
Constructing Secure Hash Functions by
Enhancing Merkle-Damg̊ard Construction

Praveen Gauravaram1, William Millan1, Ed Dawson1,
and Kapali Viswanathan2

1 Information Security Institute (ISI)
Queensland University of Technology (QUT)

2 George Street, GPO Box 2434, Brisbane QLD 4001, Australia
p.gauravaram@isi.qut.edu.au, {b.millan, e.dawson}@qut.edu.au

2 Technology Development Department, ABB Corporate Research Centre
ABB Global Services Limited, 49, Race Course Road, Bangalore - 560 001, India

kapaleeswaran.v@in.abb.com

Abstract. Recently multi-block collision attacks (MBCA) were found
on the Merkle-Damg̊ard (MD)-structure based hash functions MD5,
SHA-0 and SHA-1. In this paper, we introduce a new cryptographic
construction called 3C devised by enhancing the MD construction. We
show that the 3C construction is at least as secure as the MD construc-
tion against single-block and multi-block collision attacks. This is the
first result of this kind showing a generic construction which is at least
as resistant as MD against MBCA. To further improve the resistance of
the design against MBCA, we propose the 3C+ design as an enhance-
ment of 3C. Both these constructions are very simple adjustments to
the MD construction and are immune to the straight forward extension
attacks that apply to the MD hash function. We also show that 3C
resists some known generic attacks that work on the MD construction.
Finally, we compare the security and efficiency features of 3C with other
MD based proposals.

Keywords: Merkle-Damg̊ard construction, MBCA, 3C, 3C+.

1 Introduction

In 1989, Damg̊ard [2] and Merkle [13] independently proposed a similar iter-
ative structure to construct a collision resistant cryptographic hash function
H : {0, 1}∗ → {0, 1}t using a fixed length input collision resistant compression
function f : {0, 1}b × {0, 1}t → {0, 1}t. Since then, this iterated design has
been called Merkle-Damg̊ard (MD) construction which influenced the designs
of popular dedicated hash functions such as MD5, SHA-0 and SHA-1. The de-
sign motivation of the MD construction is that if the compression function f is
collision resistant then so is the resultant iterated hash function H .

It is known that, a compression function f secure against the fixed initial value
(IV) collisions is necessary but not sufficient to generate a secure hash function

L. Batten and R. Safavi-Naini (Eds.): ACISP 2006, LNCS 4058, pp. 407–420, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

408 P. Gauravaram et al.

H [12, p.373]. The latest multi-block collision attacks (MBCA) on the hash
functions MD5, SHA-0 and SHA-1 [19, 1, 17, 18] prove this insufficiency. These
attacks clearly show that these iterated hash functions do not properly preserve
the collision resistance property of their respective compression functions with
the fixed IV. The MBCA on hash functions leave open the questions; Is it possible
to design collision resistant hash functions relying on the collision resistance of
the compression function with fixed IV?, Is it possible to design a simple and
efficient structures that offer more resistance to MBCA than the MD structure?

In this paper, we attempt to answer these questions. Our motivation is to show
that while consecutive iterations of the compression function is necessary for the
implementation efficiency of a hash function, the way the compression function
is iterated or used is quite important for the security of the hash function. In
this paper, we propose a new mode of operation for the MD construction called
3C. The 3C hash function processes the intermediate chaining values of the
MD construction by maintaining a second internal chaining variable. The 3C
construction is the simplest modification of the MD construction that one can
obtain to improve its security against MBCA.

We show that the 3C construction is at least as secure as MD construction
against collision attacks, in particular against MBCA. That is, if there exists an
adversary that finds a multi-block collision on 3C then that adversary would
have also found a multi-block collision on the MD hash function. In addition,
we show that if there exists an adversary that can perform an MBCA on a t-
bit MD hash function based on a given compression function then the security
of 3C against MBCA instantiated with the same compression function could
be as much as 2t times the security of MD against MBCA, depending on the
subtle properties of the compression function. We conjecture that this security
multiplier of 3C against MBCA is close to 2t for any compression function which
is secure against single-block collision attacks. We note that multiplier of at least
2t/2 is sufficient to provide immunity to MBCA. Next, extra memory is added
to the 3C construction and call this variant 3C+ and analyse the difficulty in
implementing an MBCA on it compared to 3C. Analysis for 3C against known
generic attacks [3, 8, 9] is given which applies to 3C+ as well. We found that
while Joux’s generic attacks [8] work on 3C, the known generic second preimage
attacks [3, 9] found on the MD hash function do not work.

In Section 2, we describe MD hashing and collision attacks on it. In Section 3,
new observations on the MBCA are discussed. In section 4, 3C is introduced
and its analysis against MBCA is covered in Section 5. In Section 6, analysis of
3C against generic attacks is given and 3C is compared with some other similar
hash function proposals in Section 7. In Section 8, 3C+ is introduced and is
analysed against MBCA. The paper is concluded in Section 9.

2 MD Hashing and Collision Attacks

A collision resistant cryptographic hash function H following MD structure is
a function that hashes a message M ∈ {0, 1}∗ to outputs of fixed length {0, 1}t.

Constructing Secure Hash Functions by Enhancing MD Construction 409

The specification of H includes the description of the compression function f ,
initial state value (IV) and a padding procedure [12, 14]. Every hash function
fixes the IV (fixed IV) with an upper bound on the size |M | of the input M . The
message M is split into blocks M1, . . . , ML−1 of equal length b where a block
ML containing the length |M | (MD strengthening) [12] is added. Each block
Mi is iterated using a fixed length input compression function f computing
Hi = f(Hi−1, Mi) where i = 1 to L and finally outputting HIV (M) = HL as
shown in Fig 1.

M1 M2 ML−1 ML

IV HIV (M) = HL
ff ff

Fig. 1. The Merkle-Damg̊ard (MD) construction

Collision Attacks on the Compression Functions
A hash function H is said to be collision resistant if it is hard to find any two
distinct inputs M and N such that H(M) = H(N). For a formal definition
see [15]. A hash function H is said to be near-collision resistant if it is hard to
find any two distinct inputs M and N such that H(M) ⊕ H(N) = Δ has some
small weight. Based on the IV used in finding collisions, collision attacks on the
compression functions are classified as follows [12, p.372]:

1. Collision attack: collisions using a fixed IV for two distinct messages
(e.g. [16]). We call them Type 1 collisions.

2. Semi-free-start collision attack: collisions using the same random (or arbi-
trary) IV for two distinct message inputs(e.g. [5]). We call them Type 2
collisions.

3. Pseudo-collision attack: free-start collision attack using two different IVs for
two distinct message inputs(e.g. [4]). We call them Type 3 collisions.

Multi-block Collision Attacks on Hash Functions
A multi-block collision attack (MBCA) technique on an iterated hash function
finds two colliding messages each of at least two blocks in length. The recent
collision attacks on MD5 [19], SHA-0 [1, 17] and SHA-1 [18] are multi-block
collision attacks where collisions were found by processing more than one message
block. Since, by far, most of the possible messages are more than a single block
and collisions are distributed randomly, it is fair to say that most collisions that
could exist are in fact multi-block collisions. Hence, any result improving the
resistance against MBCA is very significant.

3 New Observations on Multi-block Collision Attacks

This section aims at developing the understanding of the multi-block collision
attacks on hash functions by linking several parts of the literature. We observed

410 P. Gauravaram et al.

that multi-block collision attacks on hash functions can further be classified into
three categories based on the manner in which the compression functions are
attacked. This leads to choosing particular message block formats that result
in an MBCA. For example, 2-block collision attacks can be classified into three
types as shown in Table 1 based on the message formats chosen.

Table 1. Classification for 2-block collision attacks

MBCA Type Message formats
MBCA-1 (M1, M2) and (M1, N2)
MBCA-2 (M1, M2) and (N1, M2)
MBCA-3 (M1, M2) and (N1, N2)

While the 2-block collision attacks on MD5 [19] and SHA-1 [18] belong to
MBCA-3 category, the 2-block collision attack on SHA-0 [17] belongs to an
MBCA-1 category1. In an MBCA-3, near-collisions found after processing first
message blocks were converted to full collisions as was demonstrated on MD5
and SHA-1. The Type 1 collisions were (reportedly) hard to find for the sin-
gle compression functions of these hash algorithms. For example, the attacks
on MD5 and SHA-1 use near-collisions obtained after processing the first dis-
tinct message blocks (M1, N1) as a tool to find collisions for the second distinct
message blocks (M2, N2). This technique can be generalized to more than two
blocks as the 4-block collision attack on SHA-0 [1]. Similarly, 2-block MBCA-1
and MBCA-2 attack techniques can be generalized to more than two blocks.
For example, in an MBCA-1 technique [17], a few initial message blocks to be
processed can be chosen to be the same to satisfy certain conditions required in
the attack followed by the processing of two different message blocks that give
a collision.

We note that in a 2-block MBCA, collisions found on the second blocks are
basically a special case of Type-3 collisions for the compression function as these
collisions require processing of two equal (MBCA-1) or different blocks (MBCA-2
and MBCA-3) using the fixed IV of the hash function. That is, a 2-block MBCA-3
on the MD hash function is a combination of a near-collision and a special Type-3
on the compression function. The collision on the second compression function is
a special Type-3 as it requires a particular nearly collided value obtained based on
certain conditions essential for the attack as inputs for the second block messages.
In addition, near-collisions do not need to begin after processing message blocks
based on the fixed IV of the hash function. They can also be due to an arbitrary
chaining value when the attacker chooses the same blocks initially and starts an
MBCA-3 after processing those same initial blocks. Hence multi-block difference
collisions, whether they start from the fixed IV or arbitrary chaining values are
clearly a chain of special Type 3 collisions.

1 The first full 4-block collision attack on SHA-0 [1] also belongs to an MBCA-3
category except that differences in the message blocks span over more than two
blocks.

Constructing Secure Hash Functions by Enhancing MD Construction 411

Table 2. Resistances of some compression functions

Compression function Type-1 Type-2 Type-3 Special Type-3
MD4 NO [16] NO NO -
MD5 YES NO [5] NO [4] NO [19]
SHA-0 YES NO [19] YES NO [1]
SHA-1 YES YES YES NO [18]
RIPEMD NO [16] NO NO -
HAVAL-128 NO [16] NO NO -

From these observations on MBCA, it is clear that the designers of MD5,
SHA-0 and SHA-1 have not considered security of the compression functions of
these hash functions against special Type-3 collisions in their design criteria.
Preneel pointed out more than a decade back [14] that most hash functions
are not designed to meet this criteria. Note that SHA-1 did not exist then.
Even Damg̊ard’s [2] proof implicitly notes that the necessity of special Type-3
collision resistance for the compression functions. In addition, to attain Type-
3 collisions, the two IVs do not have to be significantly different as suggested
in [12, p.372]. For example, the two IVs in the Type-3 collision attack on the
compression function of MD5 [4] differ in only 6 bits. From the known attacks
on hash functions, we derived Table 2 assuming that if the compression function
is not Type-1 collision resistant then it is neither Type-2 nor Type-3 collision
resistant. The sign “-” in the Table 2 shows does not apply.

4 The 3C Construction: An Enhanced MD Construction

The 3C construction is shown in Fig. 2 and 3. This structure has an accumula-
tor XOR function iterated in the accumulation chain (whose chaining value is
denoted by ui in Fig. 3) and a compression function f (f , for example, is the
compression function of MD5 or SHA-1) iterated in the cascade chain (whose
chaining value is denoted by wi in Fig. 3) exactly as in the MD construction.
Clearly, 3C is a very simple and efficient modification to the MD construction.
One economic benefit of our proposal is that any software currently implement-
ing an MD-style hash function can be very simply altered to adopt the 3C
structure, without altering the underlying compression function.

3C hashing process: For i = 1 to L, let wi and ui be the chaining values in the
cascade chain and accumulation chain respectively. Then, as in the MD hash, for
i = 1 to L, wi = f(wi−1, Mi) where w0 = IV and u1 = w1. In the accumulation
chain, for i = 2 to L, ui = ui−1 ⊕ wi. The result uL in the accumulation chain is
denoted with Z. An extra compression function f , denoted by g, is added at the
end and the hash result of 3C is g(Z, wL). To process one block data, the com-
pression function is executed three times; first to process the data block, next to
process the padded block (MD strengthening) and finally the block Z formed in
the accumulation chain as shown in Fig 3. If the size of data is less than block size
b of f then zeros are appended to the data to make a b-bit data block.

412 P. Gauravaram et al.

f f f

P
A
D

f g

M1 M2 ML−1 ML

IV

Z
Z

Fig. 2. The 3C-hash function

5 Security Analysis of the 3C Hash Function

In this section, we investigate the security of 3C against single-block and multi-
block collision attacks. We conclude that the security of 3C against single-block
collision attacks is upper bounded by the collision security of the compression
function and its security against MBCA is not less than that on MD. Fig 3 is
used to explain the analysis.

f f

ui−2

wi−2 wi−1

Mi−1 Mi

ui−1
ui

wi

Δ = 0
Δ = 0

Δ = 0

Fig. 3. Creating an internal collision for 3C

Consider a 3C hash function H . Consider two distinct messages M �= N
of same length L (including padding) such that H(M) = H(N) is the re-
sult of a collision on 3C. The messages M and N are expanded to sequences
(M1, . . . , ML) �= (N1, . . . , NL) where the last data blocks are the padded blocks
containing the length L of the messages. We denote by (HM

i ,HN
i) and (ui,vi)

(for i = 1 to L), the internal hash values obtained on the cascade chain and
accumulation chain while computing H(M) and H(N) respectively. We denote
(uL,vL) by (ZM ,ZN) and ZM = PAD(ZM), ZN = PAD(ZN). All possible types
of collisions on H are given in Definition 1.

Definition 1. Every collision on H takes one of the following forms:

1. Terminal/Final collisions on H: They involve one of the following cases:
– HM

L �= HN
L and ZM �= ZN with g(HM

L , ZM) = g(HN
L , ZN)

– HM
L = HN

L and ZM �= ZN with g(HM
L , ZM) = g(HN

L , ZN)
– HM

L �= HN
L and ZM = ZN with g(HM

L , ZM) = g(HN
L , ZN)

2. Internal collisions on H: HM
L = HN

L and ZM = ZN implies g(HM
L , ZM) =

g(HN
L , ZN). �

Constructing Secure Hash Functions by Enhancing MD Construction 413

Definition 2. A compression function f : {0, 1}b → {0, 1}t is Type-1 (resp.Type-
2, Type-3) collision resistant if the best possible collision attack on it using fixed
IV (resp. arbitrary IV, different IVs) is the birthday attack which takes about 2t/2

operations of f . For sufficiently large t, it is computationally infeasible to perform
this attack.

Lemma 1. Against single block collision attacks, the security of 3C is exactly
equal to the security of MD when both the constructions are instantiated with
the same f .

Proof: By inspection of 3C structure in Fig 3, it is clear that it contains MD
construction in it. Hence, an adversary that is able to find a single block colli-
sion for the f -function is able to construct a collision for the hash function with
virtually no additional effort. It follows that the collision security of 3C is upper
bounded by the collision security of the f -function. ��

Apart from single block collision attacks, the only other approach to find col-
lisions for 3C is to use multi-block messages. This invites the opportunity to
use messages with different lengths. For two messages with the same length,
an internal collision for 3C gives an actual collision for 3C. However, for two
messages of different lengths, in general, this is not the case due to the different
padding strings used as a virtual message block in the second last iteration of
the compression function. Thus the security analysis of 3C can be restricted
to considering internal collisions generated by pairs of messages with the same
length. We now examine the nature of internal collisions for 3C.

Lemma 2. To get an internal collision on 3C at iteration i, it is required that
a collision in the accumulation chain exists at iteration i − 1.

Proof: An internal collision in 3C at iteration i is a simultaneous collision in
the accumulation chain and cascade chain at iteration i. For messages M and
N to collide on the cascade chain at iteration i, the condition that HM

i ⊕HN
i =

0 must be satisfied. Now for an internal collision on 3C, the condition that
(HM

i ⊕HN
i)⊕ (ui−1 ⊕vi−1) = 0 must be satisfied. This condition will occur only

when ui−1 ⊕ vi−1 = 0, which is basically a collision in the accumulation chain
at iteration i − 1. ��
Remark: A collision in the accumulation chain at iteration i − 1 is achieved by
creating a sequence of MD chain differences where the chaining difference in
the MD chain at iteration i − 1 is the XOR sum of all the previous differences
in the MD chain until the iteration i − 2.

Lemma 3. Assuming the existence of a collision in the accumulation chain at
iteration i − 1, it requires a single-block special Type-3 collision attack on f to
create an internal collision in 3C at iteration i.

Proof: By inspection of 3C structure in Fig 3, a special Type-3 collision attack
must be performed on the f -function at iteration i. It is a special Type-3 collision

414 P. Gauravaram et al.

attack as the attacker must use the internal chaining values of the cascade chain
at iteration i − 1 that created a collision in the accumulation chain as inputs
to get a collision at iteration i. This is equivalent to performing a single-block
special Type-3 collision attack on f at iteration i. ��
Now we can consider the above process in two ways: as two separate single block
collision attacks, or as a multi-block collision attack on the MD-chain with an extra
t-bit requirement. We ignore the first option as the single block collision security
of the f -function is already an upper bound for the collision security of 3C from
Lemma 1. The second case can be achieved in either of the following two ways:

1. Assume the existence of an MBCA on the MD-chain when it is instantiated
with some given compression function. Then the MBCA on the MD-chain
has to be repeated until the internal chaining differences on the MD-chain
happen to produce the required collision on both the accumulation and cas-
cade chains. This option requires repeating the attack at most 2t times
under an assumption that the internal chaining differences are uniformly
distributed.

2. Devise an entirely new MBCA for the 3C when instantiated with some given
compression function satisfying some conditions on the differences.

Now, the above two cases result in the following theorems:

Theorem 1. If there is an MBCA on the MD construction instantiated with a
given f then the security of 3C instantiated with the same f against an MBCA
is at most 2t times the security of MD against MBCA.

Proof: To obtain a collision in the accumulation chain required by Lemma 2,
an MBCA on the MD chain must be repeated, where each attempt succeeds
with probability 2−t. That is, the security of 3C against MBCA is some multiple
([1, 2t]) of the security against MBCA for the MD. ��
The difficulty of providing a tight quantitative analysis for 3C against MBCA
prevents a more precise formal proof for the practical collision security of 3C at
this stage leading to the following conjecture.

Conjecture: From the above analysis, we conjecture that the improvement in
the security of 3C against MBCA is close to 2t over the security of MD against
MBCA.

Theorem 2. The security of 3C against an MBCA is not less than the security
of MD against MBCA.

Proof: Every internal collision for 3C contains within it a collision for MD.
There exist collisions for MD that are not internal collisions for 3C. Thus the
security of 3C against MBCA is lower bounded by the security of MD against
MBCA. ��
Remarks: While at least two blocks must be processed to find a multi-block
collision on MD, at least three blocks must be processed to create a multi-block

Constructing Secure Hash Functions by Enhancing MD Construction 415

collision on 3C. For example, the difference pattern (0, Δ, Δ, 0) which creates a
collision on MD based on a given f , will also create a collision on 3C based on
the same f . But note that its reduced pattern (0, Δ) would create a collision for
MD but not for 3C. In Section 8, we propose a construction called 3C+ with
similar properties to 3C as an improvement of 3C for more protection against
MBCA.

6 Security Analysis of 3C Against Known Generic
Attacks

Analysis against Joux attacks
Joux [8] described a generic multicollision attack on the MD hash where con-
structing 2d-collisions costs d times as much as building ordinary 2-collisions.
This attack can be used as a tool to find multi (2nd) preimages very effectively
on the MD hash. We note that these attacks work on 3C as effectively as they
are on the MD hash. Following [10], our adversaries are probabilistic algorithms
and we focus on the expected running time. Running time is described asymp-
totically. We use the symbol O for the “expected running time is asymptotically
at most”.

In a multicollision attack on 3C, the attacker finds collisions on every function
f in the cascade chain (for example using the birthday attack) that would result
in a collision at the subsequent point of the XOR operation in the accumulation
chain. If the function f in the cascade chain of 3C is modeled as a random
oracle, as an upper bound, the total complexity to find 2d-collisions on 3C is
O(d ∗ 2t/2).

We note that the attack technique used to find D-way (2nd) preimages on
the MD hash for a given hash value works on 3C as well. For example on
3C, the attacker first finds D-collisions on d-block messages M1, . . . , M2d

with
Hd = H(M1) = . . . = H(M2d

) with a complexity of O(d ∗ 2t/2). Then she finds
the block Md+1 such that the execution of the last two compression functions
would result in the given digest Y . The later task takes time O(2t) as the last
two compression functions are treated as a single component. Hence the total
cost of finding D-preimages for 3C is O(d ∗ 2t/2 + 2t). To find D-2nd preim-
ages for a given message M , the attacker first computes the hash H(M) of the
message M and then finds D-preimages as explained above that all collide to
H(M).

Analysis against second-preimage attacks
Dean [3] has demonstrated that for hash functions with fixed point compression
functions, it would cost less than 2t effort to find second preimages. Kelsey
and Schneier [9] have expanded this result using Joux multicollision finding a
technique to find second preimages for hash functions based on any compression
function for an effort less than 2t. Both these attacks use the notion of expandable
messages- patterns of messages of different lengths that all process to internal
hash values without considering MD strengthening. Following [9], an (a, b)-
expandable message will take on any length between a and b message blocks.

416 P. Gauravaram et al.

For a compression function Hi = f(Hi−1, Mi), a fixed point is a pair (Hi−1, Mi)
such that Hi−1 = f(Hi−1, Mi). The compression functions of many hash func-
tions such as MD5 and SHA-1 are Davies-Meyer designs with a block cipher op-
erating in a feed-forward mode. For these compression functions, there exists one
and only one fixed point for every message block. For a t-bit hash function with
a maximum of 2d blocks in its messages, using fixed points it costs about 2t/2+1

compression function computations to find (1, 2d)-expandable messages [9]. In the
3C design, since the chaining state is twice as large as the hash value, a fixed point
is defined for both the chains and this is obtained for any message block Mi, only
when f(0, Mi) = 0 and this occurs with a probability of 2−t. Hence having fixed
points for the compression functions will not assist in finding second preimages for
less than 2t work on the 3C design.

It was demonstrated in [9] that finding a (d, d + 2d − 1) expandable message
for any compression function with t-bit state takes only d × 2t/2+1 effort. The
procedure involves first finding colliding pair of messages, one of one block and
the other of 2d−1 + 1 blocks starting from the initial state of the hash function.
Then using the collided state as the starting state, collision pair of length either 1
or 2d−2+1 is found and this process is continued until a collision pair of length 1
or 2 is reached. It was shown in [9] that applying this generic expandable message
finding algorithm to find the second preimage for a message of 2d + d + 1 -block
length message costs d × 2t/2+1 + 2n−d+1 compression function computations.
When this attack technique is applied on 3C, a collision at both the chains is
required and this costs an effort of 2t at every stage as the size of the internal
state is twice that of the hash size.But if different parts of the internal state of
3C are attacked separately, 3C might not resist the second preimage attack.

7 Comparison of 3C with Other Hash Function Proposals

Ferguson and Schneier [6] proposed double-hashing scheme HIV (HIV (x)) to pre-
vent straight-forward length extension attacks. It is obvious that multi block col-
lision attacks work on this nested construction as effectively as they are on MD.
As on the MD hash, 2d-collisions can be found on their scheme with a complex-
ity of O(d.2t/2) and finding 2d-(2nd) preimages would take time O(d.2t/2 + 2t).
Gauravaram et al. [7] proposed CRUSH hash function based on iterated length
halving technique as an alternative for MD hash function well before the inven-
tion of MBCA on MD5 anticipating the single point of failure of hash functions in
the MD family. CRUSH is immune against extension attacks and resists known
MBCA techniques.

Lucks [10] proposed wide-pipe and its special case double-pipe hash designs
as failure-tolerant designs showing that they provide more resistance against
generic attacks [8] than the MD hash. While wide-pipe hash maintains more
internal state than the hash size t using larger compression functions, double-pipe
hash maintains twice the hash size as the internal state size by employing one
single t-bit compression function used twice in parallel for each message block.
In contrast, one could see 3C structure as special cases of wide-pipe hash and

Constructing Secure Hash Functions by Enhancing MD Construction 417

is optimally efficient as no new large compression function needs to be designed
for its execution. The wide-pipe, 3C and double-hashing proposals resist the
straight-forward length extension attacks which is a well-known weakness of
the MD hash function. Informally, given the digest H of the message M , it
is straight forward to compute N and H ′ such that H ′ = H(M ||N) even for
unknown M but for known |M |. The attack uses H(M) as the internal hash
value to compute H(M ||N). All these hash functions provide t/2-bit level of
security against straight forward extension attacks as long as their design criteria
is satisfied; for example, wide-pipe hash requires processing of the compression
function with an internal state at least twice the size of the hash value, 3C
requires at least three calls to the compression function. Note that 3C prevents
extension attacks with out using large compression function as in the wide-pipe
hash.

While the wide-pipe and double-pipe hash functions are designed to provide
more resistance against generic attacks, 3C and 3C+ are enhancements of MD
resisting recent multi-block collision attacks on the MD based hash functions. In
addition, one can combine the wide-pipe hash and the 3C construction to attain
a hybrid construction called 3CWP (see Fig 4) attaining additional protection
against both the generic attacks and MBCA.

A
D

P
x1 x2 xn xn+1

IV
f ′

f ′f ′f ′f ′
f ′′

Z

Z g

Fig. 4. The 3CWP hybrid construction

From the performance point of view, 3C is slightly more expensive than MD
especially when it is used to process short messages as the former requires at
least three iterations of the compression function to process an arbitrary length
message. To process 1-block (resp. 2-block) message, the running time of the 3C
is twice (resp. 1.5 times) that of MD. On an Intel Pentium 4 3.2GHz processor,
3C based on the compression of MD5, incurs about 0.36% overhead and 3C
with the compression function of SHA-1 incurs about 0.27% overhead when these
functions are used to process long messages. 3C requires an extra iteration of
the compression function similar to the double hashing proposal [6] and is as
efficient as this scheme for the processing of long messages and unlike the double
hashing scheme, 3C is a single hashing scheme.

8 The 3C+ Construction: An Enhanced 3C Construction

Fig 5 shows the 3C+ construction where a third internal chain called final chain
has been added on top of the cascade and accumulation chains of 3C. In 3C+,

418 P. Gauravaram et al.

C

gIV

P

A

D

x1 x2 x3 x4 x5 xn+1

ffffff

Fig. 5. The 3C+ hash construction

we call accumulation chain as the middle chain. The final chain in 3C+ slightly
differs in the way it accumulates data from the accumulation chain of 3C as
it accumulates data from the cascade chain but the accumulation starts after
processing the second message block. The final compression function f (denoted
by g in Fig 5) takes as “message” the concatenation of the accumulated data
from the middle and final chains, appropriately padded.

To find a multi-block collision on 3C+ the attacker has to get collisions
simultaneously on all the three chains. To create a simultaneous collision on all
the three chains at iteration i, the chaining difference on the cascade chain at
iteration i− 1 (say Δi−1) must cancel the differences accumulated in the middle
and final chains till the iteration i − 2. That is, the middle and final chains
must maintain an equal difference Δi−1 until the iteration i − 2 of the function
f for a cancellation at iteration i − 1. This is impossible if middle and final
chains do not start with the same difference before iteration i − 2. That is, if
an attacker finds two colliding messages that have identical first message blocks,
then these two chains begin with a difference zero. This implies that a minimum
of four message blocks need to be processed to find an MBCA on 3C+. For
example, the pattern (0, 0, Δ, Δ, 0) creates a simultaneous collision on all the
chains after processing four blocks. From this discussion, it is clear that 3C+
structure demands crafting and maintaining the same difference in both the final
and middle chains until a multi-block collision is found.

Finally, we note that if the input to the final chain is taken from the mid-
dle chain rather than from the cascade chain, the difference pattern (0, Δ, Δ, 0)
that creates a collision on MD and 3C will also create a collision on this modi-
fied construction of 3C+ and the MBCA security of this construction is lower
bounded by 3C and MD. Note this pattern does not create a collision on 3C+.
This justifies our statement that the security of a hash function depends on the
way the compression function is used in constructing a hash function.

We note that one can construct many variants for our 3C and 3C+ designs
by replacing XOR functions with any function in such a way that the new con-
struction is at least as secure as MD. Here we provide two examples. If the XOR
function in 3C is replaced with the function f then this modified construction
resembles double pipe hash in some way and is less efficient than 3C against
MBCA. The chaining values on the cascade chain after the second iteration of
f will be used as data block (by appending 0’s to chaining values) inputs for the
compression functions in the accumulation chain. Clearly the amount of control
that an attacker can have on these blocks to create an MBCA is less than 3C.

Constructing Secure Hash Functions by Enhancing MD Construction 419

A slight variant of 3C+ whose cost relative to 3C bound to be nearly as small
as XOR can be designed by interpreting the t-bit chaining value in the final
chain as an element of GF(2t) and multiplying it by 2 at each step. If the final
chain accumulation process starts after the first iteration of f unlike in 3C+
then this structure results in a final chain accumulation equation that resembles
Galois-Carter-Wegman structure of GHASH in [11].

9 Conclusion

The recent cryptanalysis of hash functions MD5, SHA-0, SHA-1 exploited the
MD iterative structure of these hash functions using multi-block collision search
techniques. The proposed 3C and 3C+ variants to the MD construction are at
least as resistant as MD against MBCA. The constructions can be implemented
by simple adjustments to the existing MD-style implementations. This paper is
the first paper to introduce solutions to MBCA on MD based hash functions
since they were first identified by Wang et al on MD5 [16]. This paper will not
and should not be taken as the last step but should be regarded by the Crypto
community as the first step to improve the general design of hash functions.

Acknowledgments

Thanks to anonymous reviewers of ACISP 2006 for many useful comments on
several aspects of the paper and their valuable insights. Many thanks to Suganya
Annadurai, Paulo Barreto, Matt Henricksen, John Kelsey, Lars Knudsen, Adrian
McCullagh, David McGrew, Juanma González Nieto, Vincent Rijmen and Søren
Thomsen for their encouragement and comments on the analysis, design and
performance aspects presented in the earlier drafts.

References

1. Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and
William Jalby. Collisions of SHA-0 and Reduced SHA-1. In Ronald Cramer, editor,
Advances in Cryptology - EUROCRYPT 2005, volume 3494 of Lecture Notes in
Computer Science, pages 36–57. Springer, 2005.

2. Ivan Damgard. A design principle for hash functions. In Gilles Brassard, editor,
Advances in Cryptology: CRYPTO 89, volume 435 of Lecture Notes in Computer
Science, pages 416–427. Springer-Verlag, 1989.

3. Richard Drews Dean. Formal Aspects of Mobile Code Security. PhD thesis, Prince-
ton University, 1999.

4. Bert denBoer and Antoon Bosselaers. Collisions for the compression function of
MD5. In T. Helleseth, editor, Advances in Cryptology — Eurocrypt ’93, volume
765 of Lecture Notes in Computer Science, pages 293–304, Berlin, 1994. Springer-
Verlag.

5. Hans Dobbertin. Cryptanalysis of MD5 compress. Presented at the rump session
of Euro Crypto’96 Rump Session, 1996.

420 P. Gauravaram et al.

6. Niels Ferguson and Bruce Schneier. Practical Cryptography, chapter Hash Func-
tions, pages 83–96. John Wiley & Sons, 2003.

7. Praveen Gauravaram, William Millan, and Lauren May. CRUSH: A New Cryp-
tographic Hash Function using Iterated Halving Technique. In Proceedings of the
workshop on Cryptographic Algorithms and their uses, pages 28–39, Goldcoast,
Australia, July 4–5 2004.

8. Antoine Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded
Constructions. In Matt Franklin, editor, Advances in Cryptology-CRYPTO 2004,
volume 3152 of Lecture Notes in Computer Science, pages 306–316, Santa Barbara,
California, USA, August 15–19 2004. Springer.

9. John Kelsey and Bruce Schneier. Second Preimages on n-bit Hash Functions for
Much Less than 2n̂ Work. In Ronald Cramer, editor, Advances in Cryptology -
EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages
474–490. Springer, 2005.

10. Stefan Lucks. A Failure-Friendly Design Principle for Hash Functions. In Bimal
Roy, editor, Advances in Cryptology - ASIACRYPT 2005, volume 3788 of Lecture
Notes in Computer Science, pages 474–494. Springer-Verlag, 2005.

11. David McGrew and John Viega. The Galois/Counter Mode of Operation (gcm).
NIST special publication, National Institute for Standards and Technology.

12. Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography, chapter Hash Functions and Data Integrity, pages 321–383.
The CRC Press series on discrete mathematics and its applications. CRC Press,
1997.

13. Ralph Merkle. One way hash functions and DES. In Gilles Brassard, editor,
Advances in Cryptology: CRYPTO 89, volume 435 of Lecture Notes in Computer
Science, pages 428–446. Springer-Verlag, 1989.

14. Bart Preneel. Analysis and design of Cryptographic Hash Functions. PhD thesis,
Katholieke Universiteit Leuven, 1993.

15. Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics:
Definitions, implications, and separations for preimage resistance, second-preimage
resistance, and collision resistance. In Bimal K. Roy and Willi Meier, editors, Fast
Software Encryption (FSE), volume 3017 of Lecture Notes in Computer Science,
pages 371–388. Springer-Verlag, 2004.

16. Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions for Hash
Functions MD4, MD5, HAVAL-128 and RIPEMD. Cryptology ePrint Archive,
Report 2004/199, 2004. http://eprint.iacr.org/.

17. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Efficient collision search at-
tacks on SHA-0. In Victor Shoup, editor, Advances in Cryptology—CRYPTO ’05,
volume 3621 of Lecture Notes in Computer Science, pages 1–16. Springer, 2005,
14–18 August 2005.

18. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-
1. In Victor Shoup, editor, Advances in Cryptology—CRYPTO ’05, volume 3621
of Lecture Notes in Computer Science, pages 17–36. Springer, 2005, 14–18 August
2005.

19. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions.
In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 19–35. Springer, 2005.

http://eprint.iacr.org/

	Introduction
	MD Hashing and Collision Attacks
	New Observations on Multi-block Collision Attacks
	The 3C Construction: An Enhanced MD Construction
	Security Analysis of the 3C Hash Function
	Security Analysis of 3C Against Known Generic Attacks
	Comparison of 3C with Other Hash Function Proposals
	The 3C+ Construction: An Enhanced 3C Construction
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

