
1

s-hash: spectral hash

Abstract

We describe a new class of hash family using the discrete Fourier transform and convolution property. The
method yields efficient and highly parallel architectures for hashing.

Index Terms

Hashing, SHA, DFT, number theoretical transforms.

CONTENTS

I Introduction 2

II Mathematical background 2
II-A Finite Fields 2
II-B Discrete Fourier Transform (DFT) 2
II-C Multi-dimensional DFTs 4

III S-hash Arithmetic 5
III-A The Fast Fourier Transform 5
III-B The field GF (17) . 5
III-C Addition 5
III-D The field GF (24) . 6

III-D.1 Addition 6
III-D.2 Multiplication 6
III-D.3 Inversion 6
III-D.4 Affine transformation 7

III-E SRC (shift row & column) 7
III-F Component-wise operations 7

IV Specral Hashing Algorithm 8
IV-A Initialization 8
IV-B Compression function 9
IV-C Hash generation 15

V Security Considerations 16

VI Conclusions 16

References 17

2

I. INTRODUCTION

In this document we describe the spectral hashing (s-hash) algorithm. We start with mathematical background
and corresponding arithmetic followed by a design rationale and the detailed description. In Section .. we turn our
attention to the security considerations and present discussions on building blocks and s-hash immunity against
known attacks. We conclude with the acknowledgements, the references and the list of annexes.

Patent Statement: s-hash or any of its implementations is not and will not be subject to patents.

II. M ATHEMATICAL BACKGROUND

A. Finite Fields

Abstractly, a finite field consists of a finite set of objects together with two binary operations (addition and
multiplication) that can be performed on pairs of field elements. These binary operations must satisfy certain
compatibility properties. There is a finite field containingq field elements if and only ifq is a power of a prime
number, and in fact for each suchq there is precisely one finite field denoted byGF (q). When q is prime the
finite field is called a prime field whereas ifq = pk for a primep andk > 1, the finite fieldGF (pk) is called an
extension field. The numberp is named as the characteristic of the finite field and in case ofp = 2, the extension
field is called a binary extension field.

S-hash makes use of both binary extension and prime fields. Prime fields, a topic from elementary school
classes are more familiar because of being isomorphic to thewell-known structureZp (i.e., the integer ring modulo
prime p). On the other hand, binary extension fields may need more attention. Binary extension fieldsGF (2k)
can be represented by the set of polynomials with polynomialaddition and multiplication modulo an irreducible
polynomialf(t) over GF (2) having degreek. The degree of the polynomialf(t) is also referenced as the degree
of the extension. In fact, the defining polynomialf(t) characterizes the structure of the mathematical object consist
of the polynomial congruent classes. If the ”irreducibility” condition on the defining polynomialf(t) is dropped,
we would be dealing with a structure called quotient polynomial ring in which some elements (also called zero
divisors) might live without inverses. Actually a finite field is a quotient ring having no zero divisors.

Being a quotient polynomial ring, the arithmetic in these fields is the familiar modular polynomial arithmetic.
Since characteristicp = 2, addition is performed by adding polynomials modulo two whereas multiplication involves
a polynomial multiplication and a reduction with respect tothe defining irreducible polynomialf(t).

B. Discrete Fourier Transform (DFT)

Spectral techniques are widely accepted and used in the fieldof digital signal processing (see [?], [1], [2] and
[?]). Most existing publications introduce the subject over the field of complex numbers. In order to present the
spectral hashing properly, we need to grasp the basics of spectral theory over the finite fields (or in a more general
setting over finite rings) as it is proposed by Pollard [3]. Inthis sense, we define the DFT as a map from a time
ring to a Fourier ring after introducing these structures.

Definition 1: Let d andn be positive integers andω be a primitived-th root of unity inZn. We define thetime
ring as a factor ring

T d
n = Zn[t]/ < f(t) >

where
f(t) = Πd−1

i=0 (t − ωi) (mod n)
Definition 2: The setFd = ⊕d−1

i=0 Zn of orderedd-tuples(X0,X1, . . . ,Xd−1) whereXi ∈ Zn forms a ring with
component-wise addition and multiplication (also called direct sum of rings). For notation purposes, we denote
thesed-tuples with polynomials (i.e.(X1,X2, . . . ,Xd) will be written asX0 + X1t + . . . + Xd−1t

d−1). We named
the ringFd as theFourier ring over Zn; moreover the elements are calledspectral polynomialshavingspectral
coefficients.

Remark 1:Since the arithmetic is always modulon, we add the an subscript to our notation and denote the
Fourier ring byFd

n.
Now we can define the DFT map.

3

Definition 3: Assume thatT d
n andFd

n are time and Fourier rings overZn respectively. Letω be a primitived-th
root of unity in Zn. The DFT map overZq is an invertible set map

DFTω
d : T d

n → Fd
n

x(t) 7→ X(t)

defined as follows

Xi = DFTω
d (x(t)) :=

d−1
∑

j=0

xjω
ij mod n (1)

with the inverse

xi = IDFTω
d (X(t)) := d−1 ·

d−1
∑

j=0

Xjω
−ij mod n (2)

for i = 0, 1, . . . , d − 1. Moreover, we write

x(t) oo
DFT

// X(t)

and sayx(t) andX(t) are transform pairs wherex(t) is called atime polynomial and sometimesX(t) is named
as thespectrum of x(t).

In the literature, DFT over a finite ring spectrum (1) is also known as theNumber Theoretical Transform (NTT).
Moreover, ifq has some special form such as a Mersenne or a Fermat number, the transform named after this form;
i.e., Mersenne Number Transform (MNT)or Fermat Number Transform (FNT).

Note that, unlike the DFT over the complex numbers, the existence of DFT over finite rings is not trivial. In fact,
Pollard [3] mentions that the existence of primitive rootd-th of unity and the inverse ofd do not guarantee the
existence of a DFT over a ring. He adds that a DFT exists in ringR if and only if each quotient fieldR/M (where
M is maximal ideal) possesses a primitive root of unity. IfR = Zq is taken, one gets the following corollary;

Corollary 1: There exists ad-point DFT over the ringZq that supports the circular convolution if and only ifd
dividesp − 1 for every primep factor of q.

Proof: We sketch the proof given in Chapter 6 of Blahut [1]. Firstly,we cover the case whereq is a prime
power.

Converse is easier to prove; the DFT lengthd is invertible inZq, if d andq are relatively prime (i.e.dd−1 = 1+kq
for somek). Surely, any common factor ofd and q must be a factor of 1, which is impossible. Moreover, any
elementω having orderd relatively prime toq has order that divides the Euler functionφ(q) = (p − 1)pm−1.
Therefore, ad-point DFT does not exist inZq unlessd dividesq − 1.

On the other hand, letp be a odd prime (p = 2 is trivial) then the non-units inZq forms a cyclic group having
orderφ(q) = (p − 1)pm−1. Let π be the generator of this group andω = πbpm−1

for any b dividing p − 1. Since
non-units inZq is cyclic, ω exists, all remains is to show that the inverse DFT exist;

d−1 ·
d−1
∑

j=0

Xjω
−ij mod q = d−1 ·

d−1
∑

j=0

ω−ij
d−1
∑

j′=0

x′

jω
−ij′

mod q

= d−1 ·

d−1
∑

j′=0

x′

j

d−1
∑

j=0

ω−i(j′
−j).

The sum oni is equal tod if j′ = j, while if j′ is not equal toj, then the geometric series summation becomes
(1 − ω−(j′

−j)d)/(1 − ω−(j′
−j)), which is zero sincej′ − j 6≡ 0 (mod q). Therefore,

d−1 ·

d−1
∑

j=0

ω−ij mod q = d−1 ·

d−1
∑

j=0

xi(dδjj′) mod q = xi

as desired.
Now, let q = pm1

1 pm2

2 . . . pmr

r . The use of Chinese remainder theorem guarantees the existence of ad-point
DFT in Zq if and only if d-point DFT exists in each factor ring, which equivalent to say d dividespi − 1 for all
i = 1, 2, . . . , r.

4

An integer ring havingq = 2v ± 1 elements for some positive integerv is the most suitable structure for
computations since the modular arithmetic operations for such rings are simplified. Moreover, if the principal root
of unity is chosen as a power of 2, spectral coefficients are computed by additions and circular shifts. The rings
havingq = 2v − 1 andq = 2v − 1 elements are called theMersenne ringsandFermat ringsrespectively. In Table
I, we tabulate the DFT parameters of some Fermat and Mersennerings suitable for spectral hashing.

ring Zq prime factors (ω, NNT length)

23 − 1 7 (2, 3) (−2, 6)

24 + 1 17 (2, 8) (4, 4)

25 − 1 31 (2, 5) (−2, 10)

27 − 1 127 (2, 7) (−2, 14)

28 + 1 257 (2, 16) (4, 8)

213 − 1 8191 (2, 13) (−2, 26)

216 + 1 65537 (4, 16) (2, 32)

TABLE I

PARAMETERS OFNNT FOR23
− 1 6 q 6 216 + 1

The Mersenne and Fermat rings are not the only suitable ringsfor efficient arithmetic. Assume thatn andm are
positive integers, andm (not necessarily a prime) is a small divisor ofn. The integer rings havingn/m elements,
Zn/m, are also quite useful. In the literature, a transform defined overZn/m is called apseudo number transform
(PNT). PNTs tailor the rings in a way that larger length transformsare possible. For instance, Corollary 1 states
that in the fairly large ringZ231+1, one can only define a 3-point DFT because231 + 1 = 3 · 715827883. However;
we can still enjoy the231 +1 arithmetic of a transform of length 62 withω = −2 if the PNT in the ringZ715827883

is used.
In general, longer length DFTs are utmost importance in manyapplications. Although, NNTs are extremely fast

transforms, they are considered too short for most of the digital signal processing applications. Therefore, they are
rarely used in practice.

On the other hand, it is possible to attain transforms havinglarger lengths over the tabulated rings. One way of
doing this is employing principal roots of unity which are not powers of two. For instance; inZ28+1, ω = 3 gives a
transform of lenght 256. However; every single multiplication with roots of unity needs a full 8-bit multiplication
and not tolerable for our purposes. Perhaps the most elegantway of extending the transform lengths is using the
multi-dimensional transforms.

Multidimensional Fourier transforms arise naturally fromproblems that are multidimensional. They are also used
in computing one dimensional Fourier transforms. In the following section we introduce the three dimensional
transform.

C. Multi-dimensional DFTs

Multi-dimensional transforms can be defined over any field ofinterest as 1-dimensional transform construction.
A more detailed presentation of the subject can be found in books [].

Since we concentrate on 3-dimensioanl DFT transform overGF (17), we explicitly give the transforms as follows

Xi = DFTω
d (x(t)) :=

d−1
∑

j=0

xjω
ij mod n (3)

with the inverse

xi = IDFTω
d (X(t)) := d−1 ·

d−1
∑

j=0

Xjω
−ij mod n (4)

for i = 0, 1, . . . , d − 1. Moreover, we write

5

Surely, a direct computation of the Equation (3) is the last thing one would like to calculate. Over three decades,
many fast algorithms proposed for multi-dimensional transforms. Leaving the discussions on the best algorithm for
our purposes for future, we select the small-radix Cooley-Tukey [] for our computations.

III. S-HASH ARITHMETIC

A. The fieldGF (17)

The fieldGF (17) is the structure where all the FFT computations takes place.Fortunately, only additions and
simple shifts have to be computed for FFT calculations. As given in the previous section

are subject to and the operations
First of all we remark that the fieldGF (17) is small enough to employ look-up tables for its arithmetic.Even two

or more operations can be performed in parallel by merging the look-up tables. Since There exists a vast amount
of optimizations

First of all we remark that carrying arithmetic in Mersenne rings is equivalent to doing one’s complement
operations. Arithmetic in Fermat rings are slightly complicated than one’s complement arithmetic, when certain
encoding techniques are performed.

Since modulus17 = 24 + 1 the modular reduction corresponds to subtracting the most significant r bits to/from
the least significantr bits. This procedure needs a correction in case of this subtraction exceeds the modulus which
is carried by a final modular reduction.

The binary representation of all the elements ofGF (17) need5 bits. The additional bit is required only for
the number24. In order to alter this redundancy, a modified binary system —diminished-1 — can be employed.
where the numberx is represented byx′ = x − 1 and the value 0 is not used or handled separately [?]. However,
for a field of sizeGF (17) handling the value 0 might be cumbersome. Moreover, s-hash heavily needs the normal
representation of numbers for p-prism permutations, a diminished-1 representation may suffer from the conversion
from and to the normal number representation. For those and further discussions on Fermat arithmetic we refer the
reader to [?] and [?].

As a last remark we
Let x, y ∈ Z2v+1 with diminished-1 representationx′ andy′ respectively. Observe that

(x + y)′ = (x + y) − 1 = (x′ + 1) + (y′ + 1) − 1 = x′ + y′ + 1

Hence by using Lemma 1, addition in the Fermat ring can be formulated as

x′ + y′ + 1 mod (2v + 1) =

{

x′ + y′ mod 2v if x′ + y′ + 1 > 2v

x′ + y′ + 1 otherwise

which leads us the following important identity

x′ + y′ + 1 mod 2v + 1 = x′ + y′ + cout mod 2v (5)

Note that Equation (7) is also valid for normal representations of numbers. Therefore it is possible to do arithmetic
by using normal representations (see [?]).

Remark 2:For those algorithms heavily use a normal number representation of numbers, a diminished-1 repre-
sentation suffer from the conversion from and to the normal number representation. In our case we generally do
not care about a presentation of a number unless it is the finalresult.

Likewise Mersenne arithmetic, if the overflows of the regular addition are fed to the adder after an inversion, a
Fermat arithmetic is achieved. Observe that the above methodology function well for CPAs and CSAs, moreover
these adders are named as modular CPAs and CSAs after above arrangements.

Notation 1: Through out this document, for a gate-unit analysis we assume each two input monotonic gate (e.g.,
AND, NAND) counts as one gate (area or delay), an XOR as two gates (area or delay), and a full adder has an
area of seven gates and a delay of four gates.

If Sklansky parallel-prefix adders are considered for a CPA implementation, the area and time complexity of
CPA becomes same for both Fermat and Mersenne rings which is very similar to the standard integer propagate
addition (see Table II)

6

ring area delay

Mersenne or Fermat (M/F) 3
2
n log n + 7n 2 log n + 5

TABLE II

THE COST OFCPA (SKLANSKY PARALLEL -PREFIX ADDER).

B. The Fast Fourier Transform

A fast Fourier transform (FFT) is an efficient algorithm to compute the discrete Fourier transform (DFT) and its
inverse. FFTs are of great importance to a wide variety of applications, from digital signal processing and solving
partial differential equations to algorithms for quick multiplication of large integers.

We refer the reader to [1] and [?] for excellent presentations of the subject.

C. The fieldGF (24)

The fieldGF (24) admits a very rich choice of design and implementation flexibility. It is small enough to employ
look up tables suitable for software; to write algebraic equations for simple functions; has type I ONB with which
Massey-Omura circuits may be used and nice pseudo transforms may defined.

In practice, for polynomial multiplication, schoolbook orKaratsuba method is used, where the reduction is
performed mostly by standard or Montgomery reduction techniques. Iff(t) is chosen as a special polynomial such
as a trinomial or a pentanomial reduction enjoys some effective optimizations.

f(t) is not an irreducible, then this set forms a binary polynomial ring where some elements (also called zero
divisors) live without inverses.

Whenk is not a prime, the fieldGF (2k) is called acomposite field.
Although composite fields enjoy the simplifications of some desirable features, their usage in practice (particularly

in ECC) has some security concerns. In fact, ANSI X9.63 [?] explicitly exclude the use of elliptic curves over
composite fields. Therefore, we do not discuss the optimizations making use of these special cases and assumek
is arbitrary.

The arithmetic in binary extension fields is simply modular polynomial arithmetic; addition is performed by
adding polynomials modulo two whereas multiplication is quite expensive in terms of time and area. In a standard
setting, multiplication involves a polynomial multiplication and a reduction with respect to the defining irreducible
polynomial f(t). In practice, for polynomial multiplication, schoolbook or Karatsuba method is used, where the
reduction is performed mostly by standard or Montgomery reduction techniques. Iff(t) is chosen as a special
polynomial such as a trinomial or a pentanomial reduction enjoys some effective optimizations.

1) Addition: The addition in fieldGF (24) enjoys the modulo 2 arithmetic. In other words,
Example 1:Let x = t3 + t + 1 andy = t2 + 1 be elements ofGF (24).

x + y = (t3 + t + 1) + (t2 + 1) = t3 + t2 + t

In binary notation, one gets(1011)2 + (0101)2 = (1110)2 by simply xoring respective bits ofx andy.
2) Multiplication: Multiplication can be performed in many different ways, starting from the trivial table look

up method, here we present standard, type I ONB and embedded multiplication.
3) Inversion: Likewise multiplication inversion may be implemented in different fashions: table look up method,

here we present standard, type I ONB and embedded multiplication.
4) Affine transformation:In order to eliminate the fixed points of the inverse mapping,an affine transform is

applied to each entry of the state prism. The affine transformcan be formulated as follows:

x(i,j,k) := α(m(i,j,k))
−1 + γ

where

α =









1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1









7

and
γ1 = [0, 1, 0, 1]

The constant has been chosen in such a way that that the S-box has no fixed points (S-box(a) = a) and no
opposite fixed points’ (S-box(a) = a).

The ByteSub Transformation is a non-linear byte substitution, operating on each of the State bytes independently.
The substitution table (or S-box) is invertible and is constructed by the composition of two transformations:

Likewise multiplication inversion may be implemented in different fashions: table look up method, here we
present standard, type I ONB and embedded multiplication.

D. SRC (shift row & column)

SRC step performs circular shifts both on the rows and columns. Assume that the row and column indexes of
the array start from zero, SRC is achieved as follows

• each row of the array shifted to the left as much as its row index
• each column of the array shifted to the upwards as much as its column index

E. Component-wise operations

These operations are simple component-wise operations of arrays. For instance; cINV is simply achieved by
inverting the entries of the matrix. Let us formally introduce these freshman dream matrix operations.

cINV (component-wise inversion):Let A = (aij) be ann × n matrix over the ringZq. We define

cINV (A) = B = (bij)

where
bij ≡ a−1

ij mod q for i, j = 0, 1, . . . , n

cMULT (component-wise multiplication): Let A = (aij) andB = (bij) be n × n matricies over the ringZq.

cMULT (A,B) = C = (cij)

is defined as follows
cij ≡ aijbij mod q for i, j = 0, 1, . . . , n

8

IV. SPECRAL HASHING ALGORITHM

Before going into the details of the s-hash, we note that spectral hashing adapts the classical Merkle-Damgard
scheme for hash generation as originally illustrated by theauthors in Figure 1.

g g g g

IV

Hash

Message

chunk m0

Message

chunk m1

Message

chunk mn-1

Length

padding mn

Fig. 1. Classical Merkle-Damgard hash scheme

If one puts the Figure 1 into a formal presentation, the s-hash algorithm is described as follows:
Algorithm 1: Spectral Hashing Algorithm

Input: padded messagem (i.e. m = m0m1 . . . mn−1 where bit lenght|mi| = 512 for all i = 0, 1, . . . , n − 1)
Output: h, s-hash of the messagem.

1: h0 := 0
2: for i = 0 to n − 1
3: hi+1 := g(mi, hi)
4: end for
5: return hi+1

Clearly, Algorithm 1 is far from being descriptive as its does not reveal the details of the compression function
g. Starting from the padding scheme, the details of s-hash arecarefully described in the following sections.

A. Initialization

Assume there is a message consists an arbitrary binary string of length l, l 6 264. Since s-hashing operates
on 512-bit blocks of message, the initialization includes apadding scheme resulting an extended message having
length which is a multiple of512. The following steps summarizes the padding process:

i. append the bit ’1’ to the message
ii. appendk bits of ’0’, wherek is a non-negative integer such thatl + k + 1 ≡ 448 mod 512.

iii. append the 64-bit big-endian binary representation ofl, returning the padded message stringm.
S-Hash process the message in successive 512-bit chunks. The padded message stringm = m0 . . . mn−1 consist

of n chunks where each ofmi for i = 0, 1, 2, . . . , n − 1 has 512-bit length.
We start with processing chunkm0; firstly, we break the chunk into 128 words of 4-bits and then map it into

an 4× 4× 8 array or prism. Formally, letm0 = s0, s1, . . . , s127 wheresI is a 4-bit binary number for allI in the
index set{0, 1, . . . , 127}. We reindex the binary stringm0 as follows:

S(i,j,k) = sI

where I = 32i + 8j + k, for i, j = 0, 1, 2, 3 and k = 0, 1, . . . , 7. In fact, this re-indexing corresponds to fill
an 4 × 4 × 8 prism as shown in Figure 2. We call this array as the state prism (s-prism). In every iteration of
Merkle-Damgard scheme this state prism is filled with message chunks and processed throughout s-hash algorithm
steps.

Similar to s-prism, we employ another4× 4× 8 array holding a permutation table that is used for setting upthe
non-linear system of equations of the compression function. This permutation array is called as the permutation
prism (p-prism) which is initially configured as

P(i,j,k) = I

9

k

j

i

s31

s23

s112

s15

s104

s7

s96

s63

s55

s47

s39

s56 s88

s28 s60 s92 s124

s57

s26 s58 s90 s122

s24 s120

s122

s114

s106

s98

s113

s105

s97

s123

s115

s107

s99

s124

s116

s108

s100

s95

s87

s79

s71

s127

s119

s111

s103

s25 s89 s121

s27 s59 s91 s123

s125

s117

s109

s101

s61 s93

s62

s31 s63 s95 s127

s29 s125

s127

s119

s111

s103

s126

s118

s110

s102

s30 s94 s126

s122

s123

k

j

i

31

1

2

0

23

1

1

2

15

1

0

4

7

9

6

63

55

47

39

56 88

28 60 92 124

57

26 58 90 122

24 120

1

2

2

1

1

4

1

0

6

9

8

1

2

1

1

1

3

1

0

5

9

7

1

2

3

1

1

5

1

0

7

9

9
1

2

4

1

1

6

1

0

8

1

0

0

95

87

79

71

127

119

111

103

25 89 121

27 59 91 123

1

2

5

1

1

7

1

0

9

1

0

1

61 93

62

31 63 95 127

29 125

1

2

7

1

1

9

1

1

1

1

0

3

1

2

6

1

1

8

1

1

0

1

0

2

30 94 126

Fig. 2. State Prism Fig. 3. Permutation Prims

for I = 0, 1, . . . , 127, i, j = 0, 1, 2, 3 andk = 0, 1, . . . , 7 (see Figure 3).
During the initialization, after filing up the s-prism with the words ofm0, we modify the p-prism by some simple

entry swappings. Since s-prism initially holds 4-bit entries, we apply the following swappings to the p-prism:

P(i,j,k) = P(Sh(i,j,k),Sl(i,j,k),k)

whereSl(i,j,k) = S(i,j,k) mod 4 and Sh(i,j,k) = S(i,j,k) div 4 for all i, j = 0, 1, 2, 3 and k = 0, 1, . . . , 7. In other
words,Sl(i,j,k) andSh(i,j,k) represents the least and most significant two bits of the s-prism entryS(i,j,k) respectively.

In the rest of the algorithm we modify both of the state and permutation prism. In certain stages we combine
these two parallel altered prisms.

B. Compression function

The compression functiong of s-hash consists of three stages:
• Affine transformation
• Discrete Fourier transformation
• Non-linear system transformation
Observe that even the conventions of all three stages mainlydescribes the acts on the s-prism; the transformations

on the p-prism are performed using the outcomes of the s-prism through these stages.
Therefore, before going into the details, we sketch how the compression function works. In Figure 4, the column

on the left illustrates the consecutive transformations applied to s-prism. On the other hand, the modifications on
the p-prism is controlled by the intermediate entries of thes-prism derived from the outputs of these stages. In
total p-prism goes through 5 different type of swappings andsome rotations shown in the figure.

We start with describing the affine transform made up of a non-linear iterative contraction vector transformation
over the fieldGF (24).

Affine transformation: The following affine transform is applied to each entry of thes-prism

s(i,j,k) := α(s(i,j,k))
−1 + γ (6)

10

j
i

k

i

State prism

Permutation

prism

Initial swap control

Proccesing the 1
st
 chunk

Affine

transform

j

k

j

k

1
st

 and 2
nd

 swap control

j

k

1-dimensional

DFTs through

k-axis

j

k

j

k

Apply 1
st

 and

2
nd

 swappings

on p-prism

3
rd

 swap control

1-dimensional

DFTs through

j-axis

j

k

j

k

Apply 3
rd

swappings on

p-prism

4
th

 swap control

ii

i i

i i

1-dimensional

DFTs through

i-axis

j

k

j

k

Apply 4
th

swappings on

p-prism

Non-linear system

transformi i

j

k

i

...

Apply initial

swappings on

p-prism

Apply the non-linear

system transform to

the state

Processing

the

1
st
 chunk

Processing

the

2
nd
 chunk

End of processing 1
st
 chunk

k

i

...

j

k

1
st

 and 2
nd

 swap control

j

k

1-dimensional

DFT through

k-axis

Apply 1
st

 and

2
nd

 swappings

on p-prism

ii

Apply plane

rotations

Map the

message to

s-prism

Set the initial

state of the

p-prism

 Initialization stage

Fig. 4. Swap control planes (sc-planes) on the s-prism

where

α =









1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1









andγ = [0, 1, 1, 1].

One can clearly see that the foremost component of the affine transform (8) is the inverse map which has the
best known non-linearity [4] in the fieldGF (24). Favorably, AES substitution box uses the inverse map inGF (28)
as its main non-linear component against differential and linear attacks. Therefore, the inverse map onGF (24) is
taken as a nice behaving function to build immunity for knownsuccessful attacks. Moreover, in order to eliminate

11

the weaknesses related to the fixed points, in s-hash design,the inverse map is coped with a constant scaling and
a linear iteration.

DFT map: We simply apply the 3-dimensinal DFT to the s-prism. Since some intermediate DFT calculations
are needed for p-prism modifications, s-hash may not allow topractice all kinds of fast DFT methods. In particular,
p-prism swappings use the intermediate values of the standard row-column method successively applied through
k, j and i axis as seen in Figure 5.

i

DFTs

DFTs

j

i

j

k

DFTs

k

i

Fig. 5. Three dimensional DFT can be realized by row-column method: applying 1-dimensional DFTs to the state prism through k, j and
i axis successively

As described in the previous sections, DFT is defined over theprime fieldGF (17), permitting a transform having
length 8 and 4 for the principle root of unitiesω = 2 andω = 4 respectively. Moreover, observe that in the first
iteration of the row-column method (i.e. DFT throughk-axis) one has to compute 16 different 1-dimensional 8-point
DFTs. On the other hand, throughi andj axis, we need to calculate 32 different 4-point DFTs for eachaxis.

Unlike DFT revision of s-prism, p-prism modifications are a little bit more complicated. We perform data (s-prism)
depended swappings on the p-prism similar to those done during the initialization stage.

The first modifications after the initial refinement on the p-prism is performed using swap control plane (sc-plane)
of the s-prism. The 1st sc-plane is a4 × 4 array extracted by xoring the two planes (matrices) perpendicular to
the k-axis, particularly, the two havingk co-ordinates equal to 0 modulo 4 (see Figure 6). If explicitly written, the
following gives the swappings for alli, j = 0, 1, 2, 3:

if ((S(i,j,0)[0] ⊕ S(i,j,4)[0]) = 0) then, swap(P(i,j,0), P(i,j,7)),

if ((S(i,j,0)[1] ⊕ S(i,j,4)[1]) = 0) then, swap(P(i,j,1), P(i,j,6)),

if ((S(i,j,0)[2] ⊕ S(i,j,4)[2]) = 0) then, swap(P(i,j,2), P(i,j,5)),

if ((S(i,j,0)[3] ⊕ S(i,j,4)[3]) = 0) then, swap(P(i,j,3), P(i,j,4)).

12

k

j

i

4
th

sc-

plane

k

j

i

k

j

i

1
st
 sc-plane*

1
st
 sc-plane*

2
nd
 sc-plane

2
nd
 sc-plane

DFTs through j-axis DFTs through k-axis

3
rd
 sc-plane

Fig. 6. Swap control planes (sc-planes) on the s-prism. (*) 1st sc-plane is computed by XORing these two)

1
st
 swap

2
nd
 swap

3
rd
 swap

4
th
 swap

2
nd
 swap

1
st
 swap

3
rd
 swap

4
th
 swap

1
st
 swap

2
nd
 swap

3
rd
 swap

4
th
 swap

Fig. 7. 1st and 2nd swappings on the vectors of p-plane

On the other hand, the 2nd sc-plane consists of two4 × 4 arrays controlling the upper and lower halves of the
p-prism. Once again these two planes perpendicular to thek-axis withk ≡ 1 mod 4 as seen in Figure 6. The lower
half is controlled by the lower array of the 2nd sc-plane as follows:

if (S(i,j,1)[0] = 0) then, swap(P(i,j,0), P(i,j,1)),

if (S(i,j,1)[1] = 0) then, swap(P(i,j,2), P(i,j,3)),

if (S(i,j,1)[2] = 0) then, swap(P(i,j,1), P(i,j,2)),

if (S(i,j,1)[3] = 0) then, swap(P(i,j,0), P(i,j,3)),

where the upper half is controlled by the upper plane of the s-prism:

if (S(i,j,5)[0] = 0) then, swap(P(i,j,4), P(i,j,5)),

if (S(i,j,5)[1] = 0) then, swap(P(i,j,6), P(i,j,7)),

if (S(i,j,5)[2] = 0) then, swap(P(i,j,5), P(i,j,6)),

if (S(i,j,5)[3] = 0) then, swap(P(i,j,4), P(i,j,7)),

13

Notice that 1st and 2nd sc-planes controls the swappings of 16 vectors on the p-prism. Each of these vectors has
8 entries and are parallel to thek-axis.

The 3rd and 4th sc-planes are obtained from the s-prism afterthe 1-dimensional DFT calculations throughk and
j axis respectively. In fact, 3rd sc-plane is chosen asS(i,2,k) where 4th sc-plane isS(i,j,3).

Although the input values for DFT belongs to the binary fieldGF (24) (i.e. values represented by at least 4-bits),
DFT operates over the prime fieldGF (17) and might return 5 bit entries. We select the least significant 4-bits
of the sc-plane entries as the swap control bits. Moreover, in order to balance distribution of the swapping, we
involve the index in the calculations. To be more concrete, the following swapping is applied to the p-prism for all
i = 0, 1, 2, 3 andk = 0, 1, . . . , 7:

if ((S(i,2,k)[0] ⊕ k[0]) = 0) then, swap(P(i,0,k), P(i,1,k)),

if ((S(i,2,k)[1] ⊕ k[1]) = 0) then, swap(P(i,2,k), P(i,3,k)),

if ((S(i,2,k)[2] ⊕ k[2]) = 0) then, swap(P(i,1,k), P(i,2,k)),

if ((S(i,2,k)[3] ⊕ i[0]) = 0) then, swap(P(i,0,k), P(i,3,k)),

3
rd
 swap

2
nd
 swap1

st
 swap

4
th
 swap

3
rd
 swap

1
st
 swap

2
nd
 swap

4
th
 swap

Fig. 8. 3rd and 4th swappings on the vectors of p-plane

Similarly, the following swapping is applied to the p-prismusing the 4th sc-plane for alli = 0, 1, 2, 3 and
k = 0, 1, . . . , 7:

if ((S(3,j,k)[0] ⊕ k[0]) = 0) then, swap(P(0,j,k), P(1,j,k)),

if ((S(3,j,k)[1] ⊕ k[1]) = 0) then, swap(P(2,j,k), P(3,j,k)),

if ((S(3,j,k)[2] ⊕ k[2]) = 0) then, swap(P(1,j,k), P(2,j,k)),

if ((S(3,j,k)[3] ⊕ i[0]) = 0) then, swap(P(0,j,k), P(3,j,k)),

Non-linear system transform: At this step of the compression function we collect and combine the data from s-
prism and p-prim to setup a non-linear system of equations. The non-linear system transform is especially designed
against pre-image attacks and related weaknesses. We further discuss security related issues in Section??.

Non-linear system transform applies the following map to each entry of the s-prism.

S(i,j,k) := (S′

(i,j,k) + Pl(i,j,k))
−1 + (S′

P(i,j,k)
+ Ph(i,j,k))

−1 + H(i,j,k) (7)

for all i, j = 0, 1, 2, 3 andk = 0, 1, . . . , 7. Clearly, Equation () would be more clear after explicitly describe the
objectsS′

(i,j,k), Pl(i,j,k) andPh(i,j,k).
As we discussed earlier, DFT operates over the prime fieldGF (17) and outcomes of DFT might be 5-bit entries.

We assign the least significant 4-bits of the s-plane entriesS′. In other words;

S′

(i,j,k) = S(i,j,k) mod 24, for i, j = 0, 1, 2, 3 andk = 0, 1, . . . , 7

Similary, we pick the least significant 4-bits of p-prism entries and assing them toPl;

Pl(i,j,k) = P(i,j,k) mod 24

14

On the other hand,Ph is the concetination of the 5th bit ofS and remaining 3-bits ofP (recall that entries of
p-prism are 7-bit numbers) where the symbol ”||” stands for concetination of bit strings.

Ph(i,j,k) = (S(i,j,k) div 16) || (P(i,j,k) div 24)

If the message consists of a single chunk, the hash value is deduced from the s-prism at this point. Otherwise,
s-hash algorithm behaves according to Merkle-Damgard scheme. S-prism goes into the successive round as the
previous round outcome, i.e.H(i,j,k) which initially equals to zero. On the other hand, p-prism goes through some
rotations (called rubics rotations, see Figure 9) described as follows:

if (k ≡ 0 mod 4) then P(i,j,k) := P(i,j,k),

if (k ≡ 1 mod 4) then P(i,j,k) := P(4−j,i,k),

if (k ≡ 2 mod 4) then P(i,j,k) := P(j,i,k),

if (k ≡ 3 mod 4) then P(i,j,k) := P(j,4−i,k),

k

j

i

rot-0

rot-1

rot-2

rot-3

rot-0

rot-1

rot-2

rot-3

Fig. 9. Rubics rotations on p-prism

Algorithm 2: Compression function
Input: a message chunks0, s1, . . . , s127 andhi

Output: hi+1

1: S(i,j,k) = sI , map message chunk into s-prism
2: Affine-trans(S(i,j,k)), apply affine transform to the s-prism
2: swap(P(i,j,k)), apply affine transform to the s-prism
3: Affine-trans(S(i,j,k)), apply affine transform to the s-prism
12: return Hi

Observe that At the end of the
Algorithm 3: . g function

Input: mi,mi+1 andhi−1

Output: s-hash of the message
1: xi := α(mi)

−1 + γ
2: Xi := DFT (xi)
3: Hi := (Xi + σH(i))−1 + (Xσ(i) + σL(i))−1 + hi−1

12: return Hi

15

C. Hash generation

Spectral hashing algorithm can be configured to return hash values which are multiples of 32-bits in between
128 and 512. These lengths clearly includes the bit sizes 224, 256, 384 and 512.

The procedure is quite simple; applied whenever the final states of the s-prism and p-prism are reached. In other
words, desired hash string is generated after s-prism goes through the non-linear system transform and p-prism is
modified via the rubics rotations at the end of the final chunk’s processing.

The bits of the hash value are selected from the s-prism entries determined by the s-hash generation table (sg-
table). The sg-table is a co-ordinate matrix with rows showing the bit positions onS(i,j,k) and columns pointing
the least significant two bits ofP(i,j,k). A plotted star on the sg-table means that ”assign the corresponding bit on
all the S(i,j,k) entries to the hash value if the least significant two bits of the correspondingP(i,j,k) coincides with
the selected column”. For instance, Table III states that ifthe two least significant bits ofP(i,j,k) is ”00” (observe
that 32 such entry exist) then the 0th bit ofS(i,j,k) has to be assigned to the hash value.

P(i,j,k)[1 : 0] 00 01 10 11

bit 3 *
position 2 *

on 1 *
S(i,j,k) 0 *

TABLE III

128-BIT HASH GENERATION.

Notice that Table III presents a generation of32 ∗ 4 = 128-bit hash value. In fact, every cell (= bit) selection on
the sg-table adds extra 32-bits to the assigned hash bits. Therefore by adding more stars to the sg-table, one can
generate longer hash values obviously bounded by 512-bits (i.e. the s-prism itself).

For instance; 224-bit hash generation needs224/32 = 7 stars to place. With the following description, we fixed
the star placing process.

While counting the number of stars, on every count we put a single star on the sg-table, two stars in the same
hole is not allowed. We place the stars through the diagonalsstarting from main diagonal as seen in 128-bit sg-table
(i.e. Table III). We put the stars on a diagonal from the leastto the most significant cells (defined withS(i,j,k) bits).
When the holes on one diagonal finishes we continue with filling the longest diagonal parallel to it. If two such
diagonals exist we pick the one on top first.

According to the above generation process, one can have the sg-tables for 244, 256, 384 and 512-bit in Tables
2,3,4 and 5 respectively.

P(i,j,k)[1 : 0] 00 01 10 11

bit 3 * *
position 2 * *

on 1 * *
S(i,j,k) 0 *

TABLE IV

224-BIT HASH GENERATION.

P(i,j,k)[1 : 0] 00 01 10 11

bit 3 * *
position 2 * *

on 1 * *
S(i,j,k) 0 * *

TABLE V

256-BIT HASH GENERATION.

16

P(i,j,k)[1 : 0] 00 01 10 11

bit 3 * * *
position 2 * * * *

on 1 * * *
S(i,j,k) 0 * *

TABLE VI

384-BIT HASH GENERATION.

P(i,j,k)[1 : 0] 00 01 10 11

bit 3 * * * *
position 2 * * * *

on 1 * * * *
S(i,j,k) 0 * * * *

TABLE VII

512-BIT HASH GENERATION.

After the selection the resulting s-prism is called a punctured s-prism looks like a swiss cheese. The final hash
value is simply deduced from the final state of the punctured s-prism by reversing the message map indexing.
Formally, the hash string

h := hn = H0H1 . . . H127

consists of the 4-bit wordsHI = S(i,j,k), whereI = 32i + 8j + k for i, j = 0, 1, 2, 3 andk = 0, 1, . . . , 7.

1 1 1
2 2 2

1 1 1
2 2 2

V. SECURITY CONSIDERATIONS

Finding a differential path on spectral hash is infeasible.When one goes through its steps, it can be easily seen
that the first step is bijective. In addition, almost every bit of the input to the DFT step affects the output which
means even a small number of bit change creates a large amountof propagation. The DFT step precludes the search
for differential paths.

The usage of the inverse function at steps 1 and 3 are for its non-linearity. Inverse function in the fieldGF (24)
has non-linearity property.(reference) Thus, it is hard toapproximate it by linear equations and creates resistance
against linear cryptanalysis.

The internal states of spectral hash are bijective transformations. Going back through step 3 to produce an
”internal hash value” from a pre-specified hash values is hard because of the existence of the data dependent
permutation in step 3. Thus, finding a matching internal state is not possible to construct a collision due to the
fact that constructing different internal states requiresfinding inverses of different permutations each of which is
specified by a different message initially unknown to the adversary.

Moreover, the specification of data dependent permutation from a given message shows uniform distribution;
which means each different 512-bit length message block generates a different permutation. As a result the
probability of finding a pre-specified message from the hash is 1/2n, where n is the number of bits of the output
of the Spectral Hash.

Concluding, we conjecture that Spectral Hash is resistant to known attacks and it is not possible to find a collision
under the complexity boundO(2(n/2)) required for birthday attack. It has pre-image resistance with complexity
O(2n). Spectral hash also admits a random distribution which makes it a suitable candidate for an ideal cryptographic
hash function.

VI. CONCLUSIONS

We proposed new techniques

17

REFERENCES

[1] R. E. Blahut, Fast Algorithms for Digital Signal Processing, Addison-Wesley publishing Company, 1985.
[2] J. E. Hopcroft A. V. Aho and J. D. Ullman,The Design and Analysis of Computer Algorithms, Addison-Wesley publishing Company,

1974.
[3] J. M. Pollard, “Implementation of number theoretic transform,” Electronics Letters, vol. 12, no. 15, pp. 378–379, July 1976.
[4] K. Nyberg, “Differentially uniform mappings for cryptography,” in Advances in Cryptology, Proceedings Eurocrypt’93, LNCS 765, T.

Helleseth, Ed., Springer-Verlag, 1994, pp. 55–64.

