Projective Coordinates of Elliptic Curves

Projective Coordinates

- Let c and d be positive integers
- Define the equivalence relation between the triples (x, y, z) with x, y, z over a finite field \mathcal{F} , without all three points being zero

$$(x_1, y_1, z_1) \sim (x_2, y_2, z_2)$$
 if $(x_1, y_1, z_1) = (\lambda^c x_2, \lambda^d y_2, \lambda z_2)$

for some nonzero $\lambda \in \mathcal{F}$

• For different values of λ we get different coordinate systems, having different names due to their inventors

Projective Coordinates

- The standard coordinates represented using (x, y) with x, y ∈ F are called affine coordinates
- In the projective system, the third coordinate z is in a way redundant
- It is not necessary, and it can be derived from the other two coordinate values x and y
- However, the projective coordinates allow to reduce the number of finite field operations required for point addition and doubling

Projective Coordinates over GF(p)

• Affine curve equation:
$$y^2 = x^3 + ax + b$$

- The curve equation: $y^2z = x^3 + axz^2 + bz^3$
- The relation to the affine: (x:y:z)
 ightarrow (x/z,y/z)
- The name: Projective
- The curve equation: $y^2 = x^3 + axz^4 + bz^6$
- The relation to the affine: $(x:y:z)
 ightarrow (x/z^2,y/z^3)$
- The name: Jacobian

Projective Coordinates over $GF(2^k)$

- Affine curve equation: $y^2 + xy = x^3 + ax^2 + b$
- The curve equation: $y^2z + xyz = x^3 + ax^2z + bz^3$
- The relation to the affine: (x:y:z)
 ightarrow (x/z,y/z)
- The name: Projective
- The curve equation: $y^2 + xyz = x^3 + ax^2z^2 + bz^6$
- The relation to the affine: $(x:y:z) \rightarrow (x/z^2, y/z^3)$
- The name: Jacobian
- The curve equation: $y^2 + xyz = x^3z + ax^2z^2 + bz^4$
- The relation to the affine: $(x:y:z)
 ightarrow (x/z,y/z^2)$
- The name: López-Dahab

Affine versus Projective Coordinates over $GF(2^k)$

- Inversion in both GF(p) and $GF(2^k)$ is an expensive operation
- The affine coordinate system requires inversion for every point addition and point doubling operation
- Projective coordinates reduce the number of field inversions
- Point addition $(x_3, y_3) = (x_1, y_1) \oplus (x_2, y_2)$ in affine coordinates over $\mathsf{GF}(2^k)$

$$m = (y_1 + y_2)(x_1 + x_2)^{-1}$$

$$x_3 = m^2 + m + x_1 + x_2 + a$$

$$y_3 = m(x_1 + x_3) + x_3 + y_1$$

- We see that the affine addition formulae over GF(2^k) requires 1 inversion and 2 multiplication operations
- We should remember that squaring is free in $GF(2^k)$

Affine versus Projective Coordinates over $GF(2^k)$

Point addition (x₃, y₃, z₃) = (x₁, y₁, z₁) ⊕ (x₂, y₂, 1) in projective coordinates over GF(2^k)

Α	=	$y_2 z_1^2 + y_1$	<i>x</i> 3	=	$A^2 + D + E$
В	=	$x_2 z_1 + x_1$	Z3	=	C^2
С	=	z ₁ B	F	=	$x_3 + x_2 z_3$
D	=	$B^2(C+az_1^2)$	G	=	$(x_2 + y_2)z_3^2$
Ε	=	AC	<i>y</i> 3	=	$(E+z_3)F+G$

 By counting the arithmetic operations in these expressions, we see that the addition of two points requires **no inversion** in GF(2^k), but 8 multiplication operations and 1 multiplication by constant a

Jacobian Projective Coordinates over GF(p)

- As explained, to avoid (multiplicative) inversions in the point addition, points on elliptic curves are usually represented with projective coordinate systems
- In homogeneous coordinates, a point P = (x₁, y₁) is represented using the triplet (x₁ : y₁ : z₁) = (λx₁ : λy₁ : λ) for some nonzero λ ∈ F
- The elliptic curve equation becomes $y^2z = x^3 + axz^2 + bz^3$
- The neutral element (the point at infinity) is $(0: \lambda: 0)$ with $\lambda \neq 0$
- A projective homogeneous point (x₁ : y₁ : z₁) with z₁ ≠ 0 corresponds to the affine point (x₁/z₁, y₁/z₁)

$$(x_1:y_1:z_1)\leftrightarrow (x_1/z_1,y_1/z_1)$$

Point Addition using Jacobian Projective Coordinates

• The affine point addition formulae for adding $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ to obtain $R = (x_3, y_3)$ were given as

$$m = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{if } P \neq Q \\ \frac{3x_1^2 + a}{2y_1} & \text{if } P = Q \end{cases}$$
$$x_3 = m^2 - x_1 - x_2$$
$$y_3 = m(x_1 - x_3) - y_1$$

• We see that the affine **addition** formulae requires 1 inversion, 2 multiplication, and 1 squaring operations

Point Addition using Jacobian Projective Coordinates

• Substituting (x_i, y_i) with $(x_i/z_i^2, y_i/z_i^3)$ in these formuale, we find (after some algebra) that the addition of $P = (x_1 : y_1 : z_1)$ and $Q = (x_2 : y_2 : z_2)$ with $Q \neq \pm P$ and $P, Q \neq O$ is given by $R = (x_3 : y_3 : z_3)$ such that

$$x_3 = R^2 + G - 2V$$
; $y_3 = R(V - x_3) - S_1G$; $z_3 = z_1 z_2 H$

- The temporary values are defined as
 - $\begin{array}{rclcrcrc} U_1 &=& x_1 z_2^2 & & R &=& S_1 S_2 \\ U_2 &=& x_2 z_1^2 & & H &=& U_1 U_2 \\ S_1 &=& y_1 z_2^3 & & G &=& H^3 \\ S_2 &=& y_2 z_1^3 & & V &=& U_1 H^2 \end{array}$

Point Addition using Jacobian Projective Coordinates

- By counting the field arithmetic operations in these algebraic expressions, we see that the addition of two points requires 12 multiplication and 4 squaring operations, but **no inversion**
- Therefore, if the inversion operation is more expensive than at least 10 multiplications in GF(p), then the Jacobian projective coordinates should be preferred
- On the other hand, when a fast squaring is available, the point addition can also be performed with 11 multiplication and 5 squaring operations using the identity $2z_1z_2 = (z_1 + z_2)^2 z_1^2 z_2^2$

Point Doubling using Jacobian Projective Coordinates

• The doubling of $P = (x_1 : y_1 : z_1)$ is given by $R = (x_3 : y_3 : z_3)$

$$x_3 = M^2 - 2S$$
; $y_3 = M(S - x_3) - 8T$; $z_3 = 2y_1z_1$

• The temporary values are defined as

$$M = 3x_1^2 + az_1^4$$
$$T = y_1^4$$
$$S = 4x_1y_1^2$$

• By counting the field arithmetic operations in these expressions, we see that the point doubling requires 3 multiplication and 6 squaring operations, and 1 multiplication by constant *a*