Projective Coordinates of Elliptic Curves

Projective Coordinates

- Let c and d be positive integers
- Define the equivalence relation between the triples (x, y, z) with x, y, z over a finite field \mathcal{F}, without all three points being zero

$$
\left(x_{1}, y_{1}, z_{1}\right) \sim\left(x_{2}, y_{2}, z_{2}\right) \text { if }\left(x_{1}, y_{1}, z_{1}\right)=\left(\lambda^{c} x_{2}, \lambda^{d} y_{2}, \lambda z_{2}\right)
$$

for some nonzero $\lambda \in \mathcal{F}$

- For different values of λ we get different coordinate systems, having different names due to their inventors

Projective Coordinates

- The standard coordinates represented using (x, y) with $x, y \in \mathcal{F}$ are called affine coordinates
- In the projective system, the third coordinate z is in a way redundant
- It is not necessary, and it can be derived from the other two coordinate values x and y
- However, the projective coordinates allow to reduce the number of finite field operations required for point addition and doubling

Projective Coordinates over GF(p)

- Affine curve equation: $y^{2}=x^{3}+a x+b$
- The curve equation: $y^{2} z=x^{3}+a x z^{2}+b z^{3}$
- The relation to the affine: $(x: y: z) \rightarrow(x / z, y / z)$
- The name: Projective
- The curve equation: $y^{2}=x^{3}+a x z^{4}+b z^{6}$
- The relation to the affine: $(x: y: z) \rightarrow\left(x / z^{2}, y / z^{3}\right)$
- The name: Jacobian

Projective Coordinates over GF(2k

- Affine curve equation: $y^{2}+x y=x^{3}+a x^{2}+b$
- The curve equation: $y^{2} z+x y z=x^{3}+a x^{2} z+b z^{3}$
- The relation to the affine: $(x: y: z) \rightarrow(x / z, y / z)$
- The name: Projective
- The curve equation: $y^{2}+x y z=x^{3}+a x^{2} z^{2}+b z^{6}$
- The relation to the affine: $(x: y: z) \rightarrow\left(x / z^{2}, y / z^{3}\right)$
- The name: Jacobian
- The curve equation: $y^{2}+x y z=x^{3} z+a x^{2} z^{2}+b z^{4}$
- The relation to the affine: $(x: y: z) \rightarrow\left(x / z, y / z^{2}\right)$
- The name: López-Dahab

Affine versus Projective Coordinates over GF(2^{k})

- Inversion in both $\mathrm{GF}(p)$ and $\mathrm{GF}\left(2^{k}\right)$ is an expensive operation
- The affine coordinate system requires inversion for every point addition and point doubling operation
- Projective coordinates reduce the number of field inversions
- Point addition $\left(x_{3}, y_{3}\right)=\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)$ in affine coordinates over GF(2^{k})

$$
\begin{aligned}
m & =\left(y_{1}+y_{2}\right)\left(x_{1}+x_{2}\right)^{-1} \\
x_{3} & =m^{2}+m+x_{1}+x_{2}+a \\
y_{3} & =m\left(x_{1}+x_{3}\right)+x_{3}+y_{1}
\end{aligned}
$$

- We see that the affine addition formulae over $\mathrm{GF}\left(2^{k}\right)$ requires 1 inversion and 2 multiplication operations
- We should remember that squaring is free in GF $\left(2^{k}\right)$

Affine versus Projective Coordinates over GF(2k)

- Point addition $\left(x_{3}, y_{3}, z_{3}\right)=\left(x_{1}, y_{1}, z_{1}\right) \oplus\left(x_{2}, y_{2}, 1\right)$ in projective coordinates over GF (2^{k})

$$
\begin{array}{rlrl}
A & =y_{2} z_{1}^{2}+y_{1} & x_{3} & =A^{2}+D+E \\
B & =x_{2} z_{1}+x_{1} & z_{3} & =C^{2} \\
C & =z_{1} B & F & =x_{3}+x_{2} z_{3} \\
D & =B^{2}\left(C+a z_{1}^{2}\right) & G & =\left(x_{2}+y_{2}\right) z_{3}^{2} \\
E & =A C & y_{3} & =\left(E+z_{3}\right) F+G
\end{array}
$$

- By counting the arithmetic operations in these expressions, we see that the addition of two points requires no inversion in $\operatorname{GF}\left(2^{k}\right)$, but 8 multiplication operations and 1 multiplication by constant a

Jacobian Projective Coordinates over GF(p)

- As explained, to avoid (multiplicative) inversions in the point addition, points on elliptic curves are usually represented with projective coordinate systems
- In homogeneous coordinates, a point $P=\left(x_{1}, y_{1}\right)$ is represented using the triplet $\left(x_{1}: y_{1}: z_{1}\right)=\left(\lambda x_{1}: \lambda y_{1}: \lambda\right)$ for some nonzero $\lambda \in \mathcal{F}$
- The elliptic curve equation becomes $y^{2} z=x^{3}+a x z^{2}+b z^{3}$
- The neutral element (the point at infinity) is $(0: \lambda: 0)$ with $\lambda \neq 0$
- A projective homogeneous point $\left(x_{1}: y_{1}: z_{1}\right)$ with $z_{1} \neq 0$ corresponds to the affine point $\left(x_{1} / z_{1}, y_{1} / z_{1}\right)$

$$
\left(x_{1}: y_{1}: z_{1}\right) \leftrightarrow\left(x_{1} / z_{1}, y_{1} / z_{1}\right)
$$

Point Addition using Jacobian Projective Coordinates

- The affine point addition formulae for adding $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ to obtain $R=\left(x_{3}, y_{3}\right)$ were given as

$$
\begin{aligned}
& m= \begin{cases}\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { if } P \neq Q \\
\frac{3 x_{1}^{2}+a}{2 y_{1}} & \text { if } P=Q\end{cases} \\
& x_{3}=m^{2}-x_{1}-x_{2} \\
& y_{3}=m\left(x_{1}-x_{3}\right)-y 1
\end{aligned}
$$

- We see that the affine addition formulae requires 1 inversion, 2 multiplication, and 1 squaring operations

Point Addition using Jacobian Projective Coordinates

- Substituting $\left(x_{i}, y_{i}\right)$ with $\left(x_{i} / z_{i}^{2}, y_{i} / z_{i}^{3}\right)$ in these formuale, we find (after some algebra) that the addition of $P=\left(x_{1}: y_{1}: z_{1}\right)$ and $Q=\left(x_{2}: y_{2}: z_{2}\right)$ with $Q \neq \pm P$ and $P, Q \neq \mathcal{O}$ is given by $R=\left(x_{3}: y_{3}: z_{3}\right)$ such that

$$
x_{3}=R^{2}+G-2 V ; \quad y_{3}=R\left(V-x_{3}\right)-S_{1} G ; \quad z_{3}=z_{1} z_{2} H
$$

- The temporary values are defined as

$$
\begin{array}{ll}
U_{1}=x_{1} z_{2}^{2} & R=S_{1}-S_{2} \\
U_{2}=x_{2} z_{1}^{2} & H=U_{1}-U_{2} \\
S_{1}=y_{1} z_{2}^{3} & G=H^{3} \\
S_{2}=y_{2} z_{1}^{3} & V=U_{1} H^{2}
\end{array}
$$

Point Addition using Jacobian Projective Coordinates

- By counting the field arithmetic operations in these algebraic expressions, we see that the addition of two points requires 12 multiplication and 4 squaring operations, but no inversion
- Therefore, if the inversion operation is more expensive than at least 10 multiplications in $\operatorname{GF}(p)$, then the Jacobian projective coordinates should be preferred
- On the other hand, when a fast squaring is available, the point addition can also be performed with 11 multiplication and 5 squaring operations using the identity $2 z_{1} z_{2}=\left(z_{1}+z_{2}\right)^{2}-z_{1}^{2}-z_{2}^{2}$

Point Doubling using Jacobian Projective Coordinates

- The doubling of $P=\left(x_{1}: y_{1}: z_{1}\right)$ is given by $R=\left(x_{3}: y_{3}: z_{3}\right)$

$$
x_{3}=M^{2}-2 S ; \quad y_{3}=M\left(S-x_{3}\right)-8 T ; \quad z_{3}=2 y_{1} z_{1}
$$

- The temporary values are defined as

$$
\begin{aligned}
M & =3 x_{1}^{2}+a z_{1}^{4} \\
T & =y_{1}^{4} \\
S & =4 x_{1} y_{1}^{2}
\end{aligned}
$$

- By counting the field arithmetic operations in these expressions, we see that the point doubling requires 3 multiplication and 6 squaring operations, and 1 multiplication by constant a

