Point Compression Algorithms for Binary Curves

Julio López and Ricardo Dahab

{jlopez,rdahab}@ic.unicamp.br

Institute of Computing (IC)
UNICAMP

April, 14 2005

Outline

- Introduction to ECC over $GF(2^m)$
- Background on: trace and halving a point
- Previous methods on point compression
 - IEEE-P1363
 - Seroussi's method
 - King's method
- New Methods
- Conclusions

Point Compression Problem

Given a point P = (x, y) on an elliptic curve E defined over a finite field \mathbb{F}_{2^m} , find a method for representing the point P with less than 2m bits.

Compress(P) = ? and $Decompress(C_P) = ?$

Main application: for the transmission of elliptic points

(Diffie-Hellman key agreement protocol)

Elliptic Curve Cryptography

• An elliptic curve E over the finite field \mathbb{F}_{2^m} is defined by the equation:

$$E: y^2 + xy = x^3 + ax^2 + b$$
 (1)

where $a, b \in \mathbb{F}_{2^m}$ and $b \neq 0$.

• The set of rational points on E:

$$E(\mathbb{F}_{2^m}) := \{(x,y) | y^2 + xy = x^3 + ax^2 + b\} \cup \mathcal{O},$$

where \mathcal{O} is the point at infinity.

• There is a *chord-and-tangent rule* for adding two points in $E(\mathbb{F}_{2^m})$ to give a third point in $E(\mathbb{F}_{2^m})$.

$$R = P + Q$$

Elliptic Curve Cryptography /2

- The set of points $E(\mathbb{F}_{2^m})$, together with the "+" operation, forms an abelian group with \mathcal{O} as its identity. It is this group that is used for constructing elliptic curve cryptosystems.
- The **Point Multiplication** operation is: given a point P on an elliptic curve E and an integer k, the point multiplication kP is

$$kP := P + P + \dots + P$$
 (k times).

• The Elliptic curve discrete logarithm problem is: given a point $P \in E(\mathbb{F}_{2^m})$ of order n, and point $Q \in P$, find the integer $k \in [0, n-1]$ such that Q = kP.

Elliptic Curve Cryptography

Domain parameters D = (q, FR, S, a, b, P, n, h) are comprised of:

- The field order $q = 2^m$.
- The FR (field representation) (normal basis or polynomial basis).
- A seed S if the elliptic curve was randomly generated.
- Two coefficients $a, b \in \mathbb{F}_{2^m}, b \neq 0$ that define equation (1).
- Two field elements x_P and y_P in \mathbb{F}_{2^m} that define a finite point $P = (x_P, y_P) \in E(\mathbb{F}_{2^m})$. The point P has prime order and is called the *base point*.
- The order n of P
- The cofactor $h = \#E(\mathbb{F}_{2^m})/n$.

Group Law for Binary Curves over \mathbb{F}_{2^m}

- 1. Identity. $P + \mathcal{O} = \mathcal{O} + \mathcal{P} = \mathcal{P}$ for all $P \in E(\mathbb{F}_{2^m})$.
- 2. Negatives. If $P = (x, y) \in E(\mathbb{F}_{2^m})$, then -P = (x, x + y). Note that -P is a point in $E(\mathbb{F}_{2^m})$. Also, $-\mathcal{O} = \mathcal{O}$.
- 3. Point addition.

Let $P = (x_1, y_1) \in E(\mathbb{F}_{2^m})$ and $Q = (x_2, y_2) \in E(\mathbb{F}_{2^m})$, where $P \neq \pm Q$. Then $P + Q = (x_3, y_3)$, where

$$x_3 = \lambda^2 + \lambda + x_1 + x_2 + a$$
 and $y_3 = \lambda(x_1 + x_3) + x_3 + y_1$,
and $\lambda = (y_1 + y_2)/(x_1 + x_2)$.

Group Law for Binary Curves over \mathbb{F}_{2^m} /2

4. Point doubling.

Let $P = (x_1, y_1) \in E(\mathbb{F}_{2^m})$, where $x_1 \neq 0$.

Then $2P = (x_2, y_2)$, where

$$x_{2} = \lambda^{2} + \lambda + a = x_{1}^{2} + \frac{b}{x_{1}^{2}}$$

$$y_{2} = x_{1}^{2} + \lambda x_{2} + x_{2}$$

$$\lambda = x_{1} + \frac{y_{1}}{x_{1}}$$

The Trace Function

$$Tr: \mathbb{F}_{2^m} \Rightarrow \mathbb{F}_{2^m}$$

- $\operatorname{Tr}(c) := c + c^2 + c^{2^2} + \dots + c^{2^{m-1}}.$
- $Tr(c) = Tr(c^2) = Tr(c)^2$; in particular $Tr(c) \in \{0, 1\}$.
- Trace is linear: Tr(c+d) = Tr(c) + Tr(d).
- Tr(x(kP)) = Tr(a) for generator $P \in E(\mathbb{F}_{2^m})$.

Computing the Trace Function

• Normal basis: $\{\beta, \beta^2, ..., \beta^{2^m}\}$

$$c = \sum_{i=0}^{m-1} c_i \beta^{2^i} \implies Tr(c) = \sum_{i=0}^{m-1} c_i$$

• Polynomial basis: $\{1, x, x^2, ..., x^{m-1}\}$

$$c = \sum_{i=0}^{m-1} c_i x^i \implies Tr(c) = \sum_{i=0}^{m-1} c_i Tr(x^i)$$

NIST Recommended Binary Curves

- In 1999, NIST releases a list of 10 binary curves over the finite fields \mathbb{F}_{2^m} , $m \in \{163, 233, 283, 409, 571\}$.
- For the random curves a = 1 (Tr(a) = 1).
- For the Koblitz curves a = 1 for m = 163 and a = 0 for $m \neq 163$.
- For a polynomial basis representation, the trace can be computed as follows:
 - for m = 163, $Tr(c) = c_0 + c_{157}$
 - for m = 233, $Tr(c) = c_0 + c_{159}$
 - for m = 283, $Tr(c) = c_0 + c_{277}$
 - for m = 409, $Tr(c) = c_0$
 - for m = 571, $Tr(c) = c_0 + c_{561} + c_{569}$.

Solving a Quadratic Equation over \mathbb{F}_{2^m}

$$x^2 + x = c, \ c \in \mathbb{F}_{2^m}$$

• Let m be an odd integer. The half-trace function $H: \mathbb{F}_{2^m} \Rightarrow \mathbb{F}_{2^m}$ is defined by

$$H(c) = \sum_{i=0}^{(m-1)/2} c^{2^{2i}}.$$

- H(c) is a solution of the equation $x^2 + x = c + Tr(c)$.
- If Tr(c) = 0, H(c) and H(c) + 1 are the only solutions of the equation $x^2 + x = c$.

Point Compression Algorithm First Solution

$$P = (x, y) \in E(\mathbb{F}_{2^m}), \ x \neq 0$$

Compress
$$(P) := x ||Tr(x + \frac{y}{x})||$$

$$|\text{Compress}(P)| = m + 1 \text{ bits}$$

$$y^{2} + xy = x^{3} + ax^{2} + b \implies (x + \frac{y}{x})^{2} + (x + \frac{y}{x}) = x^{2} + a + \frac{b}{x^{2}}$$

$$\lambda^2 + \lambda = x^2 + a + \frac{b}{x^2}, \ Tr(\lambda) \in \{0, 1\}$$

Point Compression Algorithm First Solution /2

INPUT: C_P .

OUTPUT: P = (x, y).

 $Decompress(C_P)$:

1. $C_p = x | |t, t = Tr(x + \frac{y}{x}).$

2. Solve $\lambda^2 + \lambda = x^2 + a + \frac{b}{x^2}$ for λ .

3. If $(\operatorname{Tr}(\lambda) \neq t)$ then $\lambda = \lambda + 1$.

4. Compute $y = x \cdot (\lambda + x)$.

5. Return P = (x, y).

Note: $y = x \cdot (\lambda + Tr(\lambda) + t + x)$

Point Compression IEEE P1363 Algorithm

$$P = (x, y) \in E(\mathbb{F}_{2^m})$$

Compress $(P) := x | |\tilde{\mathbf{y}}|, \quad \tilde{y} : \text{the rightmost bit of } \frac{\mathbf{y}}{x}$

|Compress(P)| = m + 1 bits

$$y^{2} + xy = x^{3} + ax^{2} + b \implies (\frac{y}{x})^{2} + \frac{y}{x} = x + a + \frac{b}{x^{2}}$$

$$\mu^2 + \mu = x^2 + a + \frac{b}{x^2}, \ \tilde{\mu} \in \{0, 1\}$$

Point Compression IEEE P1363 Algorithm /2

INPUT: C_P

OUTPUT: P = (x, y).

 $Decompress(C_P)$:

1. $C_p = x || \tilde{y}$.

2. If x = 0 then Return $P = (0, \sqrt{b})$.

3. Solve $\mu^2 + \mu = x + a + \frac{b}{x^2}$ for μ .

4. Compute $y = x \cdot (x + \tilde{\mu} + \tilde{y})$.

5. Return P = (x, y).

IEEE P1363 Algorithm

$$Y = \begin{cases} 0x02 & \text{point compressed } x_P = 0 \\ 0x03 & \text{point compressed } x_P \neq 0 \\ 0x04 & \text{point not compressed} \end{cases}$$

Point Compression Seroussi's Algorithm, 1998

$$P = (x, y) \in E(\mathbb{F}_{2^m})$$

- \bullet Tr(x) = Tr(a)
- Let i be the smallest index such $Tr(x^i) = 1$. For NIST binary fields i = 0.
- m-1 bits are required to represent x.

$$x = (x_{m-1} \cdots x_i \cdots x_0)$$

$$\dot{x} := (x_{m-1} \cdots x_{i-1} x_{i+1} \cdots x_0)$$

$$\text{Compress } (P) := (x_{m-1} \cdots x_{i-1} \tilde{y} x_{i+1} \cdots x_0)$$

|Compress(P)| = m bits

Point Compression Seroussi's Algorithm /2

INPUT: C_P , Tr(x) = Tr(a).

OUTPUT: P = (x, y).

$Decompress(C_P)$:

- 1. From C_P obtains $x_1 = (x_{m-1} \cdots x_{i-1} \ 1 \ x_{i+1} \cdots x_0)$ and $y_1 = \tilde{y}$.
- 2. If $Tr(x_1) \neq Tr(a)$ then $x_1 = (x_{m-1} \cdots x_{i-1} \ 0 \ x_{i+1} \cdots x_0)$.
- 3. If x = 0 then Return $P = (0, \sqrt{b})$.
- 4. Solve $\mu^2 + \mu = x + a + \frac{b}{x^2}$ for μ .
- 5. Compute $y = x \cdot (x + \tilde{\mu} + y_1)$.
- 6. Return P = (x, y).

Point Compression New Algorithm I, 2004

INPUT: P = (x, y), Tr(x) = Tr(a), m odd.

OUTPUT: $C_P \in \mathbb{F}_{2^m}$.

Compress $(P) := C_P = x + Tr(x + \frac{y}{x})$

 $|C_P| = m$ bits

Note: $Tr(x + \frac{y}{x}) = Tr(C_P) + Tr(a)$.

Point Compression New Algorithm I /2

INPUT: C_P , Tr(x) = Tr(a), m odd.

OUTPUT: P = (x, y).

$Decompress(C_P)$:

1. $x = C_P + Tr(C_P)$.

2. Solve $\lambda^2 + \lambda = x^2 + a + \frac{b}{x^2}$ for λ .

3. Compute $y = x \cdot (x + Tr(\lambda) + Tr(C_P) + Tr(a))$.

4. Return P = (x, y).

Point Halving for Binary Curves

• $P = (x, y) \implies 2P = (x_2, y_2) : \text{let } \lambda = x + y/x$

$$x_2 = \lambda^2 + \lambda + a = x^2 + b/x^2$$

$$y_2 = x^2 + \lambda x_2 + x_2$$

• Halving: given $Q = (x_2, y_2)$ find P = (x, y) such 2P = Q

$$x_2 = \lambda^2 + \lambda + a$$
 solve for λ
 $y_2 = x^2 + \lambda x_2 + x_2$ solve for x

E. Knudsen, 1999 and R. Schroeppel, 2000

Computing Point Halving

INPUT: $P = (x, \lambda), Tr(a) = 1, m \text{ odd.}$

OUTPUT: $2P = (x_2, \lambda_2)$.

$$egin{array}{ccccc} x & & \lambda & & \lambda & & \uparrow & & \uparrow & & \uparrow & & & \lambda_2 & & \lambda_2 & & & \lambda_2 & & & \lambda_2 & &$$

$$2P = (x_2, y_2) \Leftrightarrow (x_2, \lambda_2), \quad \lambda_2 = x_2 + y_2/x_2$$

Computing Point Halving /2

$$Tr(a) = 1, m \text{ odd}$$

- 1. Solve $\lambda^2 + \lambda = x_2 + a$ for λ .
- 2. Compute $T = x_2 \cdot (\lambda + \lambda_2 + x_2 + 1)$.
- 3. If Tr(T) = 1 then $x = \sqrt{T}$ else $\lambda = \lambda + x_2$, $x = \sqrt{T + x_2}$.
- 4. Return (x, λ) .

Computing Point Halving /3

$$Tr(a) = 1, m \text{ odd}$$

output:
$$x$$
 λ $z=\frac{x^2}{x_2}$ \uparrow \uparrow λ_2 \downarrow χ_4

- 1. Compute $x_4 = \lambda_2^2 + \lambda_2 + a$.
- 2. Solve $z^2 + z = x_4 + x_2^2 = (b/x_2^2)$ for z.
- 3. Compute $T = z \cdot x_2$.
- 4. If Tr(T) = 1 then $x = \sqrt{T}$, $\lambda = z + \lambda_2 + x_2 + 1$ else $x = \sqrt{T + x_2}$, $\lambda = z + \lambda_2 + x_2$.
- 5. Return (x, λ) .

Point Compression New Algorithm II, 2004

INPUT: P = (x, y), Tr(x) = Tr(a) = 1, m odd.

OUTPUT: $C_P \in \mathbb{F}_{2^m}$.

Compress $(P) := C_P = x + \frac{y}{x}$

 $|C_P| = m$ bits

Note: $Tr(x + \frac{y}{x}) = Tr(C_P)$.

Point Compression New Algorithm II /2

INPUT: C_P , Tr(x) = Tr(a) = 1, m odd.

OUTPUT: P = (x, y).

$Decompress(C_P)$:

1. $x_2 = C_P^2 + C_P + a$.

2. Solve $z^2 + z = \frac{b}{x_2^2}$ for z.

3. Compute $T = z \cdot x_2$

4. If Tr(T) = 1 then $x = \sqrt{T}$ else $x = \sqrt{T + x_2}$.

5. Compute $y = x \cdot (x + C_P \cdot x)$.

6. Return P = (x, y).

Point Compression King's Algorithm, 2004

INPUT: P = (x, y), Tr(x) = Tr(a), m odd.

OUTPUT: $C_P \in \mathbb{F}_{2^m}$.

Compress
$$(P) := C_P = \begin{cases} x & \text{if } Tr(\frac{y}{x}) = 0\\ \frac{\sqrt{b}}{x} & \text{if } Tr(\frac{y}{x}) = 1 \end{cases}$$

$$|C_P| = m$$
 bits

Note: $Tr(\frac{y}{x}) = Tr(C_P) + 1$.

Point Compression King's Algorithm /2

INPUT: C_P , Tr(x) = Tr(a), m odd.

OUTPUT: P = (x, y).

$Decompress(C_P)$:

- 1. If $Tr(C_P) = 0$ then $x = C_p$ else $x = \frac{\sqrt{b}}{C_P}$
- 2. Solve $\mu^2 + \mu = x + a + \frac{b}{x^2}$ for μ .
- 3. If $Tr(\mu) = Tr(C_P) + 1$ then $y = x \cdot \mu$ else $y = x \cdot \mu + x$.
- 4. Return P = (x, y).

Point Compression King's Algorithm /3

INPUT: P = (x, y), Tr(x) = Tr(a) = 0, m odd.

OUTPUT: $C_P \in \mathbb{F}_{2^m}$.

Compress
$$(P) := C_P = \begin{cases} \dot{x} & \text{if } Tr(\frac{y}{x}) = 0\\ \frac{\dot{\sqrt{b}}}{x} & \text{if } Tr(\frac{y}{x}) = 1 \end{cases}$$

$$|C_P| = m - 1$$
 bits

Note: $Tr(x) = Tr(\frac{\sqrt{b}}{x}) = 0$.

Point Compression King's Algorithm /4

INPUT: $P = (x, y), Tr(x) = Tr(a) = 0, m \in \{233, 289, 409, 571\}.$

OUTPUT: $C_P \in \mathbb{F}_{2^m}$.

For Koblitz curves recommended by NIST

Compress
$$(P) := C_P = \begin{cases} \dot{x} & \text{if } Tr(\frac{y}{x}) = 0\\ \frac{1}{x} & \text{if } Tr(\frac{y}{x}) = 1 \end{cases}$$

$$|C_P| = m - 1$$
 bits

Point Compression Algorithms Summary

$$Compress(P) = C_P$$

Method	C_P	Bits
IEEE P1363	$x \tilde{y}$	m+1
Seroussi	$\dot{x} \tilde{y}$	m
King	$\begin{cases} x & \text{if } Tr(\frac{y}{x}) = 0\\ \frac{\sqrt{b}}{x} & \text{if } Tr(\frac{y}{x}) = 1 \end{cases}$	m or m-1
New I	$x + Tr(x + \frac{y}{x})$	m
New II*	$x + \frac{y}{x}$	m

 $^{^*}Tr(a) = 1.$

References

- IEEE P1363 Appendix A. http://www.grouper.org/groups/1363
- G. Seroussi, "Compact Representation of Elliptic Curve Points over \(\mathbb{F}_{2^n} \)", \(HP \) Labs \(Technical \) \(Reports, \)
 htpp://www.hp1.hp.com/techreports/98/HPL-98-94R1.html.
- B. King, "A point Compression Method for Elliptic Curve Defined over $GF(2^n)$ ", PKC 2004, LNCS 2947, pp. 333-345, 2004.
- K. Fong, D. Hankerson, J. López and A. Menezes, "Field Inversion and Point Halving revisited", *IEEE Transaction on Computers*, Vol 53, no. 8, pp. 1047-1059, 2004.