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Abstract. We present an algorithm for generating elliptic curves of
prime order over Optimal Extension Fields suitable for use in cryptog-
raphy. The algorithm is based on the theory of Complex Multiplication.
Furthermore, we demonstrate the efficiency of the algorithm in practice
by giving practical running times. In addition, we present statistics on
the number of cryptographically strong elliptic curves of prime order for
Optimal Extension Fields of cardinality (232 + c)5 with c < 0. We con-
clude that there are sufficiently many curves in this case.
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1 Introduction

Since their proposal for use in cryptography about 15 years ago ([Kob87], [Mil86]),
elliptic curve cryptography has gained a lot of attention in the cryptographic
community due to their short key lengths. However, as of today, only two families
of finite fields have found consideration in practice: Finite fields of characteristic
2 and finite prime fields of large characteristic. Algorithms to find elliptic curves
for use in cryptography are well known for both families of fields.

Recently, a new type of finite fields was proposed for use in practice: Optimal
Extension Fields ([BP98], [BP01]). Optimal Extension Fields consider the hard-
ware in use (i.e. the word size of the processor) and thus yield an efficient way
of implementing finite field arithmetic, especially the inversion. As the inversion
is the most time-consuming step for adding points on elliptic curves over finite
fields, Optimal Extension Fields have the potential to be considered as a third
family of finite fields for elliptic curve cryptography.

In order to decide whether an elliptic curve is suitable for use in cryptography,
we have to know its group order. However, when choosing random curves and
using the efficient point counting algorithms, we have to choose a couple of curves
before finding a suitable one. This turns out to be rather slow. Hence, we make
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use of the Complex Multiplication Theory to find suitable elliptic curves over
Optimal Extension Fields. Due to security reasons we restrict to elliptic curves
of prime order. We will develop a closed algorithm solving this task.

Processors of word size 32-bit play a crucial role in practice. Hence, we will
show that our algorithm is very fast in this case. Let p be a 32-bit prime with
232 − p < 216. Our algorithm finds a cryptographically strong elliptic curve of
prime order over an Optimal Extension Field IFp5 in about 22 seconds using
an ordinary PC. In addition, we present data on the number of suitable elliptic
curves over Optimal Extension Fields of the form IFp5 . We conclude that, for
fields of this form, their quantity is sufficiently large.

The paper is organized as follows: In the next section we review the basic
definitions of Optimal Extension Fields and elliptic curves suitable for use in
cryptography. We present our generating algorithm in Sect. 3. Finally, in Sect. 4
we present sample running times of our implementation and discuss statistics on
the number of elliptic curves of prime order over fields of the form IFp5 with a
32-bit prime p.

2 Elliptic Curves over Optimal Extension Fields

We review the definition and some properties of Optimal Extension Fields and
elliptic curves. Furthermore, we list the conditions on elliptic curves suitable for
use in cryptography. Let us first turn to Optimal Extension Fields.

Definition 1. Let c be a rational integer, and let p = 2n + c be prime with
n ∈ IN. Furthermore, assume |c| ≤ √2n, and let m ∈ IN. If there is a ω ∈ IFp
such that the binomial Xm − ω is irreducible in IFp[X], then IFpm is called an
Optimal Extension Field.

The basic idea of introducing Optimal Extension Fields is to adapt the arith-
metic over finite extension fields to the hardware in use (see [BP98], [BP01]).
For instance, when implementing an elliptic curve cryptosystem on a 32-bit pro-
cessor, one may choose n = 32 and c < 0 such that 232 + c is prime. Hence, the
arithmetic in IFp fits in a word size. Furthermore, let ω be as in definition 1. We
represent IFpm as the factor ring IFp[X]/(Xm−ω) with respect to the polynomial
basis {1, X, X2, . . . , Xm−1}. Hence, in IFpm the identity Xm = ω holds, yielding
an easy reduction of Xk for k ≥ m.

Bailey and Paar [BP01] distinguish two special types of Optimal Extension
Fields: First, if |c| = 1, the according Optimal Extension Field is called a Type I
OEF. Second, if Xm − 2 is irreducible in IFp[X], they name the according field
Type II OEF. In this paper we do not make use of Type I OEFs.

In order to decide whether an irreducible binomial of degree m exists in
IFp[X] we make use of the following theorem, which we prove in [Bai01b].

Theorem 1. Let p and m be rational primes. For ω ∈ IF×p the following prop-
erties are equivalent:

1. The binomial Xm − ω is irreducible in IFp[X].
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2. m divides the order e of ω in IF×p , but not p−1
e .

3. We have m | p− 1 and ω
p−1
m 	≡ 1 mod p.

Using the property that IF×p is a cyclic group, the following corollary is an
easy consequence of property 3 in theorem 1.

Corollary 1. Let p and m be primes. There exists an irreducible binomial of
degree m in IFp[X] if and only if m | p− 1.

Next, we review a few basic facts concerning elliptic curves over finite fields
and define cryptographically strong ones. Let p be a prime number, p > 3, and let
q = pm with m ∈ IN. An elliptic curve over the field IFq is a pair E = (a, b) ∈ IF2

q

with 4a3 + 27b2 	= 0. A point on E is a solution (x, y) ∈ IF2
q of y2 = x3 + ax + b

or the point at infinity O obtained by considering the projective closure of this
equation. The set of points on E over IFq is denoted by E(IFq). It turns out that
E(IFq) carries a group structure with the point at infinity acting as the identity
element.

We call the elliptic curve E cryptographically strong if it satisfies the following
conditions: We have |E(IFq)| = k · r with a prime r > 2159 and a positive integer
k ≤ 4. The first requirement avoids generic attacks as the ρ-algorithm of Pollard,
while the second one is due to efficiency reasons. If m ≥ 2 and p ≥ 11 this
condition implies that E is not defined over IFp. In addition, in order to avoid
anomalous curves, the primes r and p are different. Finally, the order of q in the
multiplicative group IF×r is at least

⌈
2000

log2(q)

⌉
; hence, we exclude curves which are

amenable to the attack of Menezes, Okamoto, and Vanstone. An explanation of
either attack may be found in [BSS99].

In addition, the German Information Security Agency (GISA) requires the
class number of the maximal order containing the endomorphism ring of E to
be at least 200. Although there is no consensus on this requirement in the com-
munity, we take it into account for the following two reasons: First, in order
to provide curves for digital signatures being in conformance with the German
Digital Signature Act, we have to respect the requirements of the GISA. Second,
we want to show that our algorithm is not restricted to discriminants of small
class numbers. However, our algorithm is applicable to the case of small class
numbers either.

In this paper we focus on Optimal Extension Fields of the form p5 with a
32-bit prime p. The reason for the choice m = 5 is twofold. Due to a theorem
of Hasse we have |E(IFq)| ≈ q. Hence, in order to generate an elliptic curve of
prime order r with r ≈ 2160 we have to ensure m ≥ 5. Second, we restrict to
extension fields of prime degree as some of our sub-algorithms of section 3 are
very efficient in this case. However, the security implications of the Weil-descent
([GHS01]) on these curves are not yet clear. Nevertheless, the generalization to
composite m is easy.

We are not aware of any further efficient algorithm to find an elliptic curve
over an Optimal Extension Field of characteristic ≥ 5 respecting all these re-
quirements. Although the Schoof-Elkies-Atkin (SEA) algorithm is polynomial
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time for arbitrary finite fields and efficiently implemented for Optimal Exten-
sion Fields, it turns out to be much slower in practice. The main reason is that
we have to choose a number of curves and determine their cardinalities before
finding a suitable one. Furthermore, the very efficient Satoh-algorithm for fields
of characteristic 2 ([FGH01]) does not apply to Optimal Extension Fields.

3 The Generating Algorithm

Our generating algorithm oefCurve, presented at the end of this section, makes
use of the theory of Complex Multiplication. A good reference of this theory in
the scope of elliptic curve cryptography may be found in [AM93], [LZ94], and
[BB00]. We sketch the most important theory used in our algorithm. A central
term is that of an imaginary quadratic discriminant, which is a negative integer
∆ congruent 0 or 1 modulo 4. Our aim is to find a prime power pm and an
elliptic curve defined over a field IFpm , but not over IFp. In order to do this we
first have to find a prime power pm and a discriminant ∆, such that the norm
equation

t2 −∆y2 = 4pm (1)

has a solution (t, y) ∈ ZZ2, while the equation t′2 − ∆y′2 = 4p does not have a
solution (t′, y′) ∈ ZZ. If this is true, using Complex Multiplication, we find elliptic
curves E1,q and E2,q over IFpm , both not defined over IFp, with

|E1,q(IFpm)| = pm + 1− t, |E2,q(IFpm)| = pm + 1 + t (2)

analogously as explained in [BB00].
Let H ∈ ZZ[X] be the the minimal polynomial of j(∆+

√
∆

2 ) where j denotes
the well-known modular function j. Modulo p the polynomial H splits into irre-
ducible factors of degree m, while it splits in IFpm [X] into pairwise distinct linear
factors. Let jq ∈ IFpm be a zero of H mod p. If ∆ < −4, we have jq /∈ {0; 1728},
and for any non-square sq ∈ IFpm we set

κq =
jq

1728− jq
, (aq, bq) = (3κq, 2κq) . (3)

Then we have
{E1,q, E2,q} = {(aq, bq), (aqs2q, bqs3q)}. (4)

After this construction it is not known which of the curves is E1,q and which is
E2,q. However, by choosing points on each curve and testing whether their order
is a divisor of pm+1+ t or pm+1− t, the curves E1,q and E2,q can be identified.

Thus we can decide whether one of the curves E1,q or E2,q is cryptographically
strong before we actually construct those curves. We only need to know the
primes p and m and the norm representation of pm as in (1). From (2) we
deduce the orders of E1,q and E2,q, and we can check whether one of the curves
respects all conditions from the previous section.
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Input of our algorithm oefCurve(n, m, h0) is a positive integer n (e.g. the
word size of the processor in use), the degree m of the Optimal Extension Field
over its prime field, and an integer h0 ≥ 200. The algorithm returns a prime
p < 2n such that IFpm is an Optimal Extension Field, an irreducible binomial
Xm − ω in IFp[X], and an elliptic curve E of prime order r defined over IFpm
respecting all requirements of Sect. 2. Furthermore, the endomorphism ring of E
is a maximal order of class number at least h0. In addition, oefCurve returns a
generating point of E(IFpm). In order to get reasonable results we have to ensure
n ·m ≥ 160 and that m is prime.

We next explain our main algorithm oefCurve. It splits into several sub-
algorithms, which we discuss in what follows. The first sub-algorithm
findField(n, m, h0) determines an Optimal Extension Field of cardinality pm

and a prime r being the group order of a cryptographically strong elliptic curve
defined over IFpm \ IFp. To be more precise, findField computes among other
things a prime p of the form 2n+c with c < 0 and |c| < √2n such that m | p−1.
Although it is not clear if such a prime p exists for a random tuple (n, m), the
asymptotic density of such primes for growing n is 1

(m−1)·log(2n) due to the Prime
Number Theorem and a theorem of Dirichlet on the number of primes in arith-
metic progressions. Hence, for example, if n = 32 and m = 5 (i.e. the case we
are most interested in), there should be about 216

4 log(232) = 739 primes congruent
1 modulo 5 in the interval [232 − 216, 232]. However, the exact number is 733.
Thus we may assume, that an appropriate prime p exists.

In order to be successful, findField has to solve the norm equation (1)
for some ∆ and p. We explain how to find appropriate ∆ and p. A necessary
condition on ∆ for E to be of prime order is ∆ ≡ 5 mod 8. We assume that
a sufficiently large database of fundamental imaginary quadratic discriminants
∆ ≡ 5 mod 8 of class number at least 200 is to our disposal. In our tests we make
use of a database containing all such fundamental discriminants ∆ > −6000000.
Our function nextDiscriminant(h, ∆) returns the maximal fundamental dis-
criminant ∆′ ≡ 5 mod 8 of class number h with ∆′ < ∆.

The algorithm is exponential in log(h) In addition, it depends on the bit-
length of ∆. Thus we want h and |∆| to be as small as possible. A necessary
condition, due to class field theory, we have to take care of is m | h(∆). Hence
we set h = min{h′ ∈ IN : h′ ≥ h0, m | h′}. Let ∆ ≡ 5 mod 8 be maximal of
class number h. We set p = max{p′ ∈ ZZ : p′ < 2n, p′ ≡ 1 mod m, p′ prime}. We
determine whether the norm equation t2 −∆y2 = 4p has a solution (t, y) ∈ ZZ2

by using an algorithm due to Cornacchia ([Coh95], p.34-36): cornacchia(∆, p)
gets an imaginary quadratic discriminant ∆ and a prime p as input and re-
turns t 	= 0 if the according norm equation has an integer solution, and 0 oth-
erwise. If t2 − ∆y2 = 4p has no integer solution, we turn to the norm equa-
tion t2 − ∆y2 = 4pm. In order to decide whether this equation has an inte-
ger solution or not, we extended the algorithm of Cornacchia to prime powers:
cornacchiaPrimePower(∆, pm) gets an imaginary quadratic discriminant ∆ and
a prime power pm as input. It returns t 	= 0 if the norm equation (1) has an
integer solution, and 0 otherwise.
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If we have found a prime p with an integer solution of the norm equation for
pm, but not for p, we make use of (2) to check for the conditions of section 2.
Analogously to [BB00] this task is performed by the function isStrong(pm, N);
it returns the prime r if N turns out to be the order of a cryptographically
strong elliptic curve over IFpm , and 0 otherwise. This yields our algorithm
findField(n, m, h0).

findField(n,m, h0)
Input: A positive integer n, a prime m, such that nm ≥ 160, and an integer h0 ≥ 200.
Output: A prime p of bit-length n, such that IFpm is an Optimal Extension Field, if

such a p exists.
A prime r and a discriminant ∆, such that r is the cardinality of a cryptographically
strong elliptic curve defined over IFpm \ IFp having a maximal order of discriminant
∆ as endomorphism ring with h(∆) ≥ h0.

p← max{p′ ∈ ZZ : p < 2n, p′ ≡ 1 mod m, p′ prime};
if 2n − p > √2n then

output(”No OEF found. Terminating.”); terminate;
h← min{h′ ∈ IN : h′ ≥ h0,m | h′};
while true do
∆← nextDiscriminant(h, 0);
while ∆ > −6000000 do
p← max{p′ ∈ IN : p′ < 2n, p′ ≡ 1 mod m, p′ prime};
while 2n − p < √2n do
t← cornacchia(∆, p);
if t = 0 then
t← cornacchiaPrimePower(∆, pm);
if t �= 0 then

if (r ← isStrong(pm, pm + 1− t)) �= 0 AND r = pm + 1− t then
return(p, r,∆);

else if (r ← isStrong(pm, pm + 1 + t)) �= 0 AND r = pm + 1 + t then
return(p, r,∆);

p← max{p′ ∈ ZZ : p′ < p, p′ ≡ 1 mod m, p′ prime};
∆← nextDiscriminant(h,∆);

h← h+m;

Once knowing the cardinality pm of an Optimal Extension Field, we turn to
the computation of an irreducible binomial Xm − ω in IFp[X]. Our algorithm
findBinomial(p, m) is a straightforward consequence of theorem 1 and corol-
lary 1.

We remark that if Xm−ω is reducible in IFp[X], Xm−ωd is reducible either
for all d ∈ IN. However, due to the simplicity of algorithm findBinomial(p, m)
we do not take this fact into account.

Finally, we turn to algorithm findOEFCurve(∆, p, r). This algorithm bases on
findCurve(∆, p, l) in [BB00]. The main differences come from the sub-algorithm
findRoot. As explained above, given a root jq of H mod p in IFpm , findOEFCurve
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findBinomial(p,m)
Input: Rational primes p and m with p ≡ 1 mod m.
Output: An irreducible binomial Xm − ω in IFp[X] with minimal ω ∈ IN.

ω ← 2;
while true do
d← ω

p−1
m mod p;

if d �= 1 then
return(Xm − ω);

ω ← ω + 1;

findOEFCurve(∆, p, r)
Input: A fundamental imaginary quadratic discriminant ∆ ≡ 5 mod 8.

A prime power pm such that there exists an elliptic curve of prime order r over IFpm .
Output: An elliptic curve E over IFpm with |E(IFpm)| = r and endomorphism ring of

discriminant ∆.
A generating point G of E(IFpm).

jq ← findRoot(∆, pm);
Select a non-square sq ∈ IFpm ;
E1 ← (aq, bq); E2 ← (aqs2

q, bqs
3
q); //assign curve parameters

G1 ∈R (E1(IFpm)) \ {O}; G2 ∈R (E2(IFpm)) \ {O}; //choose random points
if rG1 = O AND rG2 �= O then

return (E1, G1);
else

return (E2, G2);

computes the coefficients of elliptic curves over IFpm of order pm + 1± t, and it
decides by trial and error, which of these curves is of order r.

We next discuss findRoot(∆, pm), i.e. the proceeding to determine a root
of H mod p in IFpm . The first step of findRoot(∆, pm) consists in determining
a generating polynomial of the Hilbert class field of Q(

√
∆). In the literature

one finds some proposals of polynomials with rather small coefficients. If 3 � ∆
we compute a polynomial due to Atkin and Morain (see [AM93]). To be more
precise, in this case we determine the minimal polynomial of e2πi/3 · γ2(∆+

√
∆

2 )
over Q(

√
∆), where γ2 is the unique cube root of j which is real-valued on the

imaginary axis. We denote this polynomial by Pγ . Let γ2,q ∈ IFpm be a root
of Pγ mod p. Then γ3

2,q is a root of H mod p. If we have 3 | ∆, we compute
the Hilbert polynomial H. For an efficient computation of Pγ or H we refer to
[Bai01a].

It remains to explain how to get a root of a polynomial P mod p that splits
completely to linear factors in IFpm [X]. As in [BB00] we make use of the LiDIA-
function find root(pm, P ). As input this function requires a prime power pm and
a polynomial P ∈ ZZ[X], such that P mod p splits into linear factors in IFpm [X].
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It returns a zero of P mod p in IFpm . find root uses the Cantor-Zassenhaus
split (see [Coh95]) and a polynomial arithmetic due to Shoup [Sho95].

We finally present the main algorithm oefCurve. Given n, m, and h0,
oefCurve first invokes findField(n, m, h0). Once p, r, and ∆ are determined, it
calls the functions findBinomial and findOEFCurve. Finally, oefCurve returns
(p, r, f, E, G).

4 Running Times and Statistics

We implemented our algorithms in C++ using the library LiDIA 2.0 and the
GNU compiler 2.95.2 setting the optimization flag -O2 and using gmp 2.0.2 as
underlying multiprecision package. The timings were measured on a Pentium III
running Linux 2.2.14 at 850 MHz and having 128 MB of main memory. Hence
the timings may be measured on any modern personal computer either. We
present some sample running times of oefCurve(32, 5, h0) and CPU-timings for
200 ≤ h0 ≤ 250, 10 | h0, in table 1. More timings and statistical data may be
found in [Bai01b].

Table 1. Data delivered by oefCurve(32, 5, h0).

h0 h ∆ p ω CPU-time in seconds

200 200 -125579 4294920991 2 21.8
210 210 -265235 4294903891 7 52.8
220 220 -268931 4294931761 2 65.3
230 230 -405803 4294931071 2 64.0
240 240 -170651 4294946191 2 38.5
250 250 -254579 4294940641 3 54.6

Finally, we give some statistical data on the number of non-isomorphic el-
liptic curves of prime order over Optimal Extension Fields IFp5 where p is a
32-bit prime. First, we determine for each class number h with 200 ≤ h ≤ 400,
h divisible by 5, the number of pairs (∆, p), where ∆ > −6000000 is a funda-
mental discriminant congruent 5 mod 8 and p a 32-bit prime, such that there
exists a cryptographically strong elliptic curve of prime order r over IFp5 hav-
ing an endomorphism ring of discriminant ∆. In all, there are 5579 such tuples.
Furthermore, in 4563 of the cases, the according field IFp5 is a Type II OEF.
Next, we determine the number of non-isomorphic elliptic curves for the tu-
ples (∆, p) as above. For each such tuple (∆, p) there are h(∆) non-isomorphic
elliptic curves having the properties cited above. In all, there are 1546830 non-
isomorphic curves, and 1263850 of them are defined over a Type II OEF. We
deduce that, even in our special case, the set of non-isomorphic curves for use
in cryptography is sufficiently large to choose from.
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