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1. Introduction

� Discrete-log cryptographic protocols are
usually described in the algebraic setting of
the group Z

�
p (the multiplicative group of

the integers modulo a prime p).

� These include Di�e-Hellman key
agreement, ElGamal encryption, and the
ElGamal signature scheme.

� They can also be described in the more
abstract setting of a �nite cyclic group G.
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Di�e-Hellman key agreement

Objective: Alice and Bob establish a shared
secret by communicating over an unsecured
but authentic channel.

1. Public parameters: A prime p and a
generator g of Z�p.

2. Alice generates a random integer a,
1 � a � p� 2, and sends ga to Bob.

3. Bob generates a random integer b,
1 � b � p� 2, and sends gb to Alice.

4. Alice computes K = (gb)a.

5. Bob computes K = (ga)b.

6. The shared secret is K = gab.
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Among the groups proposed:

�Multiplicative group of a �nite �eld F q

(Di�e and Hellman, 1976).

� Group of points on an elliptic curve over a
�nite �eld (Koblitz, Miller, 1985).

� Class group of an imaginary quadratic
number �eld (Buchmann, Williams, 1988).

� Subgroup of the multiplicative group of Zp
(Schnorr, 1989).

� Jacobian of a hyperelliptic curve de�ned
over a �nite �eld (Koblitz, 1989).
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2. The Digital Signature Algorithm (DSA)

� Variant of ElGamal and Schnorr schemes.

� Proposed in 1991.

� US Federal Information Processing
Standard (FIPS-180).

� Exploits small subgroups in Z
�
p in order to

decrease the size of signatures.
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DSA system parameter generation

1. Select a prime q such that
2159 < q < 2160.

2. Select a 1024-bit prime number p with the
property that q j p� 1.

3. (Select a generator g of the unique cyclic
group of order q in Z

�
p.)

3.1. Select an element h 2 Z
�
p and

compute g = h(p�1)=q mod p.
(Repeat until g 6= 1.)

4. System parameters are p, q and g.
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DSA key generation

Each entity A does the following:

1. Select a random integer x such that
1 � x � q � 1.

2. Compute y = gx mod p.

3. A's public key is y; A's private key is x.
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DSA signature generation

To sign a message m, A does the following:

1. Select a random integer k, 1 � k � q� 1.

2. Compute r = (gk mod p) mod q.

3. Compute k�1 mod q.

4. Compute s = k�1fh(m) + xrg mod q.
If s = 0 then go to step 1.

5. The signature for the message m is (r; s).

� The signature is 320 bits in length.

� h is the hash function SHA-1.
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DSA signature veri�cation

To verify A's signature (r; s) on m, B should
do the following:

1. Compute w = s�1 mod q and h(m).

2. Compute u1 = h(m)w mod q and
u2 = rw mod q.

3. Compute v = (gu1yu2 mod p) mod q.

4. Accept the signature if and only if v = r.
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Discrete logarithm problem

The security of DSA is based on the di�culty
of the discrete logarithm problem (DLP):

Given a prime p, a generator g of Z�p, and
y = gx mod p, �nd x.
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3. Background on elliptic curves

� Let Zp be the set of integers modulo a
prime p (p > 3).

� An elliptic curve E over Zp is de�ned by
an equation of the form

y2 = x3 + ax + b;

where a; b 2 Zp, (4a
3 + 27b2) 6� 0

(mod p), together with the point at

in�nity O.

� The set E(Zp) consists of all points (x; y),
x 2 Zp, y 2 Zp, which satisfy the de�ning
equation, together with O.
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An example over Z23

� Let p = 23.

� y2 = x3 + x + 1, (i.e. a = 1; b = 1).

� E(Z23) = f(x; y) : y2 = x3+x+1g[fOg:
� Solutions to y2 = x3 + x + 1 over Z23:

(0,1) (5,4) (9,16) (17,3)
(0,22) (5,19) (11,3) (17,20
(1,7) (6,4) (11,20) (18,3)
(1,16) (6,19) (12,4) (18,20)
(3,10) (7,11) (12,19 (19,5)
(3,13) (7,12) (13,7) (19,18)
(4,0) (9,7) (13,16)

Alfred Menezes 12

ECC | Ready for Prime Time 3. Background on elliptic curves

AN ELLIPTIC CURVE

(x2; y2)

(x1; y1)

(x3; y3)

y � y1 = �(x� x1)

� = y2�y1
x2�x1

= slope
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AN ELLIPTIC CURVE

(x1; y1)

(x3; y3)

y � y1 = �(x� x1)

� = slope
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Addition formula

E : y2 = x3 + ax + b.

� O +O = O.

� (x; y) +O = (x; y) for all (x; y) 2 E.

� (x; y) + (x;�y) = O for all (x; y) 2 E.
(i.e. �(x; y) = (x;�y)).

� Let P = (x1; y1), Q = (x2; y2), P 6= �Q.
Then P +Q = (x3; y3), where
x3 = �2 � x1 � x2
y3 = �(x1 � x3)� y1 and

� =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

y2 � y1
x2 � x1

P 6= Q

3x21 + a

2y1
P = Q:
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Examples of addition in E(Z23).

1. P1 = (3; 10), P2 = (9; 7),
P1 + P2 = (x3; y3).

� =
7� 10

9� 3
=
�3
6

=
�1
2

= 11 2 Z23:

x3 = 112 � 3� 9 = 6� 3� 9 = 17,
y3= 11(3� (�6))� 10 = 11(9)� 10
= 89 = 20 = 20.

Therefore P1 + P2 = (17; 20).
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2. P1 = (3; 10), 2P1 = (x3; y3);

� =
3(32) + 1

20
=

5

20
=

1

4
= 6:

x3 = 62 � 6 = 30 = 7,
y3 = 6(3� 7)� 10 = �24� 10 = 12.
Therefore 2P1 = (7; 12).
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Basic facts

� There are about 2p \di�erent" elliptic
curves over Zp.

� E(Zp) is an abelian group with identity O.

� The number of points on the elliptic curve
is #E(Zp) = p + 1� t, where jtj � 2

p
p.

Hence, #E(Zp) � p.

� #E(Zp) can be computed in polynomial
time using Schoof's algorithm.

� The above results are also true if Zp is
replaced by any �nite �eld F q.
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Example

� E : y2 = x3 + x + 1 over Z23.

� #E(Z23) = 28.

� E(Z23) is a cyclic group, and P = (0; 1) is
a generator:

P=( 0, 1) 15P=( 9, 7)
2P=(6,19) 16P=(17,3)
3P=(3,13) 17P=(1,7)
4P=(13,16) 18P=(12,19)
5P=(18,3) 19P=(19,5)
6P=(7,11) 20P=(5,4)
7P=(11,3) 21P=(11,20)
8P=(5,19) 22P=(7 12)
9P=(19,18) 23P=(18,20)
10P =(12,4) 24P=(13,7)
11P=(1,16) 25P=(3,10)
12P=(17,20) 26P=(6,4)
13P=(9,16) 27P=(0,22)
14P=(4,0) 28P=O
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Z
�
p and E(F q) correspondence

Group Z
�

p
E(F q)

Group Integers Points (x; y) on E
elements f1; 2; : : : ; p� 1g plus O
Group multiplication addition
operation modulo p of points
Notation Elements: g, h Elements: P , Q

Multiplication: g � h Addition: P +Q
Inverse: g�1 Negative: �P
Division: g=h Subtraction: P �Q
Exponentiation: ga Multiple: aP

Discrete Given g 2 Z
�

p
Given P 2 E(F q)

Logarithm and h = ga mod p, and Q = aP ,
Problem �nd a �nd a.
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4. ECDSA

� The Elliptic Curve Digital Signature
Algorithm (ECDSA) is the elliptic curve
analogue of the DSA.

� Under consideration by IEEE, ANSI, FIPS,
ISO as signature standards.
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ECDSA system parameter generation

1. Select an elliptic curve E de�ned over F q.

2. #E(F q) should be divisible by a large
prime n.

3. Select a point P of order n in E(F q).

4. The system parameters are E, P and n.
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ECDSA key generation

Each entity A does the following:

1. Select a random integer d in the interval
[1; n� 1].

2. Compute Q = dP .

3. A public key is Q; A's private key is d.
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DSA and ECDSA notation
correspondence

DSA notation ECDSA notation
q n
g P
x d
y Q
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ECDSA signature generation

To sign a message m, A does the following:

1. Select a random integer k, 1 � k � n� 1.

2. Compute kP = (x1; y1) and
r = x1 mod n. If r = 0 then go to step 1.

3. Compute k�1 mod n.

4. Compute s = k�1fh(m) + drg mod n. If
s = 0 then go to step 1.

5. The signature for the message m is (r; s).

� If n is a 160-bit prime, then the signature is
320 bits in length.

� h is the hash function SHA-1
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ECDSA signature veri�cation

To verify A's signature (r; s) on m, B should
do the following:

1. Verify that r and s are integers in the
interval [1; n� 1].

2. Compute w = s�1 mod n and h(m).

3. Compute u1 = h(m)w mod n and
u2 = rw mod n.

4. Compute u1P + u2Q = (x1; y1) and
v = x1 mod n.

5. Accept the signature if and only if v = r.
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Elliptic Curve Discrete logarithm
problem

The security of ECDSA is based on the
di�culty of the elliptic curved discrete

logarithm problem (ECDLP):

Given an elliptic curve E de�ned over F q,, a
point P of order n, Q = dP , �nd d.
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5. The RSA signature scheme

RSA key generation

Each entity A does the following:

1. Select large random primes p and q.

2. Compute n = pq and � = (p� 1)(q � 1).

3. Select an integer e, 1 � e � �� 1, such
that gcd(e; �) = 1.

4. Compute the integer d, 1 � d � �� 1,
such that ed � 1 (mod �).

5. A's public key is (n; e); A's private key is
d.
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RSA signature generation

To sign a message M , A does the following:

1. Compute m = H(M ).

2. Compute s = md mod n.

3. The signature for M is s.
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RSA signature veri�cation

To verify A's signature s on M , B should do
the following:

1. Compute m = H(M ).

2. Compute m0 = se mod n.

3. Accept the signature if and only if
m = m0.
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Integer factorization problem

The security of RSA is based on the di�culty
of the integer factorization problem (IFP):

Given an integer n that is a product of two
distinct primes p and q, �nd p and q.
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6. Evaluation criteria

� (Perceived) security.
� Key lengths.
� Signature size.
� Speed.
� Storage (precomputation?).
� Complexity of implementation (code size,
gate count, power consumption, etc.).

� Platforms (hardware, software, �rmware).
� Industry/government standards.
� Patent coverage.
� Licensing terms.
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7. Security

History of math problems

IFP DLP and ECDLP

� Random squares Index-calculus
1920s (Kraitchik) (Kraitchik)
1975 Continued

fraction
1976 DLP proposed for

use in cryptography
1977 RSA proposed
1979 Index-calculus
1982 Quadratic sieve
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IFP DLP and ECDLP

1985 ECDLP proposed for
use in cryptography

1990 Number �eld Number �eld
sieve sieve for DLP

1991 Reduction for
supersingular curves
(for ECDLP)

1994 Subexponential-time
algorithm for
high-genus
hyperelliptic curves

1995 Trace 1 curves are
weak (Semaev)
(for ECDLP)

1998 ? ?
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Some questions to ponder:

1. Has the integer factorization problem
indeed been seriously studied by
thousands of mathematicians for hundreds
of years?

2. Has the integer factorization problem been
more carefully studied than the discrete
logarithm problem?

3. Is the research on the discrete logarithm
problem prior to 1985 of any
relevance/signi�cance to the elliptic curve
discrete logarithm problem?
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4. Have there been many more research
papers on the security and/or
implementation of RSA than that of
elliptic curve cryptosystems?

5. Is it true that the elliptic curve discrete
logarithm problem is not well understood
due to the abstruse nature of elliptic
curves? (As compared, say, to the number
�eld sieve.)
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My opinion:

While it is true that the integer factorization
problem has been more heavily scrutinized
than the elliptic curve discrete logarithm
problem, the di�erence in the e�orts these
problems have received has been exaggerated.

Alfred Menezes 37

ECC | Ready for Prime Time 7. Security

Attacks on underlying math problems

1. Integer factorization problem (IFP):

�Number �eld sieve Ln[
1
3; 1:923]

(subexponential-time algorithm).

� Easily parallelized in software.

� Record: 130-decimal digit, 500 MIPS
years.

� Challenge: 512-bit RSA number.
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2. Discrete logarithm problem (DLP):

�Number �eld sieve (for Zp)

�Lp[13; 1:923]
(subexponential-time algorithm).

� Easily parallelized in software.

� Record: 75-decimal digit (248 bits).

� Challenge: p = 2 � 739 � (7149�1)
6 + 1

(427 bits).
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3. Elliptic curve discrete logarithm problem
(ECDLP): (#E(F q) divisible by large
prime n)

� Pollard-�
Expected running time:

s
�n
2 .

�Distributed version (van
Oorschot/Wiener)
m processors:

s
�n
2 =m

(fully exponential-time algorithm).

� Easily parallelized in hardware.

� Certicom ECC Challenge {
www.certicom.com.
Challenges: 109, 131, 163, 191, 239,
and 359-bits.
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Factoring estimates (software)

(A. Odlyzko { CryptoBytes, Summer 1995)

Size of n MIPS
(in bits) years

512 3� 104

768 2� 108

1024 3� 1011

1280 1� 1014

1536 3� 1016

2048 3� 1020
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Computing power available (MIPS years):

covert attack open project

2004 108 2� 109

2014 1010 � 1011 1011 � 1013

(2014: 1010 people, 10 computers/person,
typical computer rated at 104 � 105 MIPS.)
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EC discrete logarithm estimates

� Software
Assumption: a 1 MIPS machine can
perform 4� 104 EC additions/sec, or 240

EC additions/year.

Size of n (� q) MIPS
(in bits) years

160 9:6� 1011

186 7:9� 1015

234 1:3� 1023

354 1:5� 1041
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�Hardware (van Oorschot/Wiener,1994)

{ $10 million

{ 325,000 processors

{ n � 2120

{ 1 logarithm in 35 days
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8. Comparison

� Since no subexponential-time algorithm is
known for the general ECDLP, a smaller
underlying �nite �eld F q can be chosen
(compared to traditional discrete log
systems).

� A smaller �eld results in the following
bene�ts of elliptic curve systems:

{ smaller key sizes (and certi�cates)

{ smaller signature sizes

{ bandwidth savings

{ smaller hardware processors

{ low power requirements

{ e�cient implementations.
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� RSA: 1024-bit modulus n.
� DSA: 1024-bit p, 160-bit q.
� ECDSA: 160-bit n (so q is 160 + � bits).

Parameter sizes

ECDSA RSA DSA
(160-bit q) (1024-bit n, 1024-bit p,

e = 216 + 1) 160-bit q)

System a; b; P; n | p; q; g
params 640 (bits) 0 2208
Public Q n gx

key 161 1024 1024
Private d d x
key 160 1024 160
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Software comparison (very rough)

Assumptions:

� 1 EC addition = 10 �eld multiplications.

� 40 160-bit �eld multiplications = 1
1024-bit modular multiplication.

ECDSA RSA DSA

e = 216 + 1,
CRT

Signing (kP ) (md mod n) (gk mod p)
time 60 384 240
Verifying (2 exps) (se mod n) (2 exps)
time 120 17 480

(# of 1024-bit modular multiplications)
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Hardware comparison

� James Dworkin, Motorola, April 1997.

� 20 MHz.

� RSA: Montgomery multiplication, CRT,
64-bit e, 16� 16 bit multiplier.

� No other assumptions were stated.

Alfred Menezes 48

ECC | Ready for Prime Time 8. Comparison

160-bit 1024-bit 210-bit 2048-bit
EC RSA EC RSA

Signature 5.3 85.7 7.1 657.3
speed (ms)
Veri�cation 10.5 24.1 14.2 94.4
speed (ms)
Silicon area 72 73 86 83
(mil/side)
Energy .095 2.228 .214 22.611
to sign
(mW/s)
Energy .190 .626 .427 3.249
to verify
(mW/s)
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9. Industry/Government standards

Goals:

� Facilitate widespread use of
cryptographically sound and well-accepted
techniques.

� Promote interoperability.
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Draft standards

1. ANSI X9.62 (The Elliptic Curve Digital
Signature Algorithm (ECDSA))

� Goals: high security and
interoperability.

� Elliptic curves over Zp.
� Elliptic curves over F 2m (polynomial
bases, optimal normal bases).

� Security constraint: n > 2160.

� (Optional) method for generating
random curves veri�ably at random.

� Ballot date: December 1997.
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2. ANSI X9.63 (Elliptic Curve Key
Agreement and Transport Protocols)

�Key agreement: two Di�e-Hellman
variants (MQV, uni�ed model).

�Key transport.
� (Hoped) ballot date: Fall 1998.
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3. IEEE P1363 (Standard Speci�cation for
Public-key Cryptography)

� RSA, discrete logs, elliptic curves.
� Programmers reference guide, rather
than an interoperability standard.

� Lots of options. (e.g. arbitrary
polynomial or normal bases for F 2m).

�No minimal security requirements.

� Elliptic curve protocols: ECDSA,
Nyberg-Rueppel signature scheme,
MQV and uni�ed-model key agreement.

� http://stdsbbs.ieee.org/
� (Hoped) ballot date: Summer 1998.

Alfred Menezes 53

ECC | Ready for Prime Time 9. Industry/Government standards

4. Internet OAKLEY (variant of
Di�e-Hellman)

� http://www.ietf.cnri.reston.va.us/
5. ISO 14888 (digital signatures with

appendix)

�High-level description of elliptic curve
signature algorithms.

6. ATM Forum

� Elliptic curve signature schemes.
� Elliptic curves over Zp and F 2m.

7. Widespread support for inclusion of elliptic
curve algorithms in SET 2.0.
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8. US government FIPS

�May 13 1997 Federal Registry
announcement: NIST seeks comments
on the possibility of allowing
government agencies to use additional
public-key based digital signature
algorithms, such as the RSA and elliptic
curve techniques.

� Plans to develop a federal standard for
public-key based cryptographic key
agreement and exchange. The notice
asked for comments on such techniques
as RSA, Di�e-Hellman and elliptic
curve.
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10. Conclusions

� Elliptic curve cryptosystems are the next
generation of public-key technology.

� They have been accepted by many as a
mature technology.

� ECC will see widespread deployment in the
coming years.
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