
Performance comparisons of elliptic curve systems in
software

Kenny Fong University of Waterloo

Darrel Hankerson Auburn University, USA

Julio López University of Valle, Colombia

Alfred Menezes University of Waterloo

Matt Tucker University of Waterloo

October 2001

1

Goals

1. Do balanced comparisions.

2. Questions:

(a) Which is faster, ECC overFp or overF2m?

(b) How much faster is ECC overFp in assembler than in C?

(c) How much faster is ECC over NIST primes versus random

primes?

(d) How much faster is ECC over Koblitz curves versus random

curves overF2m?

(e) Is ECC over OEFs significantly faster?

(f) Can point halving be used effectively?

(g) Performance when memory is constrained versus unconstrained?

2

Outline

1. Operations in ECDSA.

2. Platform characteristics.

3. The NIST curves.

3.1 Random binary and Koblitz.

3.2 Random prime.

4. Using efficient endomorphisms (GLV).

5. Point halving.

6. Optimal Extension Fields.

3

1. Elliptic curve digital signature algorithm (ECDSA)

• SignerA has domain parametersD = (q,FR,a,b,G,n, h), private

key d, and public keyQ = dG. B has authentic copies ofD andQ.

• To sign a messagem, A does the following:

1. Select a random integerk from [1,n− 1].
2. ComputekG= (x1, y1) andr = x1 modn.

3. Computee= SHA-1(m).

4. Computes= k−1{e+ dr} modn.

5. A’s signature for the messagem is (r, s).

• The computationally expensive operation is the scalar multiplication

kG in step 2, for a pointG which is known a priori.

4

ECDSA

• To verify A’s signature(r, s) on m, B does:

1. Verify thatr ands are integers in[1,n− 1].
2. Computee= SHA-1(m).

3. Computew = s−1 modn.

4. Computeu1 = ew modn andu2 = rw modn.

5. Computeu1G+ u2Q = (x1, y1).

6. Computev = x1 modn.

7. Accept the signature if and only ifv = r .

• The computationally expensive operation is the scalar multiplications

u1G andu2Q in step 5, where onlyG is known a priori.

5

Optimizing ECC

Elliptic Curve Digital Signature

Algorithm (ECDSA)

Big number and

arithmetic

Random number

modular arithmetic

Curve

arithmetic
qF field

generation

Once the field (e.g., prime or binary) and curve (e.g., random or Koblitz)

are selected, speed depends largely on

1. field operations, and

2. efficient curve operations.

Big number routines (e.g., in Koblitzτ -adic NAF) are of less importance.

6

2. Pentium II/III characteristics U pipe

V pipe

mov eax, [esi+4]
xor ecx, ecx

• Original Pentium used a dual pipeline.

• 8 registers (excluding flags, segment, floating point, and MMX).
Integer multiplication 32×32→ 64 bits must usea andd.

• Faster multiplication than original Pentium and MMX (latency 4 vs 9
and throughput of 1 vs 1/9).

• Better branch prediction than the original Pentium, but
mispredictions are more expensive.

Compilers
• Microsoft C selected for historical reasons. Appears to give better

(pipeline-friendly) sequences compared with GNU C.

• Does not honor “register” declaration, and its register allocation
strategy can be weak.

• Does not process 32×32→ 64 bit multiplication consistently.

• Assembler coding essential for odd characteristic fields.

7

3. NIST Recommended Elliptic Curves

• Collection of elliptic curves recommended for use with ECDSA by

the US Federal Government.

• Recommended fields:

Block cipher Fp F2m

key length Block cipher |p| m

80 SKIPJACK 192 163
112 3-DES 224 233
128 AES Small 256 283
192 AES Medium 384 409
256 AES Large 521 571

8

Recommended Curves overF2m

• Koblitz curves:

K-163 y2+ xy= x3+ x2+ 1 overF2163, cofactor 2
f = x163+ x7+ x6+ x3+ 1

K-233 y2+ xy= x3+ 1 overF2233, cofactor 4
f = x233+ x74+ 1

K-283 y2+ xy= x3+ 1 overF2283, cofactor 4
f = x283+ x12+ x7+ x5+ 1

K-409 y2+ xy= x3+ 1 overF2409, cofactor 4
f = x409+ x87+ 1

K-571 y2+ xy= x3+ 1 overF2571, cofactor 4
f = x571+ x10+ x5+ x2+ 1

• Randomly-generated curves B-{163, 233, 283, 409, 571} over each of

these fields, each with cofactor 2:y2+ xy= x3+ x2 + b.

9

Binary Field Arithmetic

• Timings (inµs) on a 1000 MHz Pentium III.

F2163 F2233 F2283

Addition 0.032 0.039 0.041

Modular reduction 0.081 0.094 0.145

Multiplication (including reduction)
Shift-and-add 6.11 9.66 13.25
LR comb with windows of size 4 1.06 1.92 2.40
Karatsuba 1.49 2.69 3.13

Squaring 0.19 0.24 0.31

Inversion 10.0 17.4 24.5
Inversion / Multiplication 9.5 9.1 10.2

• Addition in the binary case is especially simple (XOR).

• Squaring is by 8-to-16-bit table-lookup.

• Code is in C, except for one operation (bit scan) in inversion.

10

Recommended Curves overFp

• y2 = x3 − 3x + b, curves randomly generated and have prime order.

Curve Primep

P-192 2192− 264− 1
P-224 2224− 296+ 1
P-256 2256− 2224+ 2192+ 296− 1
P-384 2384− 2128− 296+ 232− 1
P-521 2521− 1

• The form of the prime (or reduction poly in binary case) makes

reduction fast; e.g.,

Algorithm ([Solinas] fast reduction modulop = 2192− 264− 1)

INPUT: Integerc = (c5, c4, c3, c2, c1, c0). OUTPUT: c mod p.

1. Define 192-bit integers:s1 = (c2, c1, c0), s2 = (0, c3, c3),

s3 = (c4, c4,0), s4 = (c5, c5, c5).

2. Return (s1+ s2 + s3 + s4 mod p).

11

Prime Field Arithmetic

• Compare fast reduction with Barrett:
Algorithm (Barrett reduction)

INPUT: b > 3, k = blogb pc + 1, x < b2k, µ = bb2k/pc.
OUTPUT: x mod p.

1. q̂← bbx/bk−1c · µ/bk+1c.
2. r ← (x modbk+1)− (q̂ · p modbk+1).

3. If r < 0 thenr ← r + bk+1.

4. Whiler ≥ p do: r ← r − p.

5. Return (r).

• b can be chosen to correspond to machine word size.

• Operations are relatively simple, andµ can be calculated once per

field, but Barrett is still much slower.

12

Timings (in µs) for operations in the NIST prime fields

Fp192
a Fp192 Fp224 Fp256

Addition 0.145 0.055 0.062 0.071
Subtraction 0.149 0.054 0.061 0.068
Modular reduction

Barrett reduction 1.606 0.413 0.525 0.638
Fast reduction 0.191 0.097 0.122 0.256

Multiplication (including fast reduction)
Classical 0.631b 0.350 0.456 0.681
Karatsuba 1.481c 0.825 1.100 1.413

Squaring (including fast reduction)
Classical — 0.300 0.394 0.600
Handbook 0.969c 0.425 0.544 0.794

Inversion 48.8 21.1 28.4 36.8
Inversion / Multiplication 77 60 62 54
aCoded primarily in C.bUses a 32×32 multiply-and-add.cUses a 32×32 multiply.

• Some assembler coding is essential. MSC has relatively poor register
allocation strategy.
• Barrett reduction does not use the special form of the prime.

13

Comparison of timings for the prime and binary fields

Fp192 F2163 Fp224 F2233 Fp256 F2283

Addition 0.055 0.032 0.062 0.039 0.071 0.041
Modular reduction 0.097 0.081 0.122 0.094 0.256 0.145

Multiplication 0.350 1.058 0.456 1.923 0.681 2.403
Squaring 0.300 0.185 0.394 0.238 0.600 0.312

Inversion 21.1 10.0 28.4 17.4 36.8 24.5
Inversion / Mult 60.2 9.5 62.4 9.1 54.1 10.2

• Squaring is very fast in the binary case, but only 14% faster in the

prime case.

• I /M differs significantly.

14

Elliptic Curve Arithmetic

• Coordinate choices: affine vs various projective reps. Op counts:

Doubling Addition (mixed)
Binary fields

Affine 1I , 2M 1I , 2M
Projective(X/Z,Y/Z2) 4M 8M

Prime fields
Affine 1I , 2M, 2S 1I , 2M, 1S
Projective(X/Z2,Y/Z3) 4M, 4S 8M, 3S

• Many variants of simple double-and-add algorithm fork P.

– P fixed vsP not known a priori.

– Choices may be subject to memory constraints.

– Signed-digit reps fork reduce the number of point additions in
k P. Windowing methods.

– Replace doubling by halving in the binary case.

– Replace doubling by other efficiently-computable maps.

15

Koblitz curves

• Let E : y2+ xy= x3+ ax2+ 1 be an elliptic curve defined overF2.

• (Frobenius map) Letτ : (x, y) 7→ (x2, y2). τ2+ 2= (−1)1−aτ .

• To computek P for P in the main subgroup ofE(F2m):

– Computek′ = k mod(τm − 1)/(τ − 1) in Z[τ].
– Compute aτ -adic expansion ofk′,

∑t
i=0 ci τ

i , wheret ≈ m and

ci ∈ {0,1}.
– k P = k′P =∑t

i=0 ci τ
i P.

• Width-w τ -adic NAFs reduce the number of point additions.

J. Solinas, Efficient arithmetic on Koblitz curves. Designs, Codes and Cryptography,
2000.

16

Timings (in µs) for k P, P fixed, in ECDSA signature generation

Curve Memory
type constrained? Fastest method NIST curve

P-192 P-224 P-256
Random No Fixed-base comb (w=4,×2) 280 406 686
prime Yes Interleave ({3, 3}-NAF) 500 780 1,250

Yes Binary NAF Jacobian 874 1,312 2,156
B-163 B-233 B-283

Random No Fixed-base comb (w=5) 480 1,178 1,803
binary Yes Interleave ({3, 3}-NAF) 817 2,068 3,125

Yes Montgomery 1,203 3,006 4,520
K-163 K-233 K-283

Koblitz No Fixed-base TNAF (w=6) 385 842 1,226
binary Yes TNAF 649 1,514 2,283

• In prime case, Jacobian and Chudnovsky coordinates used because of
the largeI /M .

• Known-point multiplications were significantly faster in the Koblitz
and random prime cases.

17

Timings (in µs) for k P + l Q in ECDSA signature verification

Curve Memory
type constrained? Fastest method NIST curve

P-192 P-224 P-256
Random No Interleave ({6, 5}-NAF) 938 1,374 2,250
prime Yes Interleave ({3, 3}-NAF) 1,064 1,562 2,562

B-163 B-233 B-283
Random No Interleave ({6, 4}-NAF) 1,466 3,582 5,385
binary Yes Interleave ({3, 3}-NAF) 1,683 4,206 6,274

K-163 K-233 K-283
Koblitz No Interleave ({6, 5}-TNAF) 792 1,731 2,548
binary Yes Interleave ({3, 3}-TNAF) 1,034 2,380 3,509

• Smaller differences in Koblitz binary and random prime times for

k P+ l Q (Q not known a priori); both faster than random binary.

18

Timings (in µs) of the fastest methods for point multiplicationk P
and for k P + l Q (P fixed and Q not known a priori) on P-192

Point multiplication Field arithmetic Barretta Field arithmetic
method primarily in asm reduction primarily in C

For k P:
Fixed-base comb (w = 4) 280 500 624
Interleave ({3, 3}-NAF) 500 938 1,250

For k P+ l Q:
Interleave ({6, 5}-NAF) 938 1,720 2,220
Interleave ({3, 3}-NAF) 1,064 1,906 2,468
aFast reduction is replaced by an assembler version of Barrett.

• Barrett column can be interpreted as rough timings for ECDSA

operations over a random 192-bit prime.

• Significant performance improvements from asm coding in field ops.

19

4. Using efficient endomorphisms

GLV observed that an endomorphism may be used to reduce the number

of doubles (even if a Koblitz-like expansion is not efficient).

Example (WAP)

• Let p ≡ 1 (mod 3), E : y2 = x3 + b, and letβ ∈ Fp be an element

of order 3.

• φ : (x, y) 7→ (βx, y) is an endomorphism.

• Computingφ requires only 1 field multiplication.

• |φ| = 1.

1. Gallant, Lambert, and Vanstone. Faster point multiplication on elliptic curves with

efficient endomorphisms, 1999.

2. Park, Jeong, and Kim. An alternate decomposition of an integer for faster point
multiplication on certain elliptic curves, 2001.

20

Using efficient endomorphisms (2/2)

Basic idea:

• Let G ∈ E(Fp) be a point of prime ordern.

• φ acts on〈G〉 by multiplication:φP = λP, whereλ is a root

(modulon) of the characteristic polynomial ofφ. (λ2+ λ ≡ −1

(mod n) in the example.)

• To computek P:

– Write k ≡ k1 + k2λ (mod n) whereki ∈ [0,√n]. (This can be

done efficiently.)

– k P = k1P+ k2λP = k1P+ k2φ(P), which can be computed via

interleaving.

• Approx half the doubles are eliminated. Cost of findingki negligible.

21

Timings for the WAP curve

• p = 2160− 229233; curvey2 = x3+ b overFp with approx 2160

points.

Method Time
For l Q, Q unknown:

Binary 648
Interleave usingφ 480
Interleave usingφ & 4-NAF 385

For k P+ l Q:
Interleave ({6, 4}-NAF) 625
Interleave using comb,φ & 4-NAF 505

• Fast reduction.

• Less useful onk P if precomputation can be used.

• Comb method onk P can be effectively combined with the GLV
method onl Q.

• Findingk ≡ k1+ k2λ is 0.7% of the time for performingk P.

22

5. Point halving for curves over binary fields

• Doubling in affine: seek 2P = (x2, y2) from P = (x, y).

Let λ = x + y/x. Calculate:

x2 = x2+ b/x2

y2 = x2+ λx2 + x2

(2 mul, 1 mul byb, 1 inv)

or

x2 = λ2+ λ+ a

y2 = x2+ λx2+ x2

(2 mul, 1 inv)

• Halving: seekP = (x, y) from 2P = (x2, y2). Basic idea: solve

x2 = λ2+ λ+ a for λ

y2 = x2+ λx2 + x2 for x

1. E. Knudsen, Elliptic scalar multiplication using point halving, Asiacrypt ’99.

2. R. Schroeppel, Elliptic curve point ambiguity resolution apparatus and method, patent

application, 2000.

23

Facts

1. Trace(c) = c+ c2 + · · · + c2m−1 ∈ {0,1}.
2. The NIST random binary curves all have Trace(a) = 1.

Trace(x(kG)) = Trace(a) for generatorG.

Halving for the trace 1 case

1. Solve
λ̂2 + λ̂ = x2+ a

obtaininĝλ = λ or λ̂ = λ+ 1.

2. Sincey2 = x2+ λx2 + x2, consider

x̂2 = (̂λ+ 1)x2+ y2

Trace(x2) = Trace(x) = Trace(a) = 1, so Trace((̂λ+ 1)x2+ y2)

identifiesλ.

3. Findx = √x2(λ+ 1)+ y2.

24

Halving: (x2, y2)→ (x, λ = x + y/x) where 2(x, y) = (x2, y2); y may

be recovered via

λx = x2 + y H⇒ y = λx + x2 (≈ 1 field mult)

Algorithm (point halving) Input:(x2, λ2) or (x2, y2). Output:

(x, λ = x + y/x) where 2(x, y) = (x2, y2).

Steps Cost
1. Solvêλ2+ λ̂ = x2 + a for λ̂. ≈ 3/4 field mult
2. FindT = x2(̂λ+ λ2 + x2+ 1) ≈ 1 field mult

or T = x2(̂λ+ 1)+ y2

3. If Trace(T) = 1 thenλ = λ̂, x = √T Trace≈ free
elseλ = λ̂+ x2, x = √T + x2. root≈ 1/2 field mult

4. Return(x, λ).

Conversion to affine(x, λ)→ (x, y) is≈ 1 field mult.

(Doubling in projective≈ 4 field mults.)

25

Calculating k P by double-and-add and halve-and-add

Algorithm (double-and-add, right to left) Input: pointP and scalark.

Output:k P.

1. Q← 0.

2. Fori from 0 to logk do

2.1 If ki = 1 thenQ← Q+ P.

2.2 P← 2P.

3. Return(Q).

• Double-and-add is easily converted to left-to-right.

• Window NAF methods reduce the number of additions.

26

Algorithm (halve-and-add, right to left) Input: pointP and scalark.

Output:k P.

1. (Precomputation) Solve quadratic equations (44 field elements for

B-163). Build table of 16 or 64 multiples of
√

x.

2. (Transformk) Solve

k = kt 2
t + · · · + k0 = k′t/2t + · · · + k′1/2+ k′0 (mod n)

for k′; i.e.,

2t k modn = k′02t + · · · + k′t

3. Q← 0.

4. Fori from 0 to t do

4.1 If k′i = 1 thenQ← Q+ P.

4.2 P← P/2.

5. Return(Q).

27

Timings for B-163
Field operations

multiplication 1.06
inversion 10.05
I /M 9.5
sqrt (16-point table) 0.63
sqrt64 (64-point table) 0.46
solve QE 0.89

Curve operations
halve with sqrt 2.24
halve with sqrt64 2.16

Scalar multiplication k P
Montgomery 1203
halving with NAF and sqrt 1057
halving with NAF and sqrt64 1011
4-NAF 1178
Comb (known-point,w=5) 480

1. Conversion(x, λ) to affine (costing≈ 1 field mult) is done only when
a point addition is required.

2. Halving is 12–16% faster than Montgomery, but requires storage for
at least 60 field elements.

3. Halve-and-add can use NAF to reduce the number of additions.

4. Halving operates on(x, λ) or (x, y), not on projective reps.
Algorithm is right-to-left.

5. Halving could be used efficiently in left-to-right algs ifI /M small.

28

6. Optimal Extension Fields (OEF)

Bailey and Paar, CRYPTO ’98 and J. Cryptology 2001.

• Fpm = Fp[x]/(f) for p = 2n ± c, logc ≤ n/2, and f = xm− ω
irreducible.

• Type 1:c = 1; e.g.,m= 6, p = 231− 1, f = x6− 7.
Type 2:ω = 2; e.g.,m= 5, p = 232− 5, f = x5− 2.

• p can be chosen to fit in a single machine word, andFpm arithmetic
can be performed via operations in theFp. Field inversion is fast
compared with that inFq if prime q ≈ pm.

• Subfield multiplication: forp = 2n − c, to findab mod p,

ab= d12n + d0 ≡ d1c+ d0

d1c = e12n + e0 ≡ e1c︸︷︷︸
f0

+e0

soab = d0 + e0+ f0 mod p. (Type 1 preferable here.)

29

Multiplication in OEFs

C(x) = A(x)B(x) =
∑

i+ j<m

Ai Bj x
i+ j +

∑
i+ j>m

Ai Bj x
i+ j−m

• xm ≡ ω, soC(x) =∑Ckxk where

Ck =
k∑

i=0

Ai Bk−i + ω
m−1∑

i=k+1

Ai Bm+k−i

• Expensive to perform the reductions in the subfield ops.

• Bailey and Paar present a Karatsuba-style method to trade mults for
additions. Form= 6, 36 subfield mults and 25 adds are replaced by
18 mults and 59 additions.

• Fastest: calculateCk with a multiply-and-accumulate strategy using 2
or more registers, minimizing reductions. Multiplication similar to
that forFq for q ≈ pm with fast reduction.

• Type 2 (ω = 2) preferable here.

30

Comparisons among field operations

OEF:m= 6 OEF:m= 5
Fp192 p = 231− 1 F2163 p = 232− 5

add .055 .050 .032 .048
mul .350 .334 1.058 .250
inv 21.062 2.672 10.048 1.672
I /M 60 8.0 9.5 6.7
F2163 almost entirely in C; others use assembler.

• I /M determines if projective coordinates are preferred for curve

arithmetic. For curves over odd characteristic fields:

affine projective

double I+2M+2S 4M+4S

add I+2M+S 8M+3S (mixed)

31

Inversion in OEFs (Itoh & Tsujii)

Given A ∈ Fpm andr = pm−1
p−1 = pm−1+ · · · + p+ 1, find

A−1 = (Ar)−1Ar−1.

Steps

1. ComputeAr−1 = Apm−1+···+p.

2. Ar = Ar−1 A ∈ Fp.

3. Findc = (Ar)−1 in Fp.

4. A−1 = cAr−1.

Remarks

• Steps 1 and 3 appear to be the expensive calculations.

• Step 2 is not a full field multiplication.

• Step 3 is inversion inFp, which is relatively fast.

• Step 1 can be done with a few field multiplications.

32

Cost of inversion in OEFs

1. Havem | p− 1 where f (x) = xm − ω. Then

Apj = a0 + a1x pj + · · · + am−1x(m−1)pj

and

(xi)pj ≡ ωqxi (mod f (x))

2. Use of an addition chain findsAr−1 in blog(m− 1)c + H(m− 1)− 1

multiplications andblog(m− 1)c + H(m− 1) applications of the

Frobenius map.

3. Example:m= 5, r−1= p4+p3+p2+p = [(p+1)(p2)+ (p+1)]p.

Ar−1 = ((A · Ap)p2 · (AAp))p (2 mul, 3 Frobenius)

33

Cost of inversion in OEFs (2/2)

4. Use binary EEA to find(Ar)−1 in Fp, requiring≈ 40% of the total

time for inversion.

5. Lim and Hwang favor an EEA-like inversion alg. Their subfield

inversion appears very fast; however, their field inversion times are

slower.

1. Daniel V. Bailey and Christof Paar. Optimal extension fields for fast arithmetic in
public-key algorithms, CRYPTO ’98.

2. Daniel V. Bailey and Christof Paar. Efficient arithmetic in finite field extensions with

application in elliptic curve cryptography, J. Cryptology, 2001.

3. Chae Hoon Lim and Hyo Sun Hwang. Fast implementation of elliptic curve arithmetic
in GF(pn).

34

Comparisons among point operations

OEF:m= 6 OEF:m= 5
P-192 p = 231− 1 K-163 p = 232− 5

double 3.2 (22.8)a 3.0 (4.3)a 5.4 (12.8)a 2.3 (3.0)a

add 4.1 (22.6)a 4.3 (4.0)a 10.2 (13.0)a 3.1 (2.8)a

k P 280 235 385 156
k P+ l Q 938 813 792 546

aAffine coordinates.

• Affine addition faster than projective.

• Müller (Efficient point multiplication for elliptic curves over special

optimal extenstion fields) combines the ideas of GLV and OEF.

• Kobayashi et. al (Fast elliptic curve algorithm combining frobenius

map and table reference to adapt to higher characteristic, Eurocrypt

’99) present Koblitz-like speedups.

35

7. Questions

• What’s I /M on this platform? Can halving be applied more widely?

• Code for binary fields written almost entirely in C. How much can be

obtained by coding in assembler?

• The Pentium II/III has wide registers (the “multimedia” and

floating-point) which can be exploited.

36

