kk2)
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Shanks Algorithm

In 1973, Shanks described an algorithm for computing discrete
logarithms that runs in O(

√
p) time and requires O(

√
p) space

Let y = g x (mod p), with m = d√pe and p < 2k

Shanks’ method is a deterministic algorithm and requires the
construction of two tables S and T , which contains pairs of integers

Due to the steps in Tables S and T , Shank algorithm is called
Shank’s Baby-Step-Giant-Step algorithm
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Shanks Algorithm

The construction of S is called the giant-steps:

S = {(i , g i ·m) | i = 0, 1, . . . ,m}

The construction of T is called the baby-steps:

T = {(j , y · g j) | j = 0, 1, . . . ,m}

We then search for an element that is in both S and T tables
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Shanks Algorithm

The existence of the same group element in both tables implies

g i ·m = y · g j = g x · g j = g x+j (mod p)

We get the indices i and j , and write the equality of the powers as

i ·m = x + j (mod p − 1)

and thus find x = i ·m − j (mod p − 1)

To use this method in practice, one would typically only store the
giant-steps array and the lookup each successive group element from
the baby-steps array until a match is found

Obviously, the algorithm requires enormous amount of space
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Shanks Algorithm Example 1

Consider the solution of y = 44 = 3x (mod 101)

m = d
√

101e = 11, therefore, the giant-steps and baby-steps tables:

S = {(i , 311i ) | i = 0, 1, . . . , 11}
i 0 1 2 3 4 5 6 7 8 9 10 11

311i 1 94 49 61 78 60 85 11 24 34 65 50

T = {(j , 44 · 3j) | j = 0, 1, . . . , 11}
j 0 1 2 3 4 5 6 7 8 9 10 11

44 · 3j 44 31 93 77 29 87 59 76 26 78 32 96

The solution x = 4 · 11− 9 = 35, i.e., 335 = 44 (mod 101)
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Shanks Algorithm Example 2

Consider the solution of y = 1736 = 5x mod 2017

m = d
√

2017e = 45

The S table is produced using Si = 5mi mod 2017 for i = 0, 1, . . . , 45

1 45 8 360 64 863 512 853
62 773 496 133 1951 1064 1489 444

1827 1535 497 178 1959 1424 1553 1307
322 371 559 951 438 1557 1487 354

1811 815 369 469 935 1735 1429 1778
1347 105 691 840 1494 669
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Shanks Algorithm Example 2

The T table is produced using Tj = 1736 · 5j mod 2017 for
j = 0, 1, . . . , 45

1736 612 1043 1181 1871 1287 384 1920
1532 1609 1994 1902 1442 1159 1761 737
1668 272 1360 749 1728 572 843 181
905 491 438 173 865 291 1455 1224
69 345 1725 557 768 1823 1047 1201

1971 1787 867 301 1505 1474
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Shanks Algorithm Example 2

There exists a group element in both tables: 438

The indices of 438 in S and T table are i = 28 and j = 26

Also, we have m = 45, g = 5, and p = 2017

The equality g i ·m = y · g j (mod p) yields the discrete log of y

g28·45 = 1736 · g26 (mod 2017)

log5(g28·45) = log5(1736) + log5(g26) (mod 2016)

28 · 45 = x + 26 (mod 2016)

x = 28 · 45− 26 (mod 2016)

= 1234

Indeed, 51234 = 1736 (mod 2017)
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Correctness of Shanks Algorithm

Solving for x in y = g x (mod p) requires creation of 2 tables of
O(
√
p) size

However, x can be any one of the numbers in the set [2, p − 2], which
is of size O(p)

How does it work that by searching in 2 tables of size O(
√
p) we can

find an element x that belongs to a set of size O(p)?
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Proof of Correctness of Shanks Algorithm

Since m = d√pe, we can write x in base-m as

x = i ·m + j

such that i , j ∈ [0,m − 1]

For example, for p = 101, m = 11, and x = 35, we can write:

35 = 3 · 11 + 2

Instead of searching for x ∈ [2, p − 2], we search for i , j ∈ [0,m − 1]
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Proof of Correctness of Shanks Algorithm

Therefore, we would be performing 2 searches in two sets of size
O(m) = O(

√
p), one search for i and the other for j

The exponentiation equality is given as

y = g i ·m+j (mod p)

This implies
y · g−j = g i ·m (mod p)
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Proof of Correctness of Shanks Algorithm

We would create one table (S) of values (i , g i ·m), and another table
(T ) of values (j , y · g−j)
An equality of the form

g i ·m = y · g−j = g x · g−j (mod p)

for particular values of i , j implies that

i ·m = x − j (mod p − 1)

which allows us to compute x by creating 2 tables of size O(
√
p)
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Pollard Rho Algorithm for DLP

Pollard Rho algorithm is also of O(
√
p) time complexity, however, it

does not require a large table

It forms a pseudorandom sequence of elements from the group, and
searches for a cycle to appear in the sequence

The sequence is defined deterministically and each successive element
is a function of only the previous element

If a group element appears a second time, every element of the
sequence after that will be a repeat of elements in the sequence

According to the birthday problem, a cycle should appear after
O(
√
p) elements of the sequence have been computed
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Pollard Rho Algorithm for DLP

The Pollard Rho algorithm defines the sequence

ai+1 =


y · ai for ai ∈ S0
a2i for ai ∈ S1
g · ai for ai ∈ S2

where S0, S1, and S2 are disjoint partitions of the group elements,
that are approximately the same size

The initial term is taken as a0 = gα for a random α

Apparently, there is no need to keep all of the group elements

We compute the sequences from ai to a2i until an equality is
discovered

The equality of two terms in the sequence implies equality on
exponents mod (p − 1), from which we solve for x
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Pollard Rho Algorithm for DLP

Consider the solution of y = 44 = 3x (mod 101)

We divide the set S = {1, 2, . . . , 100} into 3 sets such that
S0 = {1, 2, . . . , 33}, S1 = {34, 35, . . . , 66}, and
S2 = {67, 68, . . . , 100}
We start with a0 = gα (mod p) for a random α

Taking α = 15, we obtain a0 = 315 = 39 (mod 101),

The following terms of the iteration are obtained as

i ai S0 S1 S2 powers of y & g

0 a0 = 39 39 0 & 15
1 a1 = a20 = 392 = 6 6 0 & 30
2 a2 = y · a1 = 44 · 6 = 62 62 1 & 30
3 a3 = a22 = 622 = 6 6 2 & 60
4 a4 = y · a3 = 44 · 6 = 62 62 3 & 60
5 a5 = a24 = 622 = 6 6 6 & 120
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Pollard Rho Algorithm for DLP

Therefore, we find a1 = a3, and also a2 = a4 and a3 = a5

The discovery of an equality in the sequence implies that we found a
relationship between the exponent x and known powers of g

The equality a1 = a3 implies

y0 · g30 = y2 · g60 = (g x)2 · g60 = g2x+60

We have an equality over the exponents

30 = 2x + 60 (mod 100) → 2x = 70 (mod 100)

Since gcd(2, 100) 6= 1, this equation has two solutions: x = {35, 85}
We can check each candidate to verify:

3x
?
= 44 (mod 100)

We see that x = 35 is a solution since 335 = 44 (mod 101)
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Pollard Rho Algorithm for DLP

Similarly, a2 = a4 implies

x + 30 = 3x + 60 (mod 100) → 2x = 70 (mod 100)

Therefore, the same set of solutions: x = {35, 85}

On the other hand, the equality of a3 = a5 gives a different equation:

2x + 60 = 6x + 120 (mod 100) → 4x = 40 (mod 100)

We find 4 candidates: x = {10, 35, 60, 85}
By trying each one, we find the solution x = 35
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Partitioning of S

Another way to partition S = {1, 2, . . . , p − 1}:
S0 = {a ∈ S and a = 0 (mod 3)}
S1 = {a ∈ S and a = 1 (mod 3)}
S2 = {a ∈ S and a = 2 (mod 3)}

For p = 101, we get
S0 = {3, 6, 9, 12, . . . , 99}
S1 = {1, 4, 7, 10, 13, . . . , 100}
S2 = {2, 5, 8, 11, 14, . . . , 98}

There could be different ways to partition, resulting in possibly
different (randomized) timings for the Pollard Rho Algorithm
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An Example of Pollard Rho Algorithm

Consider the solution of y = 48 = 3x (mod 101)

We partition Sj = {a | a ∈ S and a = j (mod 3)} for j = 0, 1, 2

We start with a0 = gα (mod p) for a random α

Taking α = 10, we obtain a0 = 310 = 65 (mod 101),

The following terms of the iteration are obtained as

i ai S0 S1 S2 powers of y & g

0 a0 = 65 65 0 & 10
1 a1 = g · a0 = 3 · 65 = 94 94 0 & 11
2 a2 = a21 = 942 = 49 49 0 & 22
3 a3 = a22 = 492 = 78 78 0 & 44
4 a4 = y · a3 = 48 · 78 = 7 7 1 & 44
5 a5 = a24 = 72 = 49 49 2 & 88
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http://koclab.org


Discrete Logarithm Problem Shanks, Pollard Rho, Pohlig-Hellman, Index Calculus

An Example of Pollard Rho Algorithm

The equality of a2 = a5 implies

g22 = y2 · g88 = g2x · g88 (mod 101)

From which, we write

2x + 88 = 22 (mod 100)

2x = 34 (mod 100)

We find candidates for the solution as {17, 67}
Trying both, we find x = 17 as the solution in 3x = 48 (mod 101)
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Another Example of Pollard Rho Algorithm

Solving for 1736 = 5x (mod 2017)

We partition Sj = {a | a ∈ S and a = j (mod 3)} for j = 0, 1, 2

We start with a0 = gα (mod p) for a random α

Taking α = 27, we obtain a0 = 527 = 710 (mod 2017),

The steps of the Pollard Rho algorithm are in the next page
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Another Example of Pollard Rho Algorithm

i ai S0 S1 S2 powers of y & g

0 a0 = 710 710 0 & 27

1 a1 = g · a0 = 5 · 710 = 1533 1533 0 & 28

2 a2 = y · a1 = 1736 · 1533 = 865 865 1 & 28

3 a3 = a22 = 8652 = 1935 1935 2 & 56

4 a4 = y · a3 = 1736 · 1935 = 855 855 3 & 56

5 a5 = y · a4 = 1736 · 855 = 1785 1785 4 & 56

6 a6 = y · a5 = 1736 · 1785 = 648 648 5 & 56

7 a7 = y · a6 = 1736 · 648 = 1459 1459 6 & 56

8 a8 = a27 = 14592 = 746 746 12 & 112

9 a9 = g · a8 = 5 · 746 = 1713 1713 12 & 113

10 a10 = y · a9 = 1736 · 1713 = 710 710 13 & 113

11 a11 = g · a10 = 5 · 710 = 1533 1533 13 & 114
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Another Example of Pollard Rho Algorithm

Since 710 appears twice in the 0th and 10th rows, we have

y0 · g27 = y13 · g113 = g13x · g113 (mod 2017)

Therefore, from the powers of y and g we obtain

0 + 27 = 13 · x + 113 (mod 2016)

This gives x as

x = 13−1 · (27− 113) (mod 2016)

= 1861 · 1930 (mod 2016)

= 1234

This is the correct answer, since 51234 = 1736 (mod 2017)
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The Complexity of Pollard Rho Algorithm

The Pollard Rho algorithm generates a sequence in order to find a
match, due to the birthday problem

Its time complexity is O(
√
p) which is exponential in terms of the

input size in bits: O(2k/2)

However, there are subexponential algorithms, for example the index
calculus method for the group Z∗p has subexponential time complexity

Before that, let us study the Pohlig-Hellman algorithm which converts
on order-ab DL into an order-a DL, an order-b DL, and a few
exponentiations
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Pohlig-Hellman Algorithm

The group order in (Z ∗p , ∗ mod p) is p − 1

There are p − 1 elements in the set Z ∗p = {1, 2, . . . , p − 1}
Assume p − 1 = a · b, that is, g has order a · b
Given y , which is a power of g , we deduce that:
ga has order b since (ga)b = gab = gp−1 = 1
gb has order a since (gb)a = gab = gp−1 = 1
ya is a power of ga since ya = (g x)a = (ga)x
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Pohlig-Hellman Algorithm

Step 1: Solve for r in the DLP:

(ga)r = ya (mod p)

Step 2: Solve for s in the DLP:

(gb)s = y · g−r (mod p)

Step 3: Compute x = r + s · b

Correctness proof:

g r+s·b = g r · (g s)b (mod p)

= g r · y · g−r (mod p)

= y
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An Example of Pohlig-Hellman Algorithm

Consider p = 1259 and g = 2, and the DLP

y = g x (mod p) → 338 = 2x (mod 1259)

p − 1 = 34 · 37 = a · b
Step 1: Solve for r in

(ga)r = ya (mod 1259)

(234)r = 33834 (mod 1259)

870r = 463 (mod 1259)

Since 870 is of order b = 37, we solve a smaller DLP

The solution r is in the set [0, b − 1] = [0, 36]

It can be found using exhaustive search

The solution is r = 27 since 87027 = 463 mod 1259
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An Example of Pohlig-Hellman Algorithm

Step 2: Solve for s in the DLP:

(gb)s = y · g−r (mod 1259)

(237)s = 338 · 2−27 (mod 1259)

665s = 338 · 880 (mod 1259)

665s = 316 (mod 1259)

This is also a smaller DLP, since s is in the set [0, a− 1] = [0, 33]

We find s = 2 using exhaustive search: 6652 = 316 mod 1259

Step 3: We find x as

x = r + s · b = 27 + 2 · 37 = 101

This is indeed the solution of DLP: 2101 = 338 mod 1259
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Another Example of Pohlig-Hellman Algorithm

Consider p = 2017 and g = 5, and the DLP

y = g x (mod p) → 1736 = 5x (mod 2017)

p − 1 = 2016 = 36 · 56 = a · b
Step 1: Solve for r in

(ga)r = ya (mod p)

(536)r = 173636 (mod 2017)

995r = 1695 (mod 2017)

Since 995 is of order b = 56, we solve a smaller DLP

The solution r is in the set [0, b − 1] = [0, 55]

It can be found using exhaustive search

The solution is r = 2 since 9952 = 1695 mod 2017
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Another Example of Pohlig-Hellman Algorithm

Step 2: Solve for s in the DLP:

(gb)s = y · g−r (mod p)

(556)s = 1736 · 5−2 (mod 2017)

665s = 1736 · 1775 (mod 2017)

284s = 1441 (mod 2017)

This is also a smaller DLP, since s is in the set [0, a− 1] = [0, 35]

We find s = 22 using exhaustive search: 28422 = 1441 mod 2017

Step 3: We find x as

x = r + s · b = 2 + 22 · 56 = 1234

This is indeed the solution of DLP: 51234 = 1736 mod 2017
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Complexity of the Pohlig-Hellman Algorithm

The Pohlig-Hellman algorithm requires two independent DLPs which
are order

√
a and

√
b when p = a · b

These can be solved using exhaustive search, requiring O(
√
a) and

O(
√
b) multiplications

It works better if a or b factors even further

The means, we can apply Pohlig-Hellman recursively

If the largest prime divisor of p − 1 is much smaller than p, then
Pohlig-Hellman computes DL more quickly
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Applications to ECDLP

The exhaustive search, Shank’s, Pollard Rho, and Pohlig-Hellman
algorithms are applicable to any group

They do not require particular properties from the group, and perform
only group operations to solve for the DLP

They are applicable to the ECDLP

They all require exponential time

Given the DLP y = g x (mod p), these algorithms require:
Exhaustive Search: O(p) operations
Shank’s Baby-Step-Giant-Step: O(

√
p) operations and O(

√
p) space

Pollard Rho: O(
√
p) operations and probably less space

Pohlig-Hellman: O(
√
a +
√
b) for p − 1 = a · b
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http://koclab.org


Discrete Logarithm Problem Shanks, Pollard Rho, Pohlig-Hellman, Index Calculus

Index Calculus Algorithm

The Index Calculus algorithm is asymptotically faster than the
previous algorithms

The Index Calculus algorithm generates group elements ga·n+b

It then deduces equations for n from random collisions

However, the Index Calculus algorithm obtains discrete-logarithm
equations in a different way
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Index Calculus Algorithm

We are attempting to solve the DLP y = g x (mod p)

Consider the set S , called the factor base, the set of all primes less
than or equal to some bound b

For example, S = {2, 3, 5} where b = 5

An element of Z ∗p is called smooth with respect to b, if all of its
factors are contained in S

For example, these elements of Z ∗19 are smooth wrt b = 5:

{2, 3, 4 = 22, 5, 6 = 2·3, 8 = 23, 9 = 32, 10 = 2·5, 12 = 22 ·3, 15 = 3·5, 16 = 24, 18 = 2·32}

These elements of Z ∗19 are not smooth wrt b = 5:

{7, 11, 13, 14 = 2 · 7, 17}
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http://koclab.org


Discrete Logarithm Problem Shanks, Pollard Rho, Pohlig-Hellman, Index Calculus

Index Calculus Algorithm

The Index Calculus algorithm has 3 steps

Step 1: Take a random α, and compute gα (mod p), and see if it is
smooth, that is

gα =
∏
pi∈S

pαi
i

If it is, we obtain its discrete logarithm base g , where all αi are known

α =
∑
pi∈S

αi logg pi (mod p − 1)

Continue this process until more than |S | equations are known
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Index Calculus Algorithm

Step 2: Solve this system of equations to find the unique values for
each of logg pi (mod p − 1)

Step 3: In this step we find the solution to the DLP y = g x (mod p),
that is we compute logg y (mod p − 1)

Select a random α so that y · gα (mod p) is smooth

When we find such an α, we can compute x using

x = logg y = −α +
∑
pi∈S

αi logg pi (mod p − 1)

where everything on the right hand side is known
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An Example of Index Calculus Algorithm

Consider p = 37, g = 5 and S = {2, 3}
Step 1: Try α = 6: gα = 56 = 11 (mod 37): Not smooth

Try α = 7: gα = 57 = 18 = 21 · 32 (mod 37): Smooth

Thus, we find

1 · log5 2 + 2 · log5 3 = 7 (mod 36)

Try α = 14: gα = 514 = 28 = 22 · 7 (mod 37): Not smooth

Try α = 31: gα = 531 = 24 = 23 · 31 (mod 37): Smooth

Thus, we find

3 · log5 2 + 1 · log5 3 = 31 (mod 36)
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An Example of Index Calculus Algorithm

Step 2: We solve these two equations

1 · log5 2 + 2 · log5 3 = 7 (mod 36)

3 · log5 2 + 1 · log5 3 = 31 (mod 36)

Expressed in matrix form as[
1 2
3 1

] [
log5 2
log5 3

]
=

[
7

31

]
(mod 36)

We find the solutions as log5 2 = 11 and log5 3 = 34

These are verified as 511 = 2 (mod 37) and 534 = 3 (mod 37)
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An Example of Index Calculus Algorithm

Step 3: Suppose we want to find log5 17 (mod 36)

We are trying to solve the DLP: y = 17 = 5x (mod 37)

Try α = 24: y · gα = 17 · 524 = 35 (mod 37): Not smooth

Try α = 15: y · gα = 17 · 515 = 12 (mod 37): Smooth

This number factors as 12 = 22 · 31, thus, we find

logg y = −α +
∑
pi∈S

αi logg pi (mod p − 1)

log5 17 = −15 + 2 · log5 2 + 1 · log5 3 (mod 36)

= −15 + 2 · 11 + 1 · 34 (mod 36)

= 41 (mod 36)

= 5

The solution is x = 5 in 17 = 5x (mod 37), since 55 = 17 (mod 37)
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An Example of Index Calculus Algorithm

Step 3: Suppose we want to find log5 19 (mod 36)

We are trying to solve the DLP: y = 19 = 5x (mod 37)

Try α = 5: y · gα = 19 · 55 = 27 (mod 37): Smooth

This number factors as 27 = 33, thus, we find

logg y = −α +
∑
pi∈S

αi logg pi (mod p − 1)

log5 19 = −5 + 3 · log5 3 (mod 36)

= −5 + 3 · 34 (mod 36)

= 97 (mod 36)

= 25

Thus x = 25 in 19 = 5x (mod 37), since 525 = 19 (mod 37)
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Another Example of Index Calculus Algorithm

Consider p = 2017, g = 5 and S = {2, 3, 7, 11}

Try α = 130: gα = 5130 = 1078 = 21 · 72 · 111 (mod 2017):

Equation: log5(2) + 2 log5(7) + log5(11) = 130 (mod 2016)

Try α = 1874: gα = 51874 = 42 = 21 · 31 · 71 (mod 2017):

Equation: log5(2) + log5(3) + log5(7) = 1874 (mod 2016)

Try α = 1130: gα = 51130 = 1617 = 31 · 72 · 111 (mod 2017):

Equation: log5(3) + 2 log5(7) + log5(11) = 1130 (mod 2016)

Try α = 1820: gα = 51820 = 1694 = 21 · 71 · 112 (mod 2017):

Equation: log5(2) + log5(7) + 2 log(11) = 1820 (mod 2016)
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Another Example of Index Calculus Algorithm

Linear system of equations
1 0 2 1
1 1 1 0
0 1 2 1
1 0 1 2




log5(2)
log5(3)
log5(7)

log5(11)

 =


130

1874
1130
1874

 (mod 2016)

The determinant of the matrix mod 2016 is equal to 5

This implies that the above matrix is invertible mod 2016

The inverse matrix mod 2016 and the solution is found as
1613 807 1209 1613
1612 807 1210 1613
807 403 1613 806
806 403 1613 807




130
1874
1130
1874

 =


30

1030
814
488

 =


log5(2)
log5(3)
log5(7)

log5(11)


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These discrete logs are easily verified:

log5(2) = 30 → 530 = 2 mod 2017
log5(3) = 1030 → 51030 = 3 mod 2017
log5(7) = 814 → 5814 = 7 mod 2017

log5(11) = 488 → 5488 = 11 mod 2017

Finding x = log5(1736) mod 2016

Select α = 1188, which gives y · gα (mod p) as

1736 · 51188 = 1848 = 23 · 31 · 71 · 111 mod 2017

Therefore: log5(1736 · 51188) = log5(23 · 31 · 71 · 111) mod 2016

We obtain

log5(1736) + 1188 = 3 log5(2) + log5(3) + log5(7) + log5(11) mod 2016

log5(1736) = −1188 + 3 · 30 + 1030 + 814 + 488 mod 2016

= 1234
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Complexity of the Index Calculus Algorithm

Analysis of the Index Calculus Algorithm depends on several factors:

Likelihood that gα (mod p) and y · gα (mod p) smooth
The chance that |S | equations are linearly independent (mod p − 1)
Solutions of the linear equations (mod p − 1)

The time complexity of the Index Calculus Algorithm is found as

O
(
ec

3
√

(log p)(log log p)2
)

The time complexity is sub-exponential since it is faster than
exponential (in log p) but slower than polynomial

Compare this to the Pollard Rho algorithm: O(
√
p)
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