Performance comparisons of elliptic curve systems in
software

Kenny Fong University of Waterloo
Auburn University, USA

University of Valle, Colombia

Darrel Hankerson
Julio Lopez
Alfred Menezes
Matt Tucker

University of Waterloo
University of Waterloo

October 2001

Goals
1. Do balanced comparisions.

2. Questions:

(a) Which is faster, ECC ovétp or overFom?

(b) How much faster is ECC ovétp in assembler than in C?

(c) How much faster is ECC over NIST primes versus random
primes?

(d) How much faster is ECC over Koblitz curves versus random
curves oveirom?

(e) Is ECC over OEFs significantly faster?

(f) Can point halving be used effectively?

(g) Performance when memory is constrained versus unconstraing

d?

Outline
1. Operations in ECDSA.
2. Platform characteristics.

3. The NIST curves.
3.1 Random binary and Koblitz.
3.2 Random prime.

4. Using efficient endomorphisms (GLV).
5. Point halving.

6. Optimal Extension Fields.

1. Elliptic curve digital signature algorithm (ECDSA)

e SignerA has domain parameteBs = (q, FR, a, b, G, n, h), private
keyd, and public keyQ = dG. B has authentic copies @ and Q.

e To sign a messagm, A does the following:
1. Select a random integkrfrom [1, n — 1].
2. ComputekG = (X1, y1) andr = x1 modn.
3. Computee = SHA-1(m).
4. Computes = k~1{e+ dr} modn.
5. A’s signature for the messageis (r, S).

e The computationally expensive operation is the scalar multiplicatid
kG in step 2, for a poinG which is known a priori.

n

ECDSA

e To verify A’s signature(r, s) onm, B does:
1. Verify thatr ands are integers iffil, n — 1].
. Computes = SHA-1(m).
. Computew = s~ modn.
Computeu; = ew modn anduz = rw modn.
Computau1G + u2Q = (X1, y1).
Computev = x1 modn.
7. Accept the signature if and onlyif=r.

oo s W N

e The computationally expensive operation is the scalar multiplicatid
u1G andu2Q in step 5, where onlys is known a priori.

NS

Optimizing ECC

Elliptic Curve Digital Signature
Algorithm (ECDSA)

Random number Big number and Curve

generation modular arithmetic arithmetic
B field
arithmetic

Once the field (e.g., prime or binary) and curve (e.g., random or Koblit;
are selected, speed depends largely on

1. field operations, and
2. efficient curve operations.

Big number routines (e.g., in Koblitz-adic NAF) are of less importance.

~—

2. Pentium lI/1ll characteristics

%

XOr €cx, ecx
e Original Pentium used a dual pipeline. e

o 8registers (excluding flags, segment, floating point, and MMX).
Integer multiplication 3% 32 — 64 bits must usa andd.

e Faster multiplication than original Pentium and MMX (latency 4 vs
and throughput of 1 vs 1/9).

e Better branch prediction than the original Pentium, but
mispredictions are more expensive.

mov eax, [esi+4]

Compilers
e Microsoft C selected for historical reasons. Appears to give better

(pipeline-friendly) sequences compared with GNU C.

e Does not honor “register” declaration, and its register allocation
strategy can be weak.

e Does not process 3232 — 64 bit multiplication consistently.
e Assembler coding essential for odd characteristic fields.

7

3. NIST Recommended Elliptic Curves

e Collection of elliptic curves recommended for use with ECDSA by
the US Federal Government.

¢ Recommended fields:

Block cipher Fp Fom
key length Block cipher |p| m
80 SKIPJACK 192 163
112 3-DES 224 233
128 AES Small 256 283
192 AES Medium 384 409
256 AES Large 521 571

Recommended Curves ovelf
Recommended Curves oveFom

e y2 = x3—3x + b, curves randomly generated and have prime ord¢r.
e Koblitz curves:

Curve Primep

p-192 392_264_1

P-224 #2429 41

p-256 256 2224, 5192 296 _ 1
P-384 384_p128_ 096 732
p-521 221_1

K-163 y? +xy = x> + x? + 1 overF s, cofactor 2
f=x188 4 x"+x6+x34+1

K-233 y? + xy = x> + 1 overF s, cofactor 4
f=x234 x4 41

K-283 y?+xy=x3+1 overlF,zg3, cofactor 4
f=x2831 x12 4 x7" 4 x5+1

K-409 yZ + Xy = x3 + 1 overF s, Cofactor 4 e The form of the prime (or reduction poly in binary case) makes
f=x%094 %8741 reduction fast; e.g.,
K571 y24+xy=x3+1 overlF,s71, cofactor 4 Algorithm ([Solinas] fast reduction modulp = 2192 — 264 _ 1)
f=x"14x104 x5 4 x2 41 INPUT: Integerc = (cs, C4, C3, C2, C1, Cg). OUTPUT: ¢ mod p.
e Randomly-generated curves{R63, 233, 283, 409, 5F7bver each of 1. Define 192-bit integerss; = (cp, €1, Cg), S = (0, 3, C3),
these fields, each with cofactor g2 + xy = x3 + x% + b. 3 = (C4, €4, 0), 54 = (Cs, C5, C5).

2. Return§; + s + s3 + 54 mod p).

Binary Field Arithmetic

- _ _ Prime Field Arithmetic
e Timings (inus) on a 1000 MHz Pentium I11.

Foi63 Foo3z3 Fooss e Compare fast reduction with Barrett:

Addition 0032 0039 0.041 Algorithm (Barrett reduction)
Modular reduction 0.081 0.094 0.145 INPUT: b > 3,k = [logy pJ + 1, < b%, 1u = [b%/p].
Multiplication (including reduction) OuTPUT: X mod p.
Shift-and-add 6.11 9.66 13.25 1. § <« [|x/bK= 1) okt
LR comb with windows of size4 1.06 1.92 2.40 2. 1 < (x modbk*t1) — (§ - p modbk+l).
Karatsuba 149 269 3.13 3. Ifr < Othenr < r + bX+1,
Squaring 019 024 031 4. Whiler > pdo:r < r — p.
Inversion 10.0 17.4 245 5. Returnf).

Inversion / Multiplication 9.5 9.1 10.2

e b can be chosen to correspond to machine word size.
e Addition in the binary case is especially simploR).

e Squaring is by 8-to-16-bit table-lookup.
e Code isin C, except for one operation (bit scan) in inversion.

e Operations are relatively simple, apdcan be calculated once per
field, but Barrett is still much slower.

10 12

Timings (in us) for operations in the NIST prime fields

a
F P192 F P192 F P224 F P256

Addition 0.145 0.055 0.062 0.071
Subtraction 0.149 0.054 0.061 0.068
Modular reduction

Barrett reduction 1.606 0.413 0.525 0.638

Fast reduction 0.191 0.097 0.122 0.256
Multiplication (including fast reduction)

Classical 0631 0350 0456 0.681

Karatsuba 1481 0.825 1.100 1.413
Squaring (including fast reduction)

Classical — 0.300 0.394 0.600

Handbook 0.969 0425 0544 0.794
Inversion 48.8 21.1 28.4 36.8
Inversion / Multiplication 77 60 62 54

aCoded primarily in C.PUses a 3% 32 multiply-and-add. SUses a 3% 32 multiply.

e Some assembler coding is essential. MSC has relatively poor regi
allocation strategy.

e Barrett reduction does not use the special form of the prime.

13

Elliptic Curve Arithmetic

e Coordinate choices: affine vs various projective reps. Op counts:
Doubling Addition (mixed)

Binary fields
Affine 11, 2m 11, 2Mm
Projective(X/Z,Y/Z?) aM 8M
Prime fields
Affine 11, 2M, 2S 11, 2M, 1S
Projective(X/Z2,Y/Z3) 4M, 4S 8M, 3S

e Many variants of simple double-and-add algorithmKeét.
— P fixed vs P not known a priori.
— Choices may be subject to memory constraints.

— Signed-digit reps fok reduce the number of point additions in
k P. Windowing methods.

— Replace doubling by halving in the binary case.
— Replace doubling by other efficiently-computable maps.

Comparison of timings for the prime and binary fields

Fpigy Tote3 | Fpppy Fpoas | Fpyse Fpoes
Addition 0.055 0.032| 0.062 0.039| 0.071 0.041
Modular reduction 0.097 0.081| 0.122 0.094| 0.256 0.145
Multiplication 0.350 1.058| 0.456 1.923| 0.681 2.403
Squaring 0.300 0.185| 0.394 0.238| 0.600 0.312
Inversion 21.1 10.0 | 284 17.4 | 36.8 24.5
Inversion / Mult 60.2 9.5 62.4 9.1 541 10.2

e Squaring is very fast in the binary case, but only 14% faster in the
prime case.

o | /M differs significantly.

15

14

Koblitz curves

e LetE : y? 4+ xy = x3 + ax? + 1 be an elliptic curve defined ovEp.
e (Frobenius map) Let : (x,y) — (X2, y?). 12+ 2= (=11 2.
e To computek P for P in the main subgroup dE (IFom):

— Computek’ = k mod (z™ — 1)/(z — 1) in Z[].

— Compute a-adic expansion of, Y"'_, ¢ t', wheret ~ m and
¢ € {0, 1}.

—kP=KP=Y}_,c7 P,

o Width-w r-adic NAFs reduce the number of point additions.

J. Solinas, Efficient arithmetic on Koblitz curves. Designs, Codes and Cryptograghy,
2000.

16

Timings (in us) for kP, P fixed, in ECDSA signature generation

Curve Memory
type constrained? NIST curve
P-192 P-224 P-256
Random No Fixed-base comb£4,x2) 280 406 686
prime Yes Interleave(8, 3}-NAF) 500 780 1,250
Yes Binary NAF Jacobian 874 1,312 2,156
B-163 B-233 B-283
Random No Fixed-base comb£5) 480 1,178 1,803
binary Yes Interleave(8, 3}-NAF) 817 2,068 3,125
Yes Montgomery 1,203 3,006 4,520
K-163 K-233 K-283
Koblitz No Fixed-base TNAFy=6) 385 842 1,226
binary Yes TNAF 649 1,514 2,283

e In prime case, Jacobian and Chudnovsky coordinates used becau
the largel /M.

o Known-point multiplications were significantly faster in the Koblitz
and random prime cases.

Fastest method

5e of

17

Timings (in us) for kP 4+ 1 Q in ECDSA signature verification

Curve Memory

type constrained? Fastest method NIST curve
P-192 P-224 P-256
Random No Interleave 6, 5}-NAF) 938 1,374 2,250

Interleave(B, 3}-NAF) 1,064 1,562 2,562
B-163 B-233 B-283
Interleave 6, 4}-NAF) 1,466 3,582 5,385
Interleave(8, 3}-NAF) 1,683 4,206 6,274
K-163 K-233 K-283
Interleave {6, 5}-TNAF) 792 1,731 2,548
Interleave(B, 3}-TNAF) 1,034 2,380 3,509

prime Yes

Random No
binary Yes

Koblitz No
binary Yes

o Smaller differences in Koblitz binary and random prime times for
kP +1Q (Q not known a priori); both faster than random binary.

18

Timings (in us) of the fastest methods for point multiplicationk P
and for kP + 1 Q (P fixed and Q not known a priori) on P-192

Point multiplication Field arithmetic ~ Barrétt Field arithmetic

method primarily inasm reduction primarily in C
For kP:
Fixed-base combuf = 4) 280 500 624
Interleave (3, 3}-NAF) 500 938 1,250
ForkP +1Q:
Interleave (6, 5}-NAF) 938 1,720 2,220
Interleave (3, 3}-NAF) 1,064 1,906 2,468

@Fast reduction is replaced by an assembler version of Barrett.

e Barrett column can be interpreted as rough timings for ECDSA
operations over a random 192-bit prime.

e Significant performance improvements from asm coding in field ofs.

19

4. Using efficient endomorphisms

GLV observed that an endomorphism may be used to reduce the numbper
of doubles (even if a Koblitz-like expansion is not efficient).

Example (WAP)
e Letp=1 (mod 3, E:y?>=x3+b,andlet € Fp be an element
of order 3.
e ¢:(X,¥) — (BX,Yy)is an endomorphism.
e Computinge requires only 1 field multiplication.
o lpl=1.

1. Gallant, Lambert, and Vanstone. Faster point multiplication on elliptic curves with
efficient endomorphisms, 1999.

2. Park, Jeong, and Kim. An alternate decomposition of an integer for faster point
multiplication on certain elliptic curves, 2001.

20

Using efficient endomorphisms (2/2)

Basic idea:

e LetG e E(Fp) be a point of prime orden.

e ¢ acts on(G) by multiplication: ¢ P = AP, wherex is a root
(modulon) of the characteristic polynomial gf. (A2 + 1 = —1
(mod n) in the example.)

e To computek P:

— Write k = k1 + koA (mod n) wherek; € [0, ./n]. (This can be
done efficiently.)

— kP =Kk1P + koA P = k1 P + ko (P), which can be computed via]
interleaving.

e Approx half the doubles are eliminated. Cost of findikngnegligible.

5. Point halving for curves over binary fields

e Doubling in affine: seek P = (x2, y2) from P = (X, y).
Let) = x + y/x. Calculate:

Xo = X2 + b/x? Xo=A%+1+a
Yo = X2 4 AX2 + X2 or yo=xX24+ X2+ X2
(2 mul, 1 mul byb, 1 inv) (2 mul, 1inv)

e Halving: seekP = (x, y) from 2P = (X2, y»). Basic idea: solve

Xo=A2+x1+a for A
Yo = X2+ AXo 4+ X2 forx

1. E. Knudsen, Elliptic scalar multiplication using point halving, Asiacrypt '99.

2. R. Schroeppel, Elliptic curve point ambiguity resolution apparatus and method, paf
application, 2000.

PNt

21

23

Timings for the WAP curve
o p=2%0_229233; curvey? = x3 + b overF, with approx 2°

points.
Method Time
For IQ, Q unknown:
Binary 648
Interleave using 480
Interleave using & 4-NAF 385
ForkP +1Q:
Interleave {6, 4}-NAF) 625

Interleave using comlg; & 4-NAF 505

e Fast reduction.

Less useful ok P if precomputation can be used.

e Comb method ok P can be effectively combined with the GLV
method o Q.

e Findingk = ky + koA is 0.7% of the time for performingP.

Facts
1. Tracdc) =c+c2+---+c2" €10, 1).

2. The NIST random binary curves all have Tréme= 1.
Tracex(kG)) = Tracga) for generatoiG.

Halving for the trace 1 case

1. Solve
22 —I—’):: X2+ a

obtainingx = A orx = A + 1.
2. Sincey, = x2 4 Ax2 + X2, consider
=G+ Dxe+ Y2

Tracgx?) = Tracex) = Trac€a) = 1, so Trace(’): + Dx2 + y2)
identifiesa.

3. Findx = /X2(A + 1) + yo.

22

24

Halving: (X2, y2) — (X, A = X + y/X) where 2X, y) = (X2, ¥2); y may
be recovered via

AX=X24+y = y=ax+x> (1 field mult)

Algorithm (point halving) Input:(x2, A2) or (X2, y2). Output:
(X, A = X + y/x) where Zx, y) = (X2, ¥2).

Steps Cost
1. Solver? + 7 = xp + afor A, ~ 3/4 field mult
2. FindT = xo(h + A2+ %2 + 1) ~ 1 field mult

orT =x(h+1)+ V>
3. If TracgT) = 1 thenx =7, X =+/T | Trace~ free

elser = & + Xo, X = /T + Xa. root~ 1/2 field mult
4. Returrix,).

Conversion to affinéx, A) — (X, y) is~ 1 field mult.
(Doubling in projectivex 4 field mults.)

25

Algorithm (halve-and-add, right to left) Input: poift and scalak.
Output:k P.

1. (Precomputation) Solve quadratic equations (44 field elements fol
B-163). Build table of 16 or 64 multiples qf'x.

2. (Transfornk) Solve
k=k2'+ -+ ko=k{/2' +--- +K;/2+ky (modn)
fork'; i.e.,
2'k modn = ky2' +--- + K
3. Q«0.
4. Fori from 0 tot do
4.1 Itk = 1thenQ < Q + P.

Calculating k P by double-and-add and halve-and-add

Algorithm (double-and-add, right to left) Input: poift and scalak.
Output:k P.

1. Q «0.
2. Fori from 0 to logk do

2.1 Ifki = 1thenQ < Q + P.
2.2 P < 2P.

3. ReturriQ).

e Double-and-add is easily converted to left-to-right.
e Window NAF methods reduce the number of additions.

26

42 P <« P/2.
5. ReturQ).
27
Timings for B-163 Curve operations
Field operations halve with sqrt 2.24
multiplication 1.06 halve with sqrt64 2.16
inversion 10.05 Scalar multiplication kP
/M 9.5 Montgomery 1203
sqrt (16-point table) 0.63 halving with NAF and sqrt 1057
sqrt64 (64-point table) 0.46 halving with NAF and sqrt64 1011
solve QE 0.89 4-NAF 1178

Comb (known-pointw=5) 480

1. Conversior(x, A) to affine (costinge 1 field mult) is done only when
a point addition is required.

2. Halving is 12-16% faster than Montgomery, but requires storage fpr
at least 60 field elements.

3. Halve-and-add can use NAF to reduce the number of additions.

4. Halving operates o(x, A) or (X, y), not on projective reps.
Algorithm is right-to-left.

5. Halving could be used efficiently in left-to-right algsl ifM small.

28

6. Optimal Extension Fields (OEF)

Bailey and Paar, CRYPTO '98 and J. Cryptology 2001.

o Fpm =Fp[x]/(f)for p=2"+c, logc <n/2,andf =x" —w
irreducible.

e Typelic=1eg.m=6,p=21-1f=x8-7.

Type 2:w =2;e.0.m=05p=2%_5f =x°>—2,

e pcan be chosen to fit in a single machine word, Bpd arithmetic
can be performed via operations in thg. Field inversion is fast
compared with that iffq if prime q ~ p™.

o Subfield multiplication: forp = 2" — ¢, to findab mod p,

ab=d;2"+dg=dic+do
dic=e2"+e = ec +&
——

fo

soab=dy + ey + fo mod p. (Type 1 preferable here.)

29

Multiplication in OEFs
Cx)=AXBX) = > ABX™+ Y AT

i+j<m i+j>m

o XM= w, s0C(X) = Y CkxX where

k m—1
Ck=) ABki+o) AbBmui
i=0 i=k+1

e Expensive to perform the reductions in the subfield ops.

o Bailey and Paar present a Karatsuba-style method to trade mults f

additions. Fom = 6, 36 subfield mults and 25 adds are replaced b
18 mults and 59 additions.

e Fastest: calculat€x with a multiply-and-accumulate strategy using
or more registers, minimizing reductions. Multiplication similar to
that forFFq for g ~ p™ with fast reduction.

e Type 2 @ = 2) preferable here.

pr

NJ

30

Comparisons among field operations

OEFm=26 OEF:m=>5
Fplgz p= 2811 lees pP= 232_5
add .055 .050 .032 .048
mul .350 334 1.058 .250
inv 21.062 2.672 10.048 1.672
/M 60 8.0 9.5 6.7

IF,163 almost entirely in C; others use assembler.

e | /M determines if projective coordinates are preferred for curve
arithmetic. For curves over odd characteristic fields:

affine projective
double 1+2M+2S 4M+4S
add [+2M+S 8M+3S (mixed)

31

Inversion in OEFs (Itoh & Tsujii)

GivenA € Fpm andr = % =p™14... 4 p+1,find

A—l — (AI’)—lAI’—l.

Steps
1. ComputeA —1 = AP™ 4P,
2. A = A-1A€eF,
3. Findc = (A)tinFp.
4, Al =cA 1.
Remarks

e Steps 1 and 3 appear to be the expensive calculations.
e Step 2 is not a full field multiplication.

e Step 3is inversion if¥ p, which is relatively fast.

e Step 1 can be done with a few field multiplications.

32

Cost of inversion in OEFs
1. Havem | p — 1 wheref (x) = x™ — w. Then
Apj =ag + a]_ij 4.4+ am_lx(m_l)pj

and .
oHP =% (mod f(x))

2. Use of an addition chain find& —1 in llogfm—1)]+ HmM-1) -1
multiplications and log(m — 1)| + H(m — 1) applications of the
Frobenius map.

3. Examplem = 5,r —1 = p*4+p3+p?+p = [(p+D(p?) + (p+D)1p.

A1 — (A- AP)P* . (AAP)P (2 mul, 3 Frobenius)

33

Cost of inversion in OEFs (2/2)

4. Use binary EEA to findA")~1in Fp, requiring~ 40% of the total
time for inversion.

5. Lim and Hwang favor an EEA-like inversion alg. Their subfield
inversion appears very fast; however, their field inversion times are
slower.

1. Daniel V. Bailey and Christof Paar. Optimal extension fields for fast arithmetic in
public-key algorithms, CRYPTO '98.

2. Daniel V. Bailey and Christof Paar. Efficient arithmetic in finite field extensions withj
application in elliptic curve cryptography, J. Cryptology, 2001.

3. Chae Hoon Lim and Hyo Sun Hwang. Fast implementation of elliptic curve arithmegi

in GF(p").

34

c

Comparisons among point operations

OEF-m=6 OEF:m=5
P-192 p=281_-1 K-163 p=232_5
double 32(22.8 3.0(43% | 54(128% 2.3(3.0F
add 41226 43(40f | 10.2(13.0f 3.1(2.8}
kP 280 235 385 156
kP+1Q 938 813 792 546

2Affine coordinates.
o Affine addition faster than projective.

o Miller (Efficient point multiplication for elliptic curves over special
optimal extenstion fields) combines the ideas of GLV and OEF.

o Kobayashi et. al (Fast elliptic curve algorithm combining frobenius
map and table reference to adapt to higher characteristic, Eurocrypt
'99) present Koblitz-like speedups.

35

7. Questions
e What's| /M on this platform? Can halving be applied more widely

e Code for binary fields written almost entirely in C. How much can e
obtained by coding in assembler?

e The Pentium II/lll has wide registers (the “multimedia” and
floating-point) which can be exploited.

36

