s-hash: spectral hash

Abstract

We describe a new class of hash family using the discreteidiotransform and convolution property. The
method yields efficient and highly parallel architectures liashing.

Index Terms

Hashing, SHA, DFT, number theoretical transforms.

CONTENTS
I Introduction
Il Mathematical background
l-A Finite Fields e
II-B Discrete Fourier Transform (DFT) e
II-C Multi-dimensional DFTS e
Il S-hash Arithmetic
llI-A The Fast Fourier Transform e
N-B The field GE(17) o o e e e e
I-C Addition e
NI-D The field GF(2%)
-D.1 Addition e
II-D.2 Multiplication e
I-D.3 INVersion e e
lI-D.4 Affine transformation
l-E SRC (shift row & column) e e
I-F Component-wise operations e e
IV Specral Hashing Algorithm
IV-A - Initialization L e
IV-B Compression function e e
IV-C Hash generation e e

Vv Security Considerations
VI Conclusions

References

. INTRODUCTION

In this document we describe the spectral hashing (s-hdgbjitam. We start with mathematical background
and corresponding arithmetic followed by a design ratiersaid the detailed description. In Section .. we turn our
attention to the security considerations and present si&sons on building blocks and s-hash immunity against
known attacks. We conclude with the acknowledgements,afeences and the list of annexes.

Patent Statement: s-hash or any of its implementationstigama will not be subject to patents.

Il. MATHEMATICAL BACKGROUND
A. Finite Fields

Abstractly, a finite field consists of a finite set of objectgether with two binary operations (addition and
multiplication) that can be performed on pairs of field elaetse These binary operations must satisfy certain
compatibility properties. There is a finite field containipdield elements if and only if; is a power of a prime
number, and in fact for each sughthere is precisely one finite field denoted 6y'(q). Wheng is prime the
finite field is called a prime field whereasjf= p* for a primep andk > 1, the finite fieldGF(p*) is called an
extension field. The numberis named as the characteristic of the finite field and in cage-ef2, the extension
field is called a binary extension field.

S-hash makes use of both binary extension and prime fieldsePlields, a topic from elementary school
classes are more familiar because of being isomorphic tavélieknown structureZ,, (i.e., the integer ring modulo
prime p). On the other hand, binary extension fields may need moeataih. Binary extension field& F'(2¥)
can be represented by the set of polynomials with polynomndalition and multiplication modulo an irreducible
polynomial f(t) over GF'(2) having degreé:. The degree of the polynomigl(¢) is also referenced as the degree
of the extension. In fact, the defining polynomjdl) characterizes the structure of the mathematical objectisbn
of the polynomial congruent classes. If the "irreducigilicondition on the defining polynomiaf(¢) is dropped,
we would be dealing with a structure called quotient polyr@ming in which some elements (also called zero
divisors) might live without inverses. Actually a finite fiels a quotient ring having no zero divisors.

Being a quotient polynomial ring, the arithmetic in theseddfieis the familiar modular polynomial arithmetic.
Since characteristig = 2, addition is performed by adding polynomials modulo two veaes multiplication involves
a polynomial multiplication and a reduction with respecthe defining irreducible polynomigi(t).

B. Discrete Fourier Transform (DFT)

Spectral techniques are widely accepted and used in thedialigital signal processing (se€][[1], [2] and
[?]). Most existing publications introduce the subject ovee field of complex numbers. In order to present the
spectral hashing properly, we need to grasp the basics ofraptheory over the finite fields (or in a more general
setting over finite rings) as it is proposed by Pollard [3].this sense, we define the DFT as a map from a time
ring to a Fourier ring after introducing these structures.

Definition 1: Let d andn be positive integers and be a primitived-th root of unity inZ,,. We define thaime
ring as a factor ring

T = Z,[t]/ < f(t) >

where
F(t) =T} (t—w') (mod n)

Definition 2: The setF¢ = @f;olzn of orderedd-tuples(Xy, X1,...,X4-1) WhereX; € Z,, forms a ring with
component-wise addition and multiplication (also callecect sum of rings). For notation purposes, we denote
thesed-tuples with polynomials (i.e(X1, X», ..., X,) will be written asXy + X1t + ... + X;_1t%1). We named
the ring F¢ as theFourier ring overZ,; moreover the elements are callgpectral polynomials having spectral
coefficients

Remark 1:Since the arithmetic is always modulg we add the a» subscript to our notation and denote the
Fourier ring by F¢.

Now we can define the DFT map.

Definition 3: Assume thaZ ¢ and F¢ are time and Fourier rings ovér, respectively. Leto be a primitived-th
root of unity inZ,. The DFT map ovel, is an invertible set map

DFTY - Tﬁ N

n

xz(t) — X(t)
defined as follows i
X, = DFT7(z(t)) :== ijwij mod n 1)
j=0
with the inverse i
z; =IDFT{(X(t) :=d 'Y Xjw ¥ modn 2)
j=0
fori=0,1,...,d — 1. Moreover, we write
x(t) I X()

and sayz(t) and X (¢) are transform pairs where(t) is called atime polynomial and sometimes (¢) is named
as thespectrum of z(t).

In the literature, DFT over a finite ring spectrum (1) is alsmWn as theNumber Theoretical Transform (NT.T)
Moreover, if¢ has some special form such as a Mersenne or a Fermat nunmbgaitisform named after this form;
i.e., Mersenne Number Transform (MN®) Fermat Number Transform (FNT)

Note that, unlike the DFT over the complex numbers, the erist of DFT over finite rings is not trivial. In fact,
Pollard [3] mentions that the existence of primitive rabth of unity and the inverse of do not guarantee the
existence of a DFT over a ring. He adds that a DFT exists in Rrijand only if each quotient field? /M (where
M is maximal ideal) possesses a primitive root of unityRlf= Z, is taken, one gets the following corollary;

Corollary 1: There exists al-point DFT over the ringZ, that supports the circular convolution if and onlydif
dividesp — 1 for every primep factor of q.

Proof: We sketch the proof given in Chapter 6 of Blahut [1]. Firsthie cover the case wheigis a prime
power.

Converse is easier to prove; the DFT lendtis invertible inZ,, if d andq are relatively prime (i.edd~! = 1+kq
for somek). Surely, any common factor aof and ¢ must be a factor of 1, which is impossible. Moreover, any
elementw having orderd relatively prime tog has order that divides the Euler functigiig) = (p — 1)p™ L.
Therefore, ad-point DFT does not exist iZ, unlessd dividesq — 1.

On the other hand, lgi be a odd primey = 2 is trivial) then the non-units itZ, forms a cyclic group having
order¢(q) = (p — 1)p™~'. Let = be the generator of this group and= ="' for anyb dividing p — 1. Since
non-units inZ, is cyclic, w exists, all remains is to show that the inverse DFT exist;

d—1 d—1 d—1
, , ,
a-t. g Xjw ™ modqg = d—t. g w™Y g w;»w_” mod ¢
j=0 Jj=0 J'=0

d—1 d—

= d_l-Zx;iw_i(j/_j).
J'=0

=0

The sum on is equal tod if ;' = j, while if ' is not equal toj, then the geometric series summation becomes
(1 — w94y /(1 — w=0'=9)), which is zero sincg’ — j Z0 (mod ¢). Therefore,

d—1 d—1
d—'. Zw‘ij mod q = d—t. Zwi(ddjj,) mod g = x;
j=0 J=0

as desired.

Now, let ¢ = p{"'py™...p/"". The use of Chinese remainder theorem guarantees the redsté ad-point
DFT in Z, if and only if d-point DFT exists in each factor ring, which equivalent ty sladividesp; — 1 for all
i=1,2,...,r.]

An integer ring havingg = 2¥ + 1 elements for some positive integeris the most suitable structure for
computations since the modular arithmetic operations fichgings are simplified. Moreover, if the principal root
of unity is chosen as a power of 2, spectral coefficients ampeted by additions and circular shifts. The rings
havingg = 2 — 1 andg = 2¥ — 1 elements are called th®ersenne ringsand Fermat ringsrespectively. In Table
I, we tabulate the DFT parameters of some Fermat and Mersémge suitable for spectral hashing.

ring Z, | prime factors|| (w, NNT length)
23 —1 7 (2,3) | (-2,6)
2441 17 (2,8) (4,4)
25 —1 31 (2,5) | (=2,10)
271 127 (2,7) | (—2,14)
28 +1 257 (2,16) | (4,8)
213 —1 8191 (2,13) | (—2,26)
216 41 65537 (4,16) | (2,32)
TABLE |

PARAMETERS OFNNT FOR2% — 1< ¢ < 2% +1

The Mersenne and Fermat rings are not the only suitable forgsfficient arithmetic. Assume that andm are
positive integers, anéh (not necessarily a prime) is a small divisor:of The integer rings having/m elements,
Znm» are also quite useful. In the literature, a transform deffioeerZ,, ,,,, is called apseudo number transform
(PNT). PNTs tailor the rings in a way that larger length transfolans possible. For instance, Corollary 1 states
that in the fairly large ringZss: .1, one can only define a 3-point DFT beca@dé+ 1 = 3 - 715827883. However;
we can still enjoy the3! + 1 arithmetic of a transform of length 62 with = —2 if the PNT in the ringZ-153078s3
is used.

In general, longer length DFTs are utmost importance in nappfications. Although, NNTs are extremely fast
transforms, they are considered too short for most of thadligignal processing applications. Therefore, they are
rarely used in practice.

On the other hand, it is possible to attain transforms halanger lengths over the tabulated rings. One way of
doing this is employing principal roots of unity which aretmpmwers of two. For instance; s 1, w = 3 gives a
transform of lenght 256. However; every single multiplioatwith roots of unity needs a full 8-bit multiplication
and not tolerable for our purposes. Perhaps the most eleganpf extending the transform lengths is using the
multi-dimensional transforms.

Multidimensional Fourier transforms arise naturally frpmoblems that are multidimensional. They are also used
in computing one dimensional Fourier transforms. In théofeing section we introduce the three dimensional
transform.

C. Multi-dimensional DFTs

Multi-dimensional transforms can be defined over any fieldhtérest as 1-dimensional transform construction.
A more detailed presentation of the subject can be found ok®{.
Since we concentrate on 3-dimensioanl DFT transform 6i€(17), we explicitly give the transforms as follows

d—1
X;=DFTy(z(t)) = ijwij mod n (3)
=0
with the inverse i
z; =IDFT{(X(t)) :=d "> Xjw ¥ modn (4)
=0

fori=0,1,...,d — 1. Moreover, we write

Surely, a direct computation of the Equation (3) is the lhstg one would like to calculate. Over three decades,
many fast algorithms proposed for multi-dimensional tfarmas. Leaving the discussions on the best algorithm for
our purposes for future, we select the small-radix CoolekeV [] for our computations.

[Il. S-HASH ARITHMETIC
A. The fieldGF(17)

The field GF(17) is the structure where all the FFT computations takes placgunately, only additions and
simple shifts have to be computed for FFT calculations. A®gmiin the previous section

are subject to and the operations

First of all we remark that the fiel@7'(17) is small enough to employ look-up tables for its arithme&een two
or more operations can be performed in parallel by mergieglabk-up tables. Since There exists a vast amount
of optimizations

First of all we remark that carrying arithmetic in Mersenriegs is equivalent to doing one’s complement
operations. Arithmetic in Fermat rings are slightly coropted than one’s complement arithmetic, when certain
encoding techniques are performed.

Since modulus 7 = 2* + 1 the modular reduction corresponds to subtracting the migsifisantr bits to/from
the least significant bits. This procedure needs a correction in case of this scixin exceeds the modulus which
is carried by a final modular reduction.

The binary representation of all the elementsGaf' (17) need5 bits. The additional bit is required only for
the number2?. In order to alter this redundancy, a modified binary systentiminished-1 — can be employed.
where the number is represented by’ = x — 1 and the value 0 is not used or handled separa®§lyHowever,
for a field of sizeGF'(17) handling the value 0 might be cumbersome. Moreover, s-haatiily needs the normal
representation of numbers for p-prism permutations, ardghed-1 representation may suffer from the conversion
from and to the normal number representation. For those antiaefr discussions on Fermat arithmetic we refer the
reader to P] and [?].

As a last remark we

Let z,y € Zo.1 With diminished-1 representatiorf andy’ respectively. Observe that

@+ty)=(@t+y) -1=E"+)+E +1)-1=2a"+y +1
Hence by using Lemma 1, addition in the Fermat ring can be dtated as

' +y mod2¥ if 2’ +¢y +1>2Y

¥4y lmod (2 41) = { o +y +1 otherwise

which leads us the following important identity
2 4y +1mod 2" +1=2"+19 +C mod 2¥ (5)

Note that Equation (7) is also valid for normal represeatatiof numbers. Therefore it is possible to do arithmetic
by using normal representations (s€§.[

Remark 2:For those algorithms heavily use a normal number represemtaf numbers, a diminished-1 repre-
sentation suffer from the conversion from and to the normahiper representation. In our case we generally do
not care about a presentation of a number unless it is thergsalt.

Likewise Mersenne arithmetic, if the overflows of the reguddition are fed to the adder after an inversion, a
Fermat arithmetic is achieved. Observe that the above rdetbgy function well for CPAs and CSAs, moreover
these adders are named as modular CPAs and CSAs after albangeanents.

Notation 1: Through out this document, for a gate-unit analysis we assemch two input monotonic gate (e.g.,
AND, NAND) counts as one gate (area or delay), an XOR as tweggédrea or delay), and a full adder has an
area of seven gates and a delay of four gates.

If Sklansky parallel-prefix adders are considered for a Cflémentation, the area and time complexity of
CPA becomes same for both Fermat and Mersenne rings whicbryssimilar to the standard integer propagate
addition (see Table 1)

| ring | area | delay |

| Mersenne or Fermat (M/F) 2nlogn+7n | 2logn+5 |

TABLE 1l
THE COST OFCPA (SKLANSKY PARALLEL -PREFIX ADDER).

B. The Fast Fourier Transform

A fast Fourier transform (FFT) is an efficient algorithm tongoute the discrete Fourier transform (DFT) and its
inverse. FFTs are of great importance to a wide variety ofiegions, from digital signal processing and solving
partial differential equations to algorithms for quick riplication of large integers.

We refer the reader to [1] an@][for excellent presentations of the subject.

C. The fieldGF(2?)

The fieldGF(2*) admits a very rich choice of design and implementation fiéiiblt is small enough to employ
look up tables suitable for software; to write algebraicaons for simple functions; has type | ONB with which
Massey-Omura circuits may be used and nice pseudo transforay defined.

In practice, for polynomial multiplication, schoolbook #aratsuba method is used, where the reduction is
performed mostly by standard or Montgomery reduction teples. If f(¢) is chosen as a special polynomial such
as a trinomial or a pentanomial reduction enjoys some éffeciptimizations.

f(t) is not an irreducible, then this set forms a binary polyndmirey where some elements (also called zero
divisors) live without inverses.

Whenk is not a prime, the field>F'(2*) is called acomposite field

Although composite fields enjoy the simplifications of soresithble features, their usage in practice (particularly
in ECC) has some security concerns. In fact, ANSI X9.8B¢xplicitly exclude the use of elliptic curves over
composite fields. Therefore, we do not discuss the optimizatmaking use of these special cases and asgume
is arbitrary.

The arithmetic in binary extension fields is simply modulatypomial arithmetic; addition is performed by
adding polynomials modulo two whereas multiplication iste@expensive in terms of time and area. In a standard
setting, multiplication involves a polynomial multiplitan and a reduction with respect to the defining irreducible
polynomial f(¢). In practice, for polynomial multiplication, schoolbook Karatsuba method is used, where the
reduction is performed mostly by standard or Montgomeryucéidn techniques. Iff(¢) is chosen as a special
polynomial such as a trinomial or a pentanomial reductiojoyensome effective optimizations.

1) Addition: The addition in fieldG'F'(2*) enjoys the modulo 2 arithmetic. In other words,

Example l:Letx =3+t + 1 andy = t*> + 1 be elements o&;F(2%).

r+y=E+t+ 1)+ +1) =+ +¢

In binary notation, one getd011)s + (0101)2 = (1110), by simply xoring respective bits af andy.

2) Multiplication: Multiplication can be performed in many different ways,retey from the trivial table look
up method, here we present standard, type | ONB and embeddkiglivation.

3) Inversion: Likewise multiplication inversion may be implemented ifffelient fashions: table look up method,
here we present standard, type | ONB and embedded multiplica

4) Affine transformation:In order to eliminate the fixed points of the inverse mappig,affine transform is
applied to each entry of the state prism. The affine transfommbe formulated as follows:

T(ijk) = a(m(i7j,k))_1 +

where

O = ==
=== O
_ = O
— O = =

and
1 =10,1,0,1]

The constant has been chosen in such a way that that the Sasordfixed points (S-box(a) = a) and no
opposite fixed points’ (S-box(a) = a).

The ByteSub Transformation is a non-linear byte substitytoperating on each of the State bytes independently.
The substitution table (or S-box) is invertible and is camstied by the composition of two transformations:

Likewise multiplication inversion may be implemented irffelient fashions: table look up method, here we
present standard, type | ONB and embedded multiplication.

D. SRC (shift row & column)

SRC step performs circular shifts both on the rows and cotumxssume that the row and column indexes of
the array start from zero, SRC is achieved as follows

« each row of the array shifted to the left as much as its rowxnde
« each column of the array shifted to the upwards as much aslisna index

E. Component-wise operations

These operations are simple component-wise operationsrajsa For instance; cINV is simply achieved by
inverting the entries of the matrix. Let us formally intraguthese freshman dream matrix operations.
cINV (component-wise inversion):Let A = (a;;) be ann x n matrix over the ringZ,. We define

cINV(A) = B = (b;;)

where

bij = a;
CMULT (component-wise multiplication): Let A = (a;;) and B = (b;;) be n x n matricies over the ring,.

CMULT(A,B) =C = (Cij)

Y'modgq fori,j=0,1,...,n

is defined as follows
¢ij = a;jbijmodq fori,j=0,1,...,n

IV. SPECRALHASHING ALGORITHM

Before going into the details of the s-hash, we note thattsgleltashing adapts the classical Merkle-Damgard
scheme for hash generation as originally illustrated byahthors in Figure 1.

Message Message Message Length
chunk my chunk m; chunk m,,; padding m,,

Lng Lng
gL .

Fig. 1. Classical Merkle-Damgard hash scheme

If one puts the Figure 1 into a formal presentation, the $itegorithm is described as follows:
Algorithm 1: Spectral Hashing Algorithm

Input: padded message (i.e. m = mgm; ...m,_1 wWhere bit lenghim,;| =512 for all i =0,1,...,n — 1)
Output: h, s-hash of the message.

1. ho:=0

2: fori=0ton—1

3: hiy1 = g(mg, h;)

4: end for

5: return h;qq
Clearly, Algorithm 1 is far from being descriptive as its dagot reveal the details of the compression function
g. Starting from the padding scheme, the details of s-haskeanefully described in the following sections.

A. Initialization

Assume there is a message consists an arbitrary binaryg sifikength, I < 2. Since s-hashing operates
on 512-bit blocks of message, the initialization includgsaalding scheme resulting an extended message having
length which is a multiple o612. The following steps summarizes the padding process:

i. append the bit "1’ to the message

ii. appendk bits of 0", wherek is a non-negative integer such that k + 1 = 448 mod 512.

iii. append the 64-bit big-endian binary representatiorn, atturning the padded message string

S-Hash process the message in successive 512-bit chunkgatided message string= my . .. m,_1 consist
of n chunks where each of,; for i =0,1,2,...,n — 1 has 512-bit length.

We start with processing chunky; firstly, we break the chunk into 128 words of 4-bits and thespnit into

an4 x 4 x 8 array or prism. Formally, lethg = sg, s1, .. ., s197 Wheres; is a 4-bit binary number for all' in the
index set{0,1,...,127}. We reindex the binary stringz, as follows:
S(igk) = SI

wherel = 32i +8j + k, fori,57 = 0,1,2,3 andk = 0,1,...,7. In fact, this re-indexing corresponds to fill
an4 x 4 x 8 prism as shown in Figure 2. We call this array as the statanp(sprism). In every iteration of
Merkle-Damgard scheme this state prism is filled with messdginks and processed throughout s-hash algorithm
steps.

Similar to s-prism, we employ anothérx 4 x 8 array holding a permutation table that is used for settinghep
non-linear system of equations of the compression funcfidiis permutation array is called as the permutation
prism (p-prism) which is initially configured as

Py =1

y £ S50 s sis yd 39 71 103
1
/5\5 Sa7 $79 st S103 /15 47 79 111 0
113
/sZ; - s7 Yy 4En /23 55 87 119 1
1 1 1
831 S63 Sos S127 Si9 S102 31 63 95 127 1 0
119412
S127 S0 2 1
S31 863 Sos S127 31 63 95 127 A1) o1
Siis Sio1 1 0
118411
S126 S109 2 0
S30 S62 So4 S126 30 62 94 126 6f1 941
Su7 S100 1 0
1174110
S12s Siog 2 0
$29 S61 So3 S5 29 61 93 125 [541]8/ g
Sie 599 1 9
1 e 41
Si2s S0 2 0
828 S60 Sg Si24 28 60 92 124 a7/,
Si1s Sog 1 s
1 5 Y1
si S1o6 2 0
$27 S59 So1 Si23 27 59 91 123 3 1 64 9
S S
m 07 A
2 0
i Sio:
S26 Ss8 S99 Si2 26 58 9 122 |2 1 54
si3 S96 6
: 1 3)1 _>
: 2 0 /
S123 Si04 . .
S25 Ss7 889 Si21 / 1 25 57 89 121 1 1 7 i
Si2
112
5|22/ 2 /
24 856 Sgg S120 24 56 88 120 Jo
Fig. 2. State Prism Fig. 3. Permutation Prims

forI=0,1,...,127,4,5=0,1,2,3 andk =0, 1,...,7 (see Figure 3).
During the initialization, after filing up the s-prism withé words ofimg, we modify the p-prism by some simple
entry swappings. Since s-prism initially holds 4-bit eestiwe apply the following swappings to the p-prism:

Pl gy = PlShii s ,Sl s k)

where Si(; j 1y = Sk mod 4 and Sh; 1y = Sg sk div 4 for all ;5 = 0,1,2,3 andk = 0,1,...,7. In other
words,Sl; j i) andShy; ; i,y represents the least and most significant two bits of théssapentryS; ;) respectively.

In the rest of the algorithm we modify both of the state andwmeation prism. In certain stages we combine
these two parallel altered prisms.

B. Compression function

The compression functiop of s-hash consists of three stages:

« Affine transformation

« Discrete Fourier transformation

« Non-linear system transformation

Observe that even the conventions of all three stages maé@dgribes the acts on the s-prism; the transformations
on the p-prism are performed using the outcomes of the gapttisough these stages.

Therefore, before going into the details, we sketch how timapgression function works. In Figure 4, the column
on the left illustrates the consecutive transformationgliad to s-prism. On the other hand, the modifications on
the p-prism is controlled by the intermediate entries of shgrism derived from the outputs of these stages. In
total p-prism goes through 5 different type of swappings aoihe rotations shown in the figure.

We start with describing the affine transform made up of a liv®ar iterative contraction vector transformation
over the fieldG F(2%).

Affine transformation: The following affine transform is applied to each entry of thprism

S(ijk) = a(s(i,j,k))_l +7 (6)

10

cececcccccsccsccseseseeeea|njtialization stage—--------------------

Map the Set the initial
message to @ state of the
s-prism p-prism
L3 S L5 S
Permutation
State prism prism
—> Initial swap control —>,
i J
ceccccccccce ------Proccesing the 1St chunkeeococece| ceccccccccccs
Processing Affine Apply initial
the transform swappings on
1t chunk kA kA p-prism
1%t and 2™ swap control
1-dimensional 4 Apply 1% and
@ DFTs through @ 2" swappings
k-axis on p-prism
kA kA
(= i =
rd
' g 3" swap control . g
4 1-dimensional 4 Apply 3"
DFTs through swappings on
j-axis p-prism
kA kA
——
th
s 4" swap control :
4 1-dimensional h Apply 4"
@ DFTs through @ swappings on
X i-axis P p-prism
Non-linear system
) —> transform) —>
y 4
Apply the non-linear Apply plane
system transform to rotations
the state
ka ka
)
ceccccccccce ----Endofprocessing 1Stchunk----- ceccccccccce
Processing
the
2" chunk A A
———
1%t and 2™ swap control
. i . i
4 1-dimensional 4 Apply 1% and

e

DFT through
k-axis

Fig. 4. Swap control planes (sc-planes) on the s-prism

where

1 011
1 1 01
1110
0111

Il

and~ =[0,1,1,1].

2" swappings
on p-prism

One can clearly see that the foremost component of the affamsform (8) is the inverse map which has the
best known non-linearity [4] in the field'’(2*). Favorably, AES substitution box uses the inverse ma@ #{(2%)
as its main non-linear component against differential anear attacks. Therefore, the inverse mapdfi(2*) is
taken as a nice behaving function to build immunity for knosutcessful attacks. Moreover, in order to eliminate

11

the weaknesses related to the fixed points, in s-hash dehigimverse map is coped with a constant scaling and
a linear iteration.

DFT map: We simply apply the 3-dimensinal DFT to the s-prism. Sinceneantermediate DFT calculations
are needed for p-prism modifications, s-hash may not allopractice all kinds of fast DFT methods. In particular,
p-prism swappings use the intermediate values of the stdmda-column method successively applied through
k,j andi axis as seen in Figure 5.

IR
|

|

/

J

Fig. 5. Three dimensional DFT can be realized by row-colungthod: applying 1-dimensional DFTs to the state prism thhott j and
1 axis successively

As described in the previous sections, DFT is defined oveptimee field GF'(17), permitting a transform having
length 8 and 4 for the principle root of unities= 2 andw = 4 respectively. Moreover, observe that in the first
iteration of the row-column method (i.e. DFT throub#axis) one has to compute 16 different 1-dimensional 84poin
DFTs. On the other hand, throughand j axis, we need to calculate 32 different 4-point DFTs for eaxis.

Unlike DFT revision of s-prism, p-prism modifications arettld bit more complicated. We perform data (s-prism)
depended swappings on the p-prism similar to those donegltie initialization stage.

The first modifications after the initial refinement on therfsim is performed using swap control plane (sc-plane)
of the s-prism. The 1st sc-plane isdax 4 array extracted by xoring the two planes (matrices) perjpeihat to
the k-axis, particularly, the two having co-ordinates equal to 0 modulo 4 (see Figure 6). If expjiaittitten, the
following gives the swappings for all j = 0, 1,2, 3:

then, swap(P(mo ,

if ((S(,5,0[0] .;,4)[0]) = 0)) Pl
it ((Saj0[l] ®Sa0(l]) =0) then, swap(P; 1), i je)):
f ((Sa,5,0[2 © Sa,j4[2]) =0) then, swap(P ;2), Pijs))

((S(i,5,0)3] © Sija)[3]) = 0) then, swap(F; sy, Pija))-

12

kA k k
3 sc-plane

2 sc-plane E——— —— a

. . sc-
1% sc-plane* DFTs through k-axis DFTs through j-axis plane

> L 5 >
2" sc-plane i i i
1% sc-plane*
J J J

Fig. 6. Swap control planes (sc-planes) on the s-prism. gt)st-plane is computed by XORing these two)

Fig. 7. 1st and 2nd swappings on the vectors of p-plane

On the other hand, the 2nd sc-plane consists of 4wo4 arrays controlling the upper and lower halves of the
p-prism. Once again these two planes perpendicular t&wes with £ = 1 mod 4 as seen in Figure 6. The lower
half is controlled by the lower array of the 2nd sc-plane d®vis:

|f (S(Z,j,l)[o] - 0) then, SwaF(P(i,j,O)7 P(i,j,l))?
if (S(i,j,l)[l] = 0) then, SW&F(P(Z'J"2), P(i,j,?)))7
if (S@,)21 =0) then, swap(F; 1), Pij2))s
if (S(i,j,l)[g] = 0) then, SW&F(P(Z'J"()), P(i,j,?)))7
where the upper half is controlled by the upper plane of tipeisn:
|f (S(’i7j,5) [0] — 0) then, SW&F(P(Z'JA), P(i7j,5))7
|f (S(Z,j,5)[1] — 0) then, SW&F(P(z',jﬁ)» P(i,j,?))?
|f (S(’i7j,5) [2] — 0) then, SW&F(P(Z'7]'75), P(Lj,()))?
|f (S(i,j,5) [3] - 0) then, SW&F(P(Z'J’A), P(i,j,?))?

13

Notice that 1st and 2nd sc-planes controls the swapping$ aettors on the p-prism. Each of these vectors has
8 entries and are parallel to ttieaxis.

The 3rd and 4th sc-planes are obtained from the s-prism thiéet-dimensional DFT calculations througtand
J axis respectively. In fact, 3rd sc-plane is choserbgs ;) where 4th sc-plane i§; ; 3).

Although the input values for DFT belongs to the binary field'(2*) (i.e. values represented by at least 4-bits),
DFT operates over the prime field F(17) and might return 5 bit entries. We select the least signifiahits
of the sc-plane entries as the swap control bits. Moreowearder to balance distribution of the swapping, we
involve the index in the calculations. To be more concrdte,following swapping is applied to the p-prism for all
i=0,1,2,3andk =0,1,...,7:

if ((S(i2,1)[0] ® K[0]) = 0) then, swap(P k), i1,k
if ((Sg2mll] @ k(1)) =0) then, swap(F;2 k), Pisk))s
if ((Sqom[2©k[2]) =0) then, swap(Fi k), Pizk)):
if ((S@,2x)[3] ©i[0]) =0) then, swap(P k), Pis.k))s

1% swap

1% swap 2" swap
2" swap

v v v v

<
> I
3¢ swap | 4" swap
<
3" swap
<

4" swap

Fig. 8. 3rd and 4th swappings on the vectors of p-plane

Similarly, the following swapping is applied to the p-prismsing the 4th sc-plane for ail = 0,1,2,3 and
k=0,1,...,7:

then, swa

if ((S(s,5,)[0] © E[0]) = 0) 0,5,k) P1,5,k))»
if ((S@ajkll] @ k[1]) =0) then, swapPq k), Psk));
if ((Ses50)(2] ©K[2]) =0) then, swapP ;) P2jk));
if ((Ses,50)[3] ®i[0]) =0) then, swapPq ;), P3jk));

Non-linear system transform: At this step of the compression function we collect and comalihe data from s-
prism and p-prim to setup a non-linear system of equatiohs.rion-linear system transform is especially designed
against pre-image attacks and related weaknesses. Werfalidtuss security related issues in Secf@n

Non-linear system transform applies the following map toheantry of the s-prism.

Stik) 7= (S(agm + Pliaja) ™ + Sk + Phiin) ™ + Heg (7)
forall i, =0,1,2,3 andk = 0,1,...,7. Clearly, Equation () would be more clear after explicitlgsdribe the
objectsszm’k), Pl j k) and Ph j .-

As we discussed earlier, DFT operates over the prime &igld17) and outcomes of DFT might be 5-bit entries.
We assign the least significant 4-bits of the s-plane enffiesn other words;

Stk = Stk mod 2t fori,j=0,1,2,3andk=0,1,...,7
Similary, we pick the least significant 4-bits of p-prism regg and assing them tBI;

4
Pl(z,j,k) = P(Z,j,k) mod 2

On the other handP#h is the concetination of the 5th bit &f and

14

remaining 3-bits o (recall that entries of

p-prism are 7-bit numbers) where the symbf! stands for concetination of bit strings.

If the message consists of a single chunk, the hash valuediscdd from the s-prism at this point. Otherwise,
s-hash algorithm behaves according to Merkle-Damgardnseh&-prism goes into the successive round as the
previous round outcome, i.€1; ; ;) which initially equals to zero. On the other hand, p-prisnegthrough some

rotations (called rubics rotations, see Figure 9) desdraxe follows:

then Pk
then Pk
then Pk

) =
) =
) =
then P(z,] k) =

!

1
ANRNNRNR

Fig. 9. Rubics rotations on p-prism

Algorithm 2: Compression function
Input: a message chundy, sq,...,s197 andh;
Output: h;iq
1 S,k = s, map message chunk into s-prism
2: Affine-trans@; ; 1)), apply affine transform to the s-prism
2: swap’; ;). apply affine transform to the s-prism
3. Affine-transf; ; 1)), apply affine transform to the s-prism
12: return H;
Observe that At the end of the
Algorithm 3: . g function
Input: m;, m;+1 andh;_q
Output: s-hash of the message
1 2= alm) t+y
2. X, = DFT(I’Z)
3 Hi:=(Xi+ou(@)™ + (Xou) +0r(i) ™+ him
12: return H;

(m k)s
Pla—jik);
(],z,k)a
Plia—ik),

15

C. Hash generation

Spectral hashing algorithm can be configured to return hasies which are multiples of 32-bits in between
128 and 512. These lengths clearly includes the bit sizes 258, 384 and 512.

The procedure is quite simple; applied whenever the finééstaf the s-prism and p-prism are reached. In other
words, desired hash string is generated after s-prism dgweagh the non-linear system transform and p-prism is
modified via the rubics rotations at the end of the final chsigbcessing.

The bits of the hash value are selected from the s-prismesntietermined by the s-hash generation table (sg-
table). The sg-table is a co-ordinate matrix with rows simgathe bit positions orb; ;) and columns pointing
the least significant two bits afy; ;). A plotted star on the sg-table means that "assign the quoreting bit on
all the S, ;) entries to the hash value if the least significant two bitshef ¢corresponding?; ;) coincides with
the selected column”. For instance, Table Ill states thé#teftwo least significant bits af; ; ;) is "00” (observe
that 32 such entry exist) then the Oth bit 8f ; ;) has to be assigned to the hash value.

| P [l : 0] | 00 | 01 | 10 | 11 |
bit 3 *
position | 2 *
on 1 *
S(ig.k) 0 *
TABLE 1l

128-BIT HASH GENERATION.

Notice that Table Ill presents a generation3@fx 4 = 128-bit hash value. In fact, every cell (= bit) selection on
the sg-table adds extra 32-bits to the assigned hash biesefinie by adding more stars to the sg-table, one can
generate longer hash values obviously bounded by 512ilkststiie s-prism itself).

For instance; 224-bit hash generation neg2l/32 = 7 stars to place. With the following description, we fixed
the star placing process.

While counting the number of stars, on every count we put glsistar on the sg-table, two stars in the same
hole is not allowed. We place the stars through the diaga@tafing from main diagonal as seen in 128-bit sg-table
(i.e. Table I1l). We put the stars on a diagonal from the léashe most significant cells (defined with; ; ;) bits).
When the holes on one diagonal finishes we continue with diltime longest diagonal parallel to it. If two such
diagonals exist we pick the one on top first.

According to the above generation process, one can havegttebkes for 244, 256, 384 and 512-bit in Tables
2,3,4 and 5 respectively.

| P [l 0] | 00 | 01 | 10 | 11 |
bit 3 * *
position | 2 * *
on 1 * *
S(ig.k) 0 *
TABLE IV

224-BIT HASH GENERATION.

[Pagwmd:0]] 00 01 10 11 |
bit 3 * *
position | 2 * *
on 1 * *
S(ig.k) 0 * *
TABLE V

256-BIT HASH GENERATION.

16

[Po,n 0]] 00 | o1 | 10 | 11 |

bit 3 * * *
position | 2 * * * *
on 1 * * *
Stijm | O * *
TABLE VI
384-BIT HASH GENERATION.
| P [l 0] | 00 | 01 10 11 |
bit 3 * * * *
position | 2 * * * *
on 1 * * * *
S(i,j,k) 0 * * * *
TABLE VII

512-BIT HASH GENERATION.

After the selection the resulting s-prism is called a puredus-prism looks like a swiss cheese. The final hash

value is simply deduced from the final state of the puncturpdissn by reversing the message map indexing.
Formally, the hash string

h = hn = HQHl...H127
consists of the 4-bit wordé&l; = S; ; 1), wherel = 32i +8;j + k for i,j =0,1,2,3 andk =0,1,...,7.

[N
[N
[ERN
[N
[ERN
[ERN

V. SECURITY CONSIDERATIONS

Finding a differential path on spectral hash is infeasilfithen one goes through its steps, it can be easily seen
that the first step is bijective. In addition, almost evert dfi the input to the DFT step affects the output which
means even a small number of bit change creates a large awfquiapagation. The DFT step precludes the search
for differential paths.

The usage of the inverse function at steps 1 and 3 are for itdinearity. Inverse function in the field'F'(2*)
has non-linearity property.(reference) Thus, it is hardpproximate it by linear equations and creates resistance
against linear cryptanalysis.

The internal states of spectral hash are bijective transftions. Going back through step 3 to produce an
"internal hash value” from a pre-specified hash values isl Hmcause of the existence of the data dependent
permutation in step 3. Thus, finding a matching internalestatnot possible to construct a collision due to the
fact that constructing different internal states requiiading inverses of different permutations each of which is
specified by a different message initially unknown to theeadary.

Moreover, the specification of data dependent permutatiom fa given message shows uniform distribution;
which means each different 512-bit length message bloclergées a different permutation. As a result the
probability of finding a pre-specified message from the hashy2”, where n is the number of bits of the output
of the Spectral Hash.

Concluding, we conjecture that Spectral Hash is resistakibdwn attacks and it is not possible to find a collision
under the complexity bound®(2("/2)) required for birthday attack. It has pre-image resistanith @omplexity

O(2™). Spectral hash also admits a random distribution which mélesuitable candidate for an ideal cryptographic
hash function.

VI. CONCLUSIONS
We proposed new techniques

17

REFERENCES

[1] R. E. Blahut, Fast Algorithms for Digital Signal Processing\ddison-Wesley publishing Company, 1985.

[2] J. E. Hopcroft A. V. Aho and J. D. UllmanThe Design and Analysis of Computer Algorithndgldison-Wesley publishing Company,
1974.

[3] J. M. Pollard, “Implementation of number theoretic tséorm,” Electronics Lettersvol. 12, no. 15, pp. 378-379, July 1976.

[4] K. Nyberg, “Differentially uniform mappings for crypgraphy,” in Advances in Cryptology, Proceedings Eurocrypt'93, LNCS, 76
Helleseth, Ed., Springer-Verlad994, pp. 55-64.

