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Abstract

We describe a new method to perform the modular expo-
nentiation operation, i.e., the computation of c = me mod
n, where c, m, e and n are large integers. The new method
uses the discrete Fourier transform over a finite ring, and
relies on new techniques to perform multiplication and re-
duction operations. The method yields efficient and highly
parallel architectures for hardware realizations of public-
key cryptosystems requiring the modular exponentiation as
the core computation, such as the RSA and Diffie-Hellman
algorithms.

1. Introduction

Most public key cryptosystems require resource-
intensive arithmetic calculations in certain mathematical
structures such as finite fields, groups and rings. The effi-
cient realizations of the these operations including modular
multiplication, inversion, and exponentiation are at the cen-
ter of research activities in cryptographic engineering. In
this study, new techniques of performing modular multipli-
cation and exponentiation based on a new reduction oper-
ation are proposed (Section 2). These methods work com-
pletely in the frequency domain (spectrum) with some ex-
ceptions such as the initial, final and some partial transfor-
mations calculations.

Spectral techniques for integer multiplication have been
known for over a quarter of a century. Using the spectral
integer multiplication of Schönhage and Strassen [9], large
to extremely large sizes of numbers can efficiently be multi-
plied. Such computations are needed when computing π to
millions of digits of precision, factoring and also big prime
search projects.

A naive way of utilizing the spectral techniques for mod-
ular multiplication is first computing the multiplication us-
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ing possibly Schönhage-Strassen and then performing the
reduction in the time domain. This approach is preferable
if the input length is large enough to meet the asymptotic
crossover of Schönhage-Strassen, assuming the reduction
has a constant cost. Additionally, if the naive method is
used for operations involving consecutive multiplications,
because of the costly forward and backward transformation
computations, the asymptotic crossover of these operations
would be similar to what a single modular multiplication
has. Unfortunately these crossovers are larger than the key
sizes of the most public-key cryptosystems; thus, in practice
the naive way is hardly used.

We propose a modular multiplication that can be per-
formed on the Fourier representations of integers. In such
a representation, multiplications are readily available by the
convolution property, and thus, operations involving several
modular multiplications can be efficiently computed.

After giving some preliminary notation and a formal def-
inition of Discrete Fourier Transform (DFT) over Zq (i.e.,
the ring of integers with multiplication and addition modulo
a positive integer q), we describe our main idea of spectral
modular arithmetic including spectral modular multiplica-
tion (SMM) and spectral modular exponentiation (SME) in
the next section.

In Section 3, we describe methodologies for selecting the
parameters for SME in order to apply the algorithm to pub-
lic key cryptography. In Section 4, we turn our attention to
the architectural issues and performance analysis: we show
that spectral algorithms yield efficient and highly parallel
architectures for hardware implementations of public-key
cryptosystems. We conclude our work with some final com-
ments in the final section.

2 Spectral Modular Arithmetic

2.1 Discrete Fourier Transform

Spectral techniques are widely accepted and used in the
field of digital signal processing, hence most existing nota-



tion and concepts come from this theory. For many rea-
sons, the signals and admissible operations on these sig-
nals of such a theory are quite different than of a theory of
computer arithmetic. For instance, when we multiply inte-
gers using FFT (or convolutions), first we break the integers
into words and then process on these partitions. Note that
any small perturbation in these components would totally
change represented integer. On the other hand, approxima-
tions on the signal components without changing the main
characteristics of the original signal are allowable in digital
signal processing.

Therefore, we believe we need to develop a more suitable
notation that would permit us to have a better understand-
ing of employing the spectral techniques for the computer
arithmetic related problems. While doing this, we follow a
polynomial representation instead of the standard sequence
representation of digital signal processing. Such a presen-
tation is necessary for our purposes and moreover, it states
the different nature of number representing signals from a
classical signal processing analysis. We start with a formal
definition of DFT.

Definition 1 Let ω be a primitive d-th root of unity in Zq

and, let x(t) and X(t) be polynomials of degree d−1 having
entries in Zq . The DFT map over Zq is an invertible set map
sending x(t) to X(t) given by the following equation;

Xi = DFT ω
d (x(t)) :=

d−1∑

j=0

xjω
ij mod q, (1)

with the inverse

xi = IDFT ω
d (X(t)) := d−1 ·

d−1∑

j=0

Xjω
−ij mod q,

for i, j = 0, 1, . . . , d − 1. We say x(t) and X(t) are trans-
form pairs, x(t) is called a time polynomial and sometimes
X(t) is named as the spectrum of x(t).

In the literature, DFT over a finite ring spectrum (1) is
also known as the Number Theoretical Transform (NTT).
Moreover, if q has some special form such as a Mersenne
or a Fermat number, the transform named after this form;
i.e., Mersenne Number Transform (MNT) or Fermat Num-
ber Transform (FNT).

Note that, unlike the DFT over the complex numbers,
the existence of DFT over finite rings is not trivial. In fact,
Pollard [7] mentions that the existence of primitive root d-th
of unity and the inverse of d do not guarantee the existence
of a DFT over a ring. He adds that a DFT exists in ring R if
and only if each quotient field R/M (where M is maximal
ideal) possesses a primitive root of unity. If R = Zq is
taken, one gets the following corollary;

Corollary 1 There exists a d-point DFT over the ring Zq

that supports the circular convolution if and only if d divides
p − 1 for every prime p factor of q.

Proof. See Chapter 6 of Blahut [2] or Chapter 8 of Nauss-
baumer [6]. �

2.2 Spectral Modular Reduction (SMR)

In order to compute the modular reduction, a Mont-
gomery type [5] method can be employed. Instead of at-
tacking to compute “x mod n” directly, it is possible to de-
rive the reduction after performing a related computation

x · r−1 mod n

where gcd(n, r) = 1. At first glance, this seems compu-
tationally pointless because of inversion involved but the
selection of r changes this first impression drastically. In
Algorithm 1, we present such a reduction methodology af-
ter presenting a related notation. We gently refer the reader
to [8] for a proof.

Notation 1 Let a ∈ Z be a constant number, a degree d
polynomial with all of its coefficients equal to a (i.e., a(t) =
a + at + at2 + . . . + atd) is denoted by a(t).

Algorithm 1 Spectral Reduction Algorithm
Suppose that there exists a d-point DFT map for some prin-
cipal root of unity ω in Zq . Let x(t) & X(t) and n(t)
& N(t) be transform pairs with deg(n(t)) = e ≤ d =
deg(x(t)) and n(b) is a multiple of the modulus n where
n0 = 1.
Input: X(t) and N(t); spectral polynomials
Output: Y (t) = DFT (y(t)) where y ≡ x2−db mod n and
y = y(b),

1: Y (t) := X(t)
2: α := 0
3: for i = 0 to d − 1
4: y0 := d−1 · (Y0 + Y1 + . . . + Yd−1) mod q
5: β := −(y0 + α) mod b
6: α := (y0 + α + β) div b
7: Y (t) := Y (t) + β · N(t) mod q
8: Y (t) := Y (t) − (y0 + β)(t) mod q
9: Y (t) := Y (t) � Γ(t) mod q
10: end for
11: Y (t) := Y (t) + A(t),
12: return Y (t)

where � stands for component-wise multiplication; A(t) is
the DFT pair of the base polynomial of α(t) and Γ(t) =
1 + ω−1t + ω−2t2 + . . . + ω−(d−1)t(d−1).



2.3 Spectral Modular Multiplication

Convolution and the SMR algorithm can easily be com-
bined to harvest a spectral modular multiplication algorithm
in a finite ring spectrum. In order to have a clear presen-
tation we divide our presentation into 3 sub-procedures as
seen in Figure 1. Note that the initial and final stages con-
sist of some data arrangements where the Spectral Modu-
lar Product (SMP) procedure consists of the actual multi-
plication and reduction steps (i.e., convolution and spectral
reduction). Later, while presenting the spectral exponentia-
tion algorithm, SMP is going to be the basic building block
again. SMP procedure and SMM are given as follows:

Init SMP Final

f(t)

x(t)

y(t) z(t)

Figure 1. Spectral Modular Multiplication.

Algorithm 2 Spectral Modular Product
Suppose that there exist a d-point DFT map for some prin-
cipal root of unity ω in Zq , and X(t), Y (t) and N(t) are
transform pairs of x(t), y(t) and n(t) respectively. We as-
sume that x(b) = x, y(b) = y and n(b) is a multiple of
modulus n with n0 = 1 for some integers x, y < n and
b > 0.
Input: X(t), Y (t) and N(t); spectral polynomials
Output: Z(t) = DFT (z(t)) where z ≡ xy2−db mod n
and z(b) = z,

1: Z(t) := X(t) � Y (t)
2: α := 0
3: for i = 0 to d − 1
4: z0 := d−1 · (Z0 + Z1 + . . . + Zd−1) mod q
5: β := −(z0 + α) mod b
6: α := (z0 + α + β)/b
7: Z(t) := Z(t) + β · N(t) mod q
8: Z(t) := Z(t) − (z0 + β)(t) mod q
9: Z(t) := Z(t) � Γ(t) mod q
10: end for
11: Z(t) := Z(t) + A(t)
12: return Z(t)

Algorithm 3 (Spectral Modular Multiplication)
Suppose that there exist a d-point DFT map and n(b) is a
multiple of modulus n where n0 = 1, deg(n(t)) = s − 1,
s = �d/2�, gcd(b, n) = 1 and b > 0.
Input: A modulus n > 0 and x, y < n
Output: z ≡ xy mod n.

1: Compute λ(t), λ = bd mod n.
2: Compute xd(t) := x(t) · td for x · λ mod n.
3: Xd(t) := DFT(xd(t))
4: Y (t) := DFT(y(t))
5: N(t) := DFT(n(t))
6: Z(t) := SMP(Xd(t), Y (t), N(t))
7: z(t) := IDFT(Z(t))
8: return z(b)

Since we operate in a finite ring spectrum, one has to
deal with overflows that might occur during the computa-
tions. In fact, Algorithm 3 gives a correct result if the inter-
mediate values stay bounded. The following theorem states
the condition when overflows do not occur. The reader is
referred to [8] for a proof.

Theorem 1 Algorithm 3 computes z ≡ xy mod n, if the
parameters b, q and s satisfies 2sb2 < q.

2.4 Spectral Modular Exponentiation

In general, a single classical modular multiplication is
faster than a single SMM; however, spectral methods are
very effective when several modular multiplications with
respect to the same modulus are needed. An example is
the case when one needs to compute a modular exponentia-
tion, i.e., the computation of me mod n, where m, e and n
are positive integers. Such a setup needs a consecutive use
of SMM; also means a consecutive use of DFT and IDFT
operations (obviously redundant computations as seen Fig-
ure 2). Therefore, if the data is kept in the Fourier domain
at all times, the backward and forward transforms are by-
passed. Consequently, this approach decreases the asymp-
totic crossovers of the spectral methods to cryptographic
sizes while computing the modular exponentiation.

n

c

DFT DFTIDFTSMP

m

e

SMP DFT SMP IDFTIDFT

c

DFT SMP SMP SMP IDFT

n

m

e

Figure 2. Spectral Modular Exponentiation.

There are many methods for carrying general exponenti-
ation. Mostly efficiency comes from two resources; one is
to decrease the time to multiply; the other is to reduce the
number of multiplications. In practice one does both. No-
tice that, until now our objective was reducing the modular



multiplication which is categorized in the first category. For
the rest of this study we keep this goal and simply consider
using the binary method (see [4]) for the rest of our presen-
tation.

The binary method scans the bits of the exponent ei-
ther from left to right or from right to left. A squaring is
performed at each step, and depending on the scanned bit
value, a subsequent multiplication is performed. We de-
scribe the spectral modular exponentiation algorithm by us-
ing a left-to-right binary method below.

Algorithm 4 (Spectral Modular Exponentiation)
Suppose that there exist a d-point DFT map and n(b) is a
multiple of modulus n where n0 = 1, deg(n(t)) = s − 1,
s = �d/2�, gcd(b, n) = 1 and b > 0.
Input: A modulus n > 0 and m, e < n
Output: c ≡ me mod n

1: Compute λ(t) such that λ = b2d mod n.
2: N(t) := DFT(n(t))
3: Λ(t) := DFT(λ(t))
4: M(t) := DFT(m(t))
5: M ′(t) := SMP(M(t), Λ(t), N(t))
6: C(t) := SMP(1(t), Λ(t), N(t))
7: for i = j − 2 downto 0
8: C(t) := SMP(C(t), C(t), N(t))
9: if ei = 1 then C(t) := SMP(C(t), M ′(t), N(t))
10: C(t) := SMP(C(t), 1(t))
11: c(t) := IDFT(C(t))
12: return c(b)

Once again, we need to guarantee that overflows do not
occur, in other words the coefficients of intermediate or final
results should not be winding over q.

Theorem 2 Algorithm 4 computes an almost modular re-
duction, c ≡ me mod n if the parameters b, q and s satis-
fies the following inequality

(b2 + b)2B(s) + b2s < q (2)

where

B(s) =
−2s3

3
− s2 + 2s2r1 − s

3
+

r1

3
+ 2sr1

r1 = −2 +
1
3

√
3 + 18s2 + 18s .

3 Applications and Further Improvements

Modular exponentiation is one of the most important
arithmetic operation in modern cryptography. For exam-
ple, the RSA algorithm requires exponentiation in Zn for
some positive integer n, whereas Diffie-Hellman key agree-
ment and the ElGamal scheme use exponentiation in some

large prime fields (see [3]). In this section, we describe the
methodologies of selecting the parameters for SME in order
to use the method in public-key cryptography. In particu-
lar the Inequality (2) presents a solid basis for the relation
between the parameters b, q and s. This bound can be im-
proved in many ways which we also investigate throughout
this section.

3.1 Parameter Selection for RSA

In this section we tabulate some example parameters for
modular exponentiations using the SME method. Once the
underlying ring, the DFT length and the principal root of
unity are selected, the maximum modulus size used in the
SME method is computed by finding the base b = 2u. The
relation between these parameters is computed after deter-
mining the maximum b satisfying the Inequality (2).

Bits Ring DFT Root Wordsize Words

k Zq d ω u s

518 273 − 1 73 2 14 37

704 264 + 1 128 2 11 64

1,185 279 − 1 158 -2 15 79

2,060 (2103 + 1)/3 206 2 20 103

2,163 2103 − 1 206 -2 21 103

3,456 (2128 + 1) 256 2 27 128

Table 1. SMP Parameter selection for SME.

In Table 1, some sample rings with DFT parameters are
given. We give an example to show how we get these fig-
ures. We first select a ring, for instance, lets take q =
279−1. This comes with the principal root of unity ω = −2,
the length d = 158 and s = �d/2� = 79. Plugging these
values into the Inequality (2) gives

138754.3b4 + 277508.7b3 + 138833.3b2 < 279 − 1

and then by inspection b = 215 ⇒ u = 15 is found.
Therefore, we may perform an exponentiation of maximum
operand size equals to k = s · u = 79 · 15 = 1185 using
SME with the specified parameters.

3.2 Modified Spectral Modular Product

If the SMP (i.e., Algorithm 2) is considered, the bound-
ary analysis depends heavily on β · N(t) multiplication of
Step 7. It is possible to replace this multiplication by a
multi-operand addition at a cost of some pre-computation
and extra memory. This replacement gives a reasonable
amount of radius shrinkage. Additionally, replacing the
multiplication by an array adder improves the computa-
tional complexity.



Let b = 2u and ni(t) be the polynomial representation
of an integer multiple of n such that the zeroth coefficient
of ni(t) satisfies (ni)0 = 2i−1 for i = 1, 2, . . . , u (note that
n(t) = n1(t)). We can now write β · N(t) as

β · N(t) =
u∑

i=1

βi · Ni(t) , (3)

where βi is a binary digit of β and Ni(t) = DFTω
d (ni(t))

for i = 1, 2, . . . , u. Note that β < b and βi = 0 for i ≥ u.
Plugging the Equation (3) into the Algorithm 2 gives us

the modified Spectral modular product algorithm;

Algorithm 5 Modified Spectral Modular Product (MSMP)
Suppose that there exist a d-point DFT map for some princi-
pal root of unity ω in Zq , and X(t) and Y (t) are transform
pairs of x(t) and y(t) respectively where x(b) = x and
y(b) = y. Let N = {N1(t), N2(t), . . . , Nu(t)} be the set
of special polynomials as described above;
Input: X(t), Y (t) and a basis set N
Output: Z(t) = DFT (z(t)) where z ≡ xy2−db mod n
and z(b) = z,

1: Z(t) := X(t) � Y (t)
2: α := 0
3: for i = 0 to d − 1
4: z0 := d−1 · (Z0 + Z1 + . . . + Zd−1) mod q
5: β := −(z0 + α) mod b
6: α := (z0 + α + β)/b
7: Z(t) := Z(t) +

∑u
i=1 βi · Ni(t) mod q

8: Z(t) := Z(t) − (z0 + β)(t) mod q
9: Z(t) := Z(t) � Γ(t) mod q
10: end for
11: Z(t) := Z(t) + A(t)
12: return Z(t)

Observe that the basis set N needs to be pre-computed
and stored. This requirement can be seen as a handicap
for certain platforms; however, in general the MSMP deliv-
ers smaller realizations. While inserting MSMP into either
SME or SMM the pre-computation is done at the beginning
of Algorithm 3 or 4. After computing n1(t) the rest of the
basis set is computed by multiplying n1 by powers of 2. We
then apply the DFT function to corresponding polynomials
in order to get Ni(t) = DFT[ni(t)] for i = 1, 2, . . . , u.

With the adjustment (3), the time coefficients of∑u
i=1 βi · Ni(t) become less than b log(b) which gives us

a better inequality

(b log(b) + b)2B(s) + b log(b)s < q. (4)

This new bound is a good improvement for a reasonable
space cost and gives us the improved parameters which are
tabulated in Table 2 below.

Bits Ring DFT Root Wordsize Words

k Zq d ω u s

540 259 − 1 59 2 18 30

1,080 279 − 1 79 2 27 40

1,216 264 + 1 128 2 19 64

2,054 279 − 1 158 -2 26 79

4,251 2109 − 1 218 -2 39 109

Table 2. MSMP parameter selection for SME.

4 Architectures and Performance Analysis

In this section, we give architectures and performance
analysis of spectral modular algorithms. Spectral methods
brings parallelism in computations by dividing the larger
problems into smaller pieces. As a result, it is possible to
employ some low level parallelism on the resulting parti-
tions. In general, large size problems suffer from this kind
of parallelism. For instance, a parallel realization of a multi-
plier has quadratic area complexity and infeasible to realize
for large input sizes.

Spectral modular algorithms are dominated by multi-
operand additions and multiplications over some special
rings. We briefly review the architectures described in [11]
and [12], in particular multiplication and multi-operand ad-
dition for Fermat and Mersenne rings. In Section 4.2, beside
a generic analysis, we append a combined analysis of high
and low level parallelism.

There are other efficient ways of carrying low level op-
erations, for instance, check [10] and [1] for table-lookup
methods. Further, in [1], discussions on the use of Booth’s
recoding can be found.

4.1 Fermat/Mersenne Ring Arithmetic

An integer ring having q = 2v ± 1 elements is the most
suitable one for the SME computation since the modular
arithmetic operations for such q are simplified. Moreover, if
the principal root of unity is chosen as a power of 2, spectral
coefficients are computed only using additions and circular
shifts. The rings with q = 2v − 1 are called the Mersenne
rings, while the rings having q = 2v + 1 are called the
Fermat rings.

Observe that carrying arithmetic in Mersenne rings is
equivalent to doing one’s complement operations. Although
the arithmetic in Fermat rings is more complicated than
one’s complement arithmetic, with certain encoding tech-
niques this difference can be minimized [8].

Obviously addition and multiplication are the basic oper-
ations of our interest. Recall that Partial Product Generator
(PPG), partial product accumulator (PPA), and carry propa-



gate adder (CPA) are the main stages of a multiplier. For our
discussions PPA corresponds to a Wallace tree network hav-
ing a height function, θ(x) for operands number between 14
and 95 as follows;

x 14-19 20-28 29-42 43-63 64-94

θ(x) 6 7 8 9 10

In Table 3, we tabulate the delay and area functions of
basic operations for Fermat and Mersenne rings.

Mersenne area delay

PPG km 1

Wallace tree 7k(m − 2) 4θ(m)

CPA 3
2
k log k + 7k 2 log m + 5

total 8km + 3
2
k log k − 7k 4θ(m) + 2 log m + 6

Fermat area delay

PPG km 1

Wallace tree 8k(m − 1) 4θ(m + 1)

corrections 12k 3

CPA 3
2
k log k + 7k 2 log m + 5

total 9km + 3
2
k log k + 11k 4θ(m + 1) + 2 log m + 9

Table 3. A k×m multiplication cost for Fermat
and Mersenne rings.

Remark that we tend to keep the data in a carry-save form
to avoid the horizontal carry propagation delay. If a normal
form is needed the carry-save form is converted to a regular
representation by using a CPA.

4.2 Software and Hardware Architectures
for Spectral Modular Arithmetic

In this section we give a unit-gate analysis of our algo-
rithms with the specified low level arithmetic architectures.
In addition to this analysis we also give a generic evaluation
in order to have a platform independent treatment.

Specifically, we describe architectures for SME which
could immediately be reduced to outline designs for the
SMP or MSMP core since initialization and finalization
stages are cost negligible. Recall that SMP and MSMP dif-
fer only in calculation of β · N(t). The first one performs a
direct multiplication where the second one achieve this by
a successive addition of some pre-computed values. At first
glance the second approach seem as an acceleration attempt
of modular multiplication by using look-up tables. In real-
ity the second approach is more about increasing the size of
b which immediately increases the bit size of the realizable

modular arithmetic for a fixed transform size d. For sim-
plicity, a complete analysis for MSMP is given in this text.
A similar analysis for SMP can be found in [8].

In Figure 3 we exhibit a higher level architecture for
MSMP. Before zooming into the boxes and discussing the
possible design practices, we like to say a few words about
the data flow.
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Figure 3. MSMP architecture.

In this architecture, the outputs of the convolution (i.e.,
Step 1) feed the Z MUXes. For the initial case, each Z
MUX chooses the input from Step 1, and then the reduction
loop starts. The loop runs d times: at every run, the outputs
of the processing units are passed to the interpolation and
also fed back to the unit itself. Notice that all processing
units work in parallel. The processing engine waits until the
parameters z0 + β and β are generated from the parameter
generation logic. After d runs of the loop, the processing
units from 0 to d − 1 returns the coefficient of the resultant
spectral polynomial Z(t).

Going back to MSMP algorithm; in Step 1, the convolu-
tion property is employed. Given the spectral polynomials
X(t) and Y (t), we compute Z(t) such that Zi = XiYi

(mod q) for i = 0, 1, . . . , d − 1. Note that these multipli-
cations can be realized by employing v × v modulo multi-
pliers. In case of a Mersenne arithmetic, these multipliers
without a CPA has 4θ(v) + 1 delay with a 8v2 − 14v area
need. When same calculation is considered for Fermat rings
we need some additional hardware and time for some cor-
rections which is given by 9v2 + 3v area and 4θ(v + 1) + 4
delay.



Now it is time to consider the reduction steps; for sim-
plicity we divide the loop with i into two parts;

• Parameter Generation: This corresponds to Steps 4,
5 and 6. Here, we compute the parameters z0, α, and
β, and feed them to the main processing units.

• Processing Engine: This corresponds to Steps 7, 8,
and 9, in which we add a multiple of the modulus to
the partial sum and then divide it by the base.

In Parameter Generation, Step 4 corresponds to a par-
tial interpolation in which a d-input multi-operand addition
followed by a multiplication by d−1. This computes the ze-
roth coefficient of the time polynomial.

Observe that d−1 is a constant v-bit number so we need
another multi-operand addition. With some recoding tech-
niques, it is possible to deliver this multiplication by a v/2
operand addition. Therefore, Step 2 can be realized by a
d+v/2-operand addition in total having the complexity tab-
ulated in Table 4.

In a special Fermat ring with some other desirable con-
ditions, it is possible to replace d−1 multiplication by a cir-
cular shift.

Proposition 1 Whenever d and ω are both a power of 2,
multiplication by d−1 is replaced by a circular shift.

Proof. Let ω = 2l, since we have ωd = 2ld = 1 mod q and
d−1 is written as

d−1 = 2ld−log d mod q

the multiplication by d−1 modulo q can be achieved by a
r = ld − log d bit circular shift. �

Once d−1 multiplication changed by a circular shift, the
complexity shrinks for both time and area. In Table 4, We
summarize what have been said about Step 4.

ring area delay

M 7vd + 7
2v2 − 28v 4θ(d) + 4θ(v/2)

F 8vd + 4v2 + 4v 4θ(d + 1) + 4θ(v/2 + 1) + 6
F/M

8vd + 2v 4θ(d + 1) + 3
d = 2r

Table 4. The cost of Step 4.

Steps 5 and 6 are called the Parameter Generation
Logic (PGL) in which we compute the parameters z0 + β
and β (see Figure 4.a). Note that, the adders in Figure 4.a
are the usual v-bit adders and they do not need modular re-
ductions since α, (z0 + α), (z0 + α + β) < q.

If the Steps 5 through 8 of SMP are examined carefully,
the second adder can be discarded by making the following
modifications:
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Figure 4. Parameter Generation Logic.

5 : β := −(z0 + α) mod b
6 : α := (z0 + α + β)/b
7′ : Z(t) := Z(t) + β · (N(t) − 1(t)) mod q
8′ : Z(t) := Z(t) − z0(t) mod q

Therefore, pre-computing and storing N(t) − 1(t) =:
DFT (n(t)−1) instead of N(t) eliminate the second adder
as seen in Figure 4.b. A similar modification is possible for
MSMP by pre-computing and storing

{N1(t) − 1(t), N2(t) − 1(t), . . . , Nu(t) − 1(t)}
instead of {N1(t), N2(t), . . . , Nu(t)}. With these adjust-
ments the cost of PGL becomes equivalent to the delay of
the first adder which is a single two operand addition.

For a specific analysis; first of all the output of the partial
interpolation is in carry save form. With the first adder the
carry (initially 0) is added to the output of the partial inter-
polation. Since β is the multiplicand for the multiplication,
in Step 7, we need β in a normal form. Therefore, here we
have to engage a u-bit CPA on the critical path. On the con-
trary, the addition of most significant v − u bits is the carry
to the next run which is not in the critical path.

Once the second adder has been discarded the delay of
PGL becomes equivalent to a u-bit CPA delay which is
2 logu + 5. This is same in both Fermat and Mersenne
arithmetic since u is small enough that addition does not
produce any round around carry, hence this adder is real-
ized as a regular integer adder having 2 log u + 5 delay for
3
2u logu + 7u area.

The Processing Engine is the most resource-consuming
stage and it corresponds to Steps 7, 8, and 9. In Figure
5 the architecture of a single processing unit for SMP is
seen if multiplier is changed with a multi-operand addition,
a schematic for MSMP can be achieved. The processing
engine consists of d such units.

Note that both adders in Figure 5 are modulo q adders.
The shift operation at the bottom of the figure corresponds
to Step 9 of the SMP core. As we pick ω as a power of 2, the
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Figure 5. A Processing unit.

multiplications with the coefficients of Γ(t) correspond to a
constant d− 1− i bit circular shifts for i = 1, 2, . . . , d− 1.

Notice that, Step 8 can be buried into the Wallace tree of
the multiplication of Step 7. Therefore, we simply need a
u + 1 operand Wallace tree network which needs 7vu area
for 4θ(u + 1) + 4 delay in Mersenne rings and 9uv + 20v
area for 4θ(u + 2) + 7 delay in Fermat rings.

After adding everything up described in previous para-
graphs, in Table 5 we give the entire complexity of MSMP.
A similar analysis for SMP can be found in [8].

ring area delay

8v2d + 7uvd+ 4θ(v) + 1 + 2d log(u)

M 7
2
v2 + 7vd − 28v +9d + 4d(θ(d)

+ 3
2
u log u + 7u +θ( v

2
) + θ(u + 1))

9v2d + 9uvd+ 4θ(v + 1) + 4 + 2d log(u)

F 4v2 + 31vd + 4v +18d + 4d(θ(d + 1)+

+ 3
2
u log u + 7u θ( v

2
+ 1) + θ(u + 2))

9v2d + 9uvd+ 4θ(v + 1) + 4 + 2d log(u)

F +31vd + 2v +15d + 4d(θ(d + 1)

d = 2r + 3
2
u log u + 7u +θ(u + 2))

Table 5. MSMP performance analysis.

5 Conclusions

We proposed new techniques for performing modular
multiplication and exponentiation. Our initial motivation
was to obtain modular arithmetic algorithms working com-
pletely in the spectrum in order to fully utilize the convo-
lution property. For carrying out modular arithmetic op-
erations, one has to deal with the computations of modu-

lar reduction. After defining spectral reduction and related
concepts, we introduced a spectral reduction algorithm us-
ing the linearity and shifting property of DFT, and therefore,
spectral modular multiplication and spectral modular expo-
nentiation algorithms are obtained quite naturally. To avoid
the round-off errors of the complex transforms, we employ
finite ring spectrum in our method.

We carefully analyzed and stated the conditions for
which our algorithms work without overflows. Working in
the spectrum, we can exploit a vast amount of parallelism
in our computations. Therefore, our algorithms yield highly
parallel hardware architectures which we described.

We are currently working on creating VHDL implemen-
tations of the spectral modular exponentiation; such imple-
mentation will yield a more detailed analysis of our method
and its advantages and disadvantages over algorithms and
architectures which do not employ spectral techniques.

Acknowledgments

The authors would like to thank to Thomas Schmidt for
his valuable comments and suggestions.

References

[1] H. B. A.V. Curiger and H. Kaeslin. Regular VLSI architec-
tures for multiplication modulo (2n+1). IEEE J. Solid State
Circuits, 26(7):990–994, July 1991.

[2] R. E. Blahut. Fast Algorithms for Digital Signal Processing.
Addison-Wesley publishing Company, 1985.

[3] N. Koblitz. A Course in Number Theory and Cryptography.
Springer, Berlin, Germany, Second edition, 1994.
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