
Implementation Options for Finite Field

Arithmetic for Elliptic Curve Cryptosystems

ECC '99

Christof Paar

Electrical & Computer Engineering Dept.

and

Computer Science Dept.

Worcester Polytechnic Institute

Worcester, MA, USA

http://www.ece.wpi.edu/Research/crypt

Contents

1. Motivation

2. Overview on Finite Field Arithmetic

3. Arithmetic in GF(p)

4. Arithmetic in GF(2m)

5. Arithmetic in GF(pm)

6. Open Problems

ECC '99 WPI

Why Public-Key Algorithms?

Traditional tool for data security: Private-key (or

symmetric) cryptography

Main applications:

� Encryption

� Message Authentication

Traditional shortcomings:

1. Key distribution, especially with large, dynamic user

population (Internet)

2. How to assure sender authenticity and non-repudiation?

Solution: Public-key schemes, e.g., Di�e-Hellman key

exchange or digital signatures.

ECC '99 WPI

Practical Public-Key Algorithms

There are three families of PK algorithms of practical

relevance:

Integer Factorization Schemes

Exp: RSA, Rabin, etc.

required operand length: 1024{2048 bits

arithmetic type: Integer ring Zm

Discrete Logarithm Schemes

Exp: Di�e-Hellman, DSA, ElGamal, etc.

required operand length: 1024{2048 bits

arithmetic type: Finite �eld

Elliptic Curve Schemes

Exp: EC Di�e-Hellman, ECDSA, etc.

required operand length: 160{256 bits

arithmetic type: Finite �eld

ECC '99 WPI

Practical Aspects of PK Algorithms

Major problem in practice: All PK algorithms are rel-

atively slow.

Observation: Algorithm speed is heavily dependent on

arithmetic performance in HW and SW:

fast arithmetic) fast PK algorithm

) Interdisciplinary Research area (Computer Science,

Electrical Engineering, Mathematics):

E�cient �nite �eld arithmetic for discrete logarithm (DL)

and elliptic curve cryptosystems (ECC)

ECC '99 WPI

fi
ni

te
 f

ie
ld

s

pr
im

e
fi

el
ds

ex
te

ns
io

n
fi

el
ds

sp
ec

ia
l f

or
m

 p
ri

m
es

ge
ne

ra
l

pr
im

es

M
er

se
nn

e
M

er
se

nn
e

bi
na

ry
co

m
po

si
te

O
E

F

m
G

F(
p

)

G
F(

2
-

2
...

 -
1)

G
F(

p)

ch
ar

 =
 2

ch
ar

 >
 2

n

G
F(

p)

n
G

F(
2

)n
n

s
n

G
F(

(2
 -

c)

)
m

G
F(

(2

)

)
m

F
in

it
e

F
ie

ld
s

P
ro

p
o

se
d

 f
o

r
U

se
 in

 P
K

 S
ch

em
es

ge
ne

ra
liz

ed
ps

eu
do

G
F(

2
 -

c)

Platform Options

ASIC Intel, RISC embedded uP

hardware software

classical constrainedgeneral
proc. environm.

finite field arithmetic

FPGA

reconfig.

(DSP, smart card,...)

Arithmetic performance and area/cost greatly depends

on:

1. Platform

2. Finite �eld type

with strong interaction:

platform choice , �nite �eld type

ECC '99 WPI

Prime Fields GF (p)

General remarks:

� preferred for DL systems

� also popular for ECC

� addition is cheap

� inversion is much slower than multiplication

) use of projective coord. for ECC

� \Remaining" problem: E�cient multiplication al-

gorithms

Problem de�nition: Multiplication with long numbers

(160{2048 bits) on processors with short word length

(8{64 bits).

ECC '99 WPI

General Prime Fields GF (p): Software

Exp: A;B 2 GF(p), p < 21024, word size w = 16 bit

element representation:

A = a632
63�16 + � � �+ a12

16 + a0 ; ai 2 f0;1; : : : ;216 � 1g

B = b632
63�16 + � � �+ b12

16 + b0 ; bi 2 f0;1; : : : ;216 � 1g

1. Step: Multi-precision Multiplication

C 0 = A �B = c0

1262
126�16 + � � �+ c0

12
16 + c0

0

where

c0

0 = a0b0

c0

1 = a0b1+ a1b0+ carry
...

Complexity: (n=w)2 inner products (integer mult), where

n= dlog2 pe.

Rem: Quadratic complexity can be reduced to (n=w)1:58

using Karatsuba algorithm.

Further reading: [Menezes/van Oorschot/Vanstone 97]

ECC '99 WPI

General Prime Fields GF (p): Software

2. Step: Modular reduction

C � A �B mod p � C 0 mod p

1. (na��ve) approach: long division of C 0 by p

2. (better) approach: fast modulo reduction techniques

which avoid division:

2.1. Montgomery

2.2. Barrett

2.3. Sedlack

2.4. : : : (see, e.g., [Naccache/M'Ra��hi 96])

Complexity: � (n=w)2 inner products + precomputa-

tions

Rem: Multi-precision mult (Step 1) and modular reduc-

tion (Step 2) can be interleaved.

further reading for Montgomery in SW: [Ko�c et al. 96]

ECC '99 WPI

General Prime Fields GF (p): Hardware

recall: n= dlog2 pe

Idea: Compute n inner products in parallel

Best studied architecture: Montgomery multiplication

Input: A, B, where A=
P

n+2

i=0
ai2

i, B =
P

n+1

i=0
bi2

i

Output: A �B mod N

1. R0 = 0

2. for i = 0 to n+2 do

3. qi = Ri(0)

4. Ri+1 = (Ri + ai �B+ qi �N)=2 (?)

time complexity (radix 2): � n clock cycles

time complexity (radix r): � n=r clock cycles

area complexity: k � n gates, k constant

Rem: (?) is performance critical operation

ECC '99 WPI

General Prime Fields GF (p): Hardware

Remarks

1. is O(n) times faster than software

2. modular reduction is reduced to addition of long

numbers:

Ri+1 = (Ri + ai �B+ qi �N)=2

3.) use systolic array or redundant representation to

avoid long carry chains

4. further reading:

[Eldridge/Walter 93] for general HW,

[Blum 99] for FPGA

ECC '99 WPI

Mersenne Prime Fields GF (2n � 1)

Idea: Reduce modular reduction to addition.

Central relation: 2n � 1 mod p

Algorithm: let A;B 2 GF(2n � 1)

A �B = ch2
n

+ cl where ch; cl � 2
n � 1

A �B � ch + cl mod p

Complexity: Modular reduction requires 1 add (as op-

posed to (n=w)2 mult in the case of general primes).

Remarks:

� Modular mult complexity is � (n=w)2 inner products

� Roughly twice as fast as mult with general prime.

� GF(2n � c), c small, was proposed for ECC in

[Crandall 92]

ECC '99 WPI

Generalized Mersenne Prime Fields

see [NIST 99]

Idea: Generalize modulo reduction \trick" from 2n � 1

to primes

p= 2
nlw

� 2
nl�1w

� � � � � 2
n1w

� 1

where nl > nl�1 > � � � > n1 > 0

and w = 2i, often i = 16;32;64.

Let A;B 2 GF(p), and write A �B as:

A �B = c2nl�12
(2nl�1)w + c2nl�22

(2nl�2)w + � � �+ c12
w

+ c0

Coe�cients ci2
iw, i > nl, can be reduced recursively:

2
nlw

� �2
nl�1w

� � � � � 2
n1w

� 1 mod p

For instance:

2
(2nl�1)w

� �2
(nl+nl�1�1)w

� � � � � 2
(nl+n1�1)w

� 1 mod p

ECC '99 WPI

Gener. Mersenne Primes: Example

p= 2192 � 264 � 1 = 23�64 � 264 � 1 , w = 64

A �B = c52
320

+ c42
256

+ c32
192

+ c22
128

+ c12
64
+ c0

Reduction equations:

2320 � 2192 + 2128 modp

2256 � 2128 + 264 modp

2192 � 264 + 1 modp

A �B � c42
256

+ [c5+ c3]2
192

+ [c5 + c2]2
128

+ c12
64

+c0 mod p

A �B � [c5 + c3]2
192

+ [c5 + c4 + c2]2
128

+ [c4 + c1]2
64

+c0 mod p

A �B � [c5 + c4 + c2]2
128

+ [c5 + c4 + c3 + c1]2
64

+[c5 + c3 + c0] mod p

� Reduction requires no multiplication

� Modular mult complexity is � (n=w)2 inner products

� Roughly twice as fast as mult with general primes

� Speci�c primes are recommended by NIST for ECC

ECC '99 WPI

Extension Fields GF (2m)

� applicable to DL and ECC

� extremely well studied (compared to other charac-

teristics) since 1960s due to applications in coding

� choice of char = 2 was traditionally driven by hard-

ware implementations

� arithmetic is greatly inuenced by choice of basis

� bases proposed for applications:

1. standard (or polynomial) basis

2. normal basis

3. other (dual basis, triangular basis, : : :)

here: focus on polynomial basis.

ECC '99 WPI

GF (2m) Multiplication in Hardware

� active research area, many proposed architectures

� classi�cation according to time-area trade-o�

arch. type m #clocks #gates Remarks

(time) (area)

bit parallel any 1 O(m2) often \too big"

digit serial any m=D O(mD) D < m

hybrid Djm m=D O(mD) D < m

bit serial any m O(m) classical arch.

super serial any ms O(m=s) new, mainly

for FPGA [O/P 99]

main relevance for cryptography: bit serial, digit serial,

and hybrid multipliers

ECC '99 WPI

Bit Serial Multiplication

Standard basis GF multiplication:

A �B = (am�1x
m�1

+ � � � a1x+ a0)

(bm�1x
m�1

+ � � � b1x+ b0) mod P(x)

where ai; bi 2 GF(2).

Often: P(x) is trinomial or pentanomial

Two traditional architectures

� least signi�cant bit-�rst (LSB) multiplier

� most signi�cant bit-�rst (MSB) multiplier

(see, e.g., [Beth/Gollmann 89])

ECC '99 WPI

Least Signi�cant Bit-First Architecture

A �B = a0B(x)

+ a1[xB(x) mod P(x)]

+ � � �

+ am�1[x(x
m�2

B(x)) mod P(x)]

Architecture if P(x) is trinomial:

c m-10c 1c c t m-2c

0b b1 bt m-2b m-1b

2a0a a1, ,

In every clock cycle compute:

1. mult by x and mod red.: x� (xi�1B(x)) mod P(x)

2. scalar mult by ai and add: + ai � [xiB(x)]

time complexity: m clock cycles

area complexity: cm gates, c small

ECC '99 WPI

Hybrid Multipliers

� work for composite �elds GF((2n)m) (see [P/S 97])

�) total extension degree (nm) can't be prime

� trades space for speed (faster but larger than LSB)

� least signi�cant and most signi�cant architectures

are possible

� architectures analogous to bit serial mult (LSB,

MSB)

� fundamental idea: process n sub�eld bits in parallel

Recall: Element representation in binary �elds A 2 GF(2nm)

A(x) = anm�1x
nm�1

+ � � �+ a1x+ a0 ; ai 2 GF(2)

Element representation in composite �elds A 2 GF((2n)m)

A(x) = am�1x
m�1

+ � � �+ a1x+ a0 ; ai 2 GF(2
n

)

ECC '99 WPI

A �B = a0B(x)

+ a1[xB(x) mod P(x)]

+ � � �

+ am�1[x(x
m�2B(x)) mod P(x)]

Architecture if P(x) is trinomial:

a1a0

0c

0p

n

0 1 tb b b

c1 ct

m-1b

cm-1

,

tp

n
n

n

n

n

n

- gate costs occur in GF(2n) bit parallel multipliers

- area compl.: � mn2 AND + � mn2 XOR

- time compl.: m) n times faster than LSB

ECC '99 WPI

Digit Multipliers

� relatively new [Song/Parhi 96]

� trades space for speed (faster but larger than LSB)

� time and area complexity similar to hybrid multipli-

ers

� works for any m

� LSD and MSD are possible

� fundamental idea: Process D > 1 bit at a time.

ECC '99 WPI

Least Signi�cant Digit Architecture

1. Step: Break A(x) down into s digit polynomials,

where s= dm=De.

A(x) = am�1x
m�1 + � � �+ a1 + a0 ; ai 2 GF(2)

A(x) = ~as�1(x) x
(s�1)D + � � �+~a1(x) x

D +~a0(x)

where

~ai(x) = ai;D�1x
D�1 + � � �+ ai;1x+ ai;0 ; ai;j 2 GF(2)

2. Step: Digit wise multiplication

AB = ~a0(x)B(x) mod P(x)

+ ~a1(x)[(x
DB(x)) mod P(x)] mod P(x)

+ ~a2(x)[x
D(xDB(x)) mod P(x)] mod P(x) + � � �

+ ~as�1(x)[x
D(xD(s�2)B(x)) mod P(x)] mod P(x)

Operations per clock cycle:

1. multiplication by xD and modular reduction:

xD � [x(i�1)DB(x) mod P(x)]

2. bit parallel multiplication of D �m bit polynomials:

~ai(x) � [x
iDB(x) mod P(x)]

ECC '99 WPI

2. Step:

AB = ~a0(x)B(x) mod P(x)

+ ~a1(x)[(x
DB(x)) mod P(x)] mod P(x)

+ � � �

+ ~as�1(x)[x
D(xD(s�2)B(x)) mod P] mod P

m

m

D x m bit
 mult

m

Accu A B

B

X mod PD

~ ~aa1 0 D

- mult by xD is mainly a bit permutation

- gate costs occur in D �m bit parallel mult

- area compl.: � mD AND + � mD XOR

- time compl.: m=D) D times faster than LSB

ECC '99 WPI

Optimal Extension Fields GF (pm)

� relatively new (see [B/P 98])

� main applications in ECC

� small extension degrees of m � 3 : : :8 are common

� very fast arithmetic on 64 bit processors

ECC '99 WPI

Optimal Extension Fields GF (pm)

Idea: Fully exploit the fast integer arithmetic available

in modern microprocessors

Design Principles

1. Choose sub�eld GF(p) to be close to the proces-

sor's word size

! fast sub�eld multiplication

2. Choose sub�eld GF(p) to be a pseudo-Mersenne

prime, that is, p = 2n � c, for \small" c

! fast sub�eld modular reduction

3. Choose m so that an irreducible binomial

P(x) = xm � ! exists

! fast extension �eld modular reduction

ECC '99 WPI

Sub�eld Multiplication: ai � bj mod p

Note: Sub�eld mult is time critical operation

Important: p= 2n � c, where c � 2n=2.

) 2n � c (mod (2n � c))

c

n bits

b

2n-1

a

 j

i

a i b
 j h l

0n n-1

h; l � 2
n
� 1

ai bj = 2
nh+ l

ai bj � ch+ l mod p

ECC '99 WPI

Sub�eld Multiplication: ai � bj mod p

c * h

l

n bits

h’ l’

n/2 bits

aibj � ch+ l mod p = 2nh0 + l0 � ch0 + l0 mod p

c * h’+ l’

l’

0

c * h’

n+1

Sub�eld mult complexity: 3 mults by c + adds, shifts

OEF mult complexity: 3(m2 +m � 1) int mult (very

low for small m)

Rem: Major speed-up if c = 1, i.e., p is Mersenne prime

ECC '99 WPI

Some Research Problems

� Fast Galois �eld arithmetic in software for general

�eld polynomials?

� Hardware arithmetic architectures for some \new"

�eld types, such as generalized Mersenne prime �elds

and OEFs?

� Other GF(2m) bases which lead to faster arith-

metic?

� Thorough comparison of standard basis vs. normal

basis vs. : : :, especially in software?

� Faster inversion in GF(p)?

ECC '99 WPI

References

[1] D. Bailey and C. Paar. Optimal extension �elds for

fast arithmetic in public-key algorithms. In H. Krawczyk,

editor, Advances in Cryptography | CRYPTO '98, vol-

ume LNCS 1462, pages 472{485. Springer-Verlag, 1998.

[2] T. Beth and D. Gollmann. Algorithm engineering for

public key algorithms. IEEE Journal on Selected Areas

in Communications, 7(4):458{466, 1989.

[3] T. Blum. Modular exponentiation on recon�gurable

hardware. Master's thesis, ECE Dept., Worcester Poly-

technic Institute, Worcester, USA, May 1999.

[4] R. Crandall. Method and apparatus for public key ex-

change in a cryptographic system. United States Patent,

Patent Number 5159632, October 27 1992.

[5] S. E. Eldridge and C. D. Walter. Hardware imple-

mentation of Montgomery's modular multiplication al-

gorithm. IEEE Transactions on Computers, 42(6):693{

699, July 1993.

[6] C�. Ko�c, T. Acar, and B. Kaliski. Analyzing and

comparing Montgomery multiplication algorithms. IEEE

Micro, 16:26{33, 1996.

[7] A. J. Menezes, P. C. van Oorschot, and S. A. Van-

stone. Handbook of Applied Cryptography. CRC Press,

1997.

[8] D. Naccache and D. M'Ra��hi. Cryptographic smart

cards. IEEE Micro, 16:14{23, 1996.

[9] National Institute of Standard and Technology. Rec-

ommended elliptic curves for federal government use.

available at http://csrc.nist.gov/encryption, May 1999.

[10] G. Orlando and C. Paar. A super-serial Galois

�elds multiplier for FPGAs and its application to public-

key algorithms. In Seventh Annual IEEE Symposium

on Field-Programmable Custom Computing Machines,

FCCM '99, Napa Valley, USA, April 12{23 1997.

[11] C. Paar and P. Soria Rodriguez. Fast arithmetic

architectures for public-key algorithms over Galois �elds

GF((2n)m). In W. Fumy, editor, Advances in Cryptog-

raphy | EUROCRYPT '97, volume LNCS 1233, pages

363{378. Springer-Verlag, 1997.

[12] L. Song and K. K. Parhi. Low energy digit-serial/

parallel �nite �eld multipliers. Journal of VLSI Signal

Processing, 19(2):149{166, June 1998.

ECC '99 WPI

