
Spectral Modular Exponentiation Architecture

for Public-Key Cryptography

Çetin Kaya Koç and Gökay Saldamlı
1250 NW 17th Street, Corvallis, Oregon 97331, USA

Email: koc@cryptocode.net
Phone: +1 541 908 3711

Confidential Document c© Koç & Saldamlı
U.S. Patent Application - April 22, 2005

Abstract

We describe a new hardware architecture to perform the modular exponentiation operation,
i.e., the computation of c = me mod n where c,m, e, n are large integers. The modular exponen-
tiation operation is the most common operation in public-key cryptography. The new method,
named the Spectral Modular Exponentiation method, uses the Discrete Fourier Transform over
a finite ring, and relies on new techniques to perform the modular multiplication and reduc-
tion operations. The method yields an efficient and highly parallel architecture for hardware
implementations of public-key cryptosystems which use the modular exponentiation operation
as the basic step, such as the RSA and Diffie-Hellman algorithms. The method with small
modifications can also be used to compute the elliptic curve point multiplication operation in
elliptic curves defined over the Galois field GF (n) where n is a prime number. The details of
elliptic curve computations and the hardware architecture are also described in this document.

1 Introduction

The Spectral Modular Exponentiation (SME) method is a new method for modular exponentiation
of large integers. It takes the integers m, e, n as input, and computes c as the output such that

c = me (mod n) .

The exponent e can be of any length, and we assume that it is a j-bit integer such that j ≥ 128.
On the other hand, the integers c,m, n are k-bit integers with k ≥ 512. It is assumed that k = su
for some integers s and u, where u is the wordsize of the implementation, i.e., the number of bits
in a single word. A k-bit number is viewed as a vector of s words such that each word is u bits.
Let ai be the ith word of the integer a, then the vector representation means that we express the
integer in the radix b = 2u as

a = (as−1as−2 · · · a1a0)b

where 0 ≤ ai ≤ b− 1. This representation implies that

a =
s−1∑
i=0

aib
i =

s−1∑
i=0

ai2ui = a0 + a12u + a222u + · · ·+ as−12(s−1)u .

1



Confidential Document, Koç & Saldamlı c© April 22, 2005 2

We will also treat integers as polynomials with an indeterminate t. The value of the integer is
obtained from its polynomial by evaluating it at t = b. The above integer can be written in the
polynomial notation as

a(t) =
s−1∑
i=0

ait
i = a0 + a1t+ a2t

2 + · · ·+ as−1t
(s−1) .

We perform our arithmetic in the finite integer ring Zq. If q is a prime, then the underlying structure
will be a finite field. The arithmetic of this ring or field is simply modulo q arithmetic. Another
important assumption we make in the SME method is that a d-point DFT exists over the ring Zq.
This assumption requires that

• The multiplicative inverse of d exists in Zq, which requires gcd (d, q) = 1.

• A principal dth root of unity exists in Zq, which requires that d divides p− 1 for every prime
p divisor of q. We will denote the principal dth root of unity with w.

We will use the notation
A(t) = DFTw

d [a(t)]

to denote the d-point DFT using the dth root of w, transforming the time-domain polynomial a(t)
to the spectral-domain polynomial A(t). The d-point DFT is performed in the finite ring Zq. Since
q, d, and w are fixed, we will also use the simpler notation A(t) = DFT[a(t)] to denote the DFT
operation. If a has s words in it, then, its polynomial will also have s words. In general, the value of
d is fixed by the ring, and the value of s is equal to s = dd/2e. The empty places in the polynomial
a(t), which are the coefficients of the higher orders of t, are filled with zeros in a(t) before applying
the d-point DFT. Inevitably, we also need the inverse DFT function, which we denote using the
notation

a(t) = IDFTw
d [A(t)]

or simply as a(t) = IDFT[A(t)]. We also make use of the following vector in our operations

Γ = [1, w−1, w−2, . . . , w−(d−1)] .

The polynomial representation of Γ is given as

Γ(t) = 1 + w−1t+ w−2t2 + · · ·+ w−(d−1)td−1 .

The modulus n is a special number, for example, it is the product of two primes in RSA, and
a prime number in Diffie-Hellman. Our assumption is that n is always odd. Let n0 denote the
least significant word of n, i.e., n0 = n (mod b), which is also an odd integer. Let ν0 be the
multiplicative inverse of n0 modulo b, i.e.,

ν0 = n−1
0 (mod b) .

We need to use an integer multiple of n in our method, which we denote by θ, and is derived from
n such that

θ = ν0n .

Note that since ν0n0 = 1 (mod b), the least significant word of θ is equal to 1, i.e., θ0 = 1. The
inverse ν0 = n−1

0 (mod b) can be computed using the extended Euclidean algorithm, and we will
give an explicit algorithm to compute it in this paper.



Confidential Document, Koç & Saldamlı c© April 22, 2005 3

Let λ = bd (mod n). We name this integer as the Montgomery coefficient, since it is used
inside the Montgomery multiplication algorithm. The number bd is a 2s-word number, however, λ
is an s-word number since λ = bd (mod n). We will also use the polynomial representation of λ,
which is denoted by λ(t). Furthermore, we also define δ as the square of λ modulo n. The number
δ is also an s-word number since δ = λ2 (mod n). We will also the polynomial representation of
δ, which is denoted by δ(t).

In addition to the usual scalar multiplication, we will also utilize the componentwise multipli-
cation of vectors in the ring Zq, and denote this operation with the symbol � as

c(t) = a(t)� b(t) .

Given the vectors a(t) = (a0, a1, . . . , ad−1) and b(t) = (b0, b1, . . . , bd−1), the resulting vector after
the � operation will be c(t) = (c0, c1, . . . , cd−1) such that ci = aibi (mod q) for i = 0, 1, . . . , d− 1.

Table 1: The symbols used in the SME method.

Symbol Meaning Relationship
c,m, e, n Output and input integers c = me (mod n)

k Number of bits in c,m, n usually k ≥ 512
u Length of a single word k is a multiple of u
s Number of words in c,m, n k = su
b Radix of representation b = 2u

a(t) Polynomial representation of a a(b) = a
d Length of the DFT s = dd/2e
Zq Ring of integers modulo q gcd (d, q) = 1
p A prime which divides q d divides p− 1 for every p
w Principal dth root of unity in Zq wd = 1 (mod q)

DFTw
d [a(t)] d-point DFT of a(t) in Zq A(t) = DFT[a(t)]

IDFTw
d [A(t)] Inverse DFT function a(t) = IDFT[A(t)]
Γ Γ = [1, w−1, w−2, . . . , w−(d−1)] w is dth root of unity
n Modulus n is odd
n0 Least significant word of n n0 = n (mod b)
ν0 Inverse of n0 modulo b ν0 = n−1

0 (mod b)
θ ν0 multiple of n θ = ν0n and θ0 = 1
λ Montgomery coefficient λ = bd (mod n)
δ Square of λ modulo n δ = λ2 (mod n)
� Componentwise multiplication in Zq c(t) = a(t)� b(t)

2 Spectral Modular Exponentiation Method

The Spectral Modular Exponentiation (SME) method relies on the Spectral Modular Multiplication
(SMM) method, which is described in detailed in the following section. It also relies on the d-point
Discrete Fourier Transform function in Zq and the function DFTw

d [.] needs to be available. However,
the DFT function is used only 5 times in the SME method, and thus, the efficiency of the DFT
implementation is not very crucial for the efficiency of the SME method.

Furthermore, any addition chain (exponentiation) method can be used in the SME method.
We illustrate it using the binary method, however, more advanced algorithms such as the m-ary
method, sliding windows method, etc., can also be utilized.



Confidential Document, Koç & Saldamlı c© April 22, 2005 4

Input: The inputs are m, e, and n such that m and n are s words and the exponent e is j bits.

Preprocessing: It is often the case that the modulus n is available before the message m, for ex-
ample, this is true for the digital signature algorithms. Therefore, we break the preprocessing
into two stages as follows.

Preprocessing with n: Given n, obtain n0.

1. Compute ν0 = n−1
0 (mod 2u) using the extended Euclidean algorithm as follows:

ν0 = 1
for i = 2 to u

if n0ν0 ≥ 2i−1 mod 2i then ν0 = ν0 + 2i−1

return ν0

2. Compute θ = ν0n and obtain the polynomial θ(t). Note that the least significant word
of θ is 1, i.e., θ0 = 1.

3. Compute Θ(t) = DFT[θ(t)] using the DFT function. An efficient implementation of
the DFT function, i.e., the FFT (Fast Fourier Transform) algorithm, may be desired.
However, simpler DFT implementations, for example, the matrix-vector product imple-
mentation can also be utilized. The DFT and the inverse DFT functions require d and
w. Additionally, d−1 mod q is precomputed and saved.

4. Compute the s-word integers λ = bd (mod n) and δ = λ2 (mod n) using integer
division. Also obtain the d-word polynomial representation δ(t) of δ. Again the higher
order words are filled with zeros to make the polynomial d words. We then use the DFT
function to compute ∆(t) = DFT[δ(t)].

5. Assign x = 1 and obtain the polynomial representation of x(t) which is equal to x(t) = 1.
Compute the polynomial X(t) = DFT[x(t)]. This step is simplified using the fact that
x(t) = 1, and thus, we do not need to use the DFT function to compute X(t). It is
obtained using assignment as X(t) = 1 + 1 · t+ . . .+ 1 · td−1.

Preprocessing with m: Given m, obtain its polynomial representation m(t).

1. Compute the polynomial M(t) = DFT[m(t)].

2. Assign C(t) = X(t). Recall that x(t) = 1 and X(t) = DFT[x(t)] = [1, 1, . . . , 1].

3. Use the Spectral Modular Multiplication (SMM) method to multiply M(t) and ∆(t) in
order to obtain M(t). We will denote this step by

M(t) = SMM[M(t),∆(t)] .

The definition and detailed steps of the SMM method are given in the next section.

4. Use the SMM method to multiply C(t) and ∆(t) in order to obtain C(t). We will denote
this step by

C(t) = SMM[C(t),∆(t)] .

Exponentiation Loop: The exponentiation operation is performed as soon as the j-bit exponent
e is available. Let the binary expansion of e be (ej−1ej−2 · · · e1e0)2. The exponentiation
operation needs C(t) and M(t) as input in addition to the exponent e.



Confidential Document, Koç & Saldamlı c© April 22, 2005 5

for i = j − 1 downto 0
C(t) = SMM[C(t), C(t)]
if ei = 1 then C(t) = SMM[C(t),M(t)]

Postprocessing: After the exponentiation loop is completed, we will have a final value of C(t).
This vector will now be brought back to the time domain as follows.

1. Obtain C(t) using the SMM method by multiplying C(t) and X(t) as follows

C(t) = SMM[C(t), X(t)] .

2. Obtain c(t) using the Inverse DFT function as follows

c(t) = IDFT[C(t)] .

Output: The integer c representing the polynomial c(t) is the output such that c = me (mod n).

3 Spectral Modular Multiplication Method

The SMM method takes two arguments, such as A(t) and B(t), and computes S(t) as the output.
We will denote the operation using

R(t) = SMM[A(t), B(t)] .

The steps of the SMM method are given below.

1: R(t) = A(t)�B(t) (mod q)
2: α = 0
3: for i = 0 to d− 1
4: r0 = d−1(R0 +R1 + · · ·+Rd−1) (mod q)
5: β = −(r0 + α) (mod b)
6: α = (r0 + α+ β)/b
7: R(t) = R(t) + β ·Θ(t) (mod q)
8: R(t) = R(t)− (r0 + β) (mod q)
9: R(t) = R(t)� Γ(t) (mod q)
10: end for
11: return R(t)

The steps of the SMM method are explained in detail below. In addition to the inputs, the SMM
function has access to parameters available after the preprocessing steps of the SME method.
These parameters are d−1, Θ(t), and Γ(t). The SME method performs only modulo q and modulo
b operations.

1. This is the vector � operation in the ring Zq. Given the vectors A(t) and B(t), we compute
R(t) such that Ri = AiBi (mod q) for i = 0, 1, . . . , d− 1.

2. Initial value of α is assigned as zero.

3. The for loop is executed d times for i = 0, 1, . . . , d− 1.



Confidential Document, Koç & Saldamlı c© April 22, 2005 6

4. After step 1, we have the vector R(t). The elements are summed modulo q to obtain

R0 +R1 + · · ·+Rd−1 (mod q) ,

and multiplied by d−1 mod q in order to obtain r0. The inverse d−1 was already computed in
the preprocessing stage of the SME method.

5. Since b = 2u, the computation of β = −(r0 + α) mod b is a 1-word operation, involving an
addition and sign-change (2’s complement) operations on 1-word numbers.

6. The value of α is updated for the next loop instance as α = (r0 + α+ β)/b.

7. The 1-word number β is multiplied with every element of Θ(t) and the result is added to the
corresponding element of R(t). Given N(t) = (N0, N1, . . . , Nd−1), we compute the elements
of the new R(t) as

Ri = Ri + β ·Θi (mod q)

for i = 0, 1, . . . , d− 1.

8. This is a vector operation. The 1-word number r0 + β is subtracted from every element of
R(t), and therefore, we have

Ri = Ri − (r0 + β) (mod q)

for i = 0, 1, . . . , d− 1.

9. This is also a vector operation. The resulting R(t) from the previous step is multiplied
componentwise with the vector Γ(t). Therefore, the elements of the new R(t) are found as

Ri = Ri · Γi (mod q)

for i = 0, 1, . . . , d− 1.

10. The end of for loop.

11. The multiplication result R(t) = SMM[A(t), B(t)] is returned.

4 An Example Exponentiation using the SME Method

In this section, we give an example exponentiation computation using the SME method with the
input values as m = 27182, e = 53, and n = 31417. We will describe the steps of the SME method
performing this modular exponentiation operation, giving the temporary results and the final result
c = me (mod n).

We select the length of a single word as u = 4. Therefore, the radix of the representation is
b = 2u = 16, i.e., the numbers are represented in hexadecimal. Since

n = (31417)10 = (0111 1010 1011 1001)2 = (7AB9)16 ,

we have k = 16 and s = 4. The polynomial representation of n is given as

n(t) = 9 + 11t+ 10t2 + 7t3 ,



Confidential Document, Koç & Saldamlı c© April 22, 2005 7

in which the digits are expressed in decimal. The integer value n = (31417)10 = (7AB9)16 is
obtained by evaluating n(t) at t = 16 in any selected basis.

We will perform our computations in the Fermat ring Zq where q = 220 + 1. Since s = 4, we
need a DFT function in this ring with the length d = 8. It turns out that such DFT exists in this
ring with the principal 8th root of unity given as w = 32. Furthermore, the vector Γ(t) is given as

Γ(t) = 1 + w−1t+ w−2t2 + w−3t3 + w−4t4 + w−5t5 + w−6t6 + w−7t7

= 1 + 1015809t+ 1047553t2 + 1048545t3 + 1048576t4 +
32768t5 + 1024t6 + 32t7 .

The steps of the SME method computing this modular exponentiation are described below.

Preprocessing with n: Given n = (7AB9)16, we have n0 = 9.

1. The inversion algorithm computes ν0 = 9−1 (mod 16) as ν0 = 9.

2. The computation of θ = ν0n gives 9 · 31417 = 282753, which is expressed in binary and
in hexadecimal as

θ = (0100 0101 0000 1000 0001)2 = (45081)16 .

Recall that θ is s+ 1 = 5 words and θ0 = 1. We also obtain the polynomial θ(t) as

θ(t) = 1 + 8t+ 5t3 + 4t4 .

3. The computation of Θ(t) = DFT[θ(t)] is accomplished using the DFT function. In
Section 4, we describe the DFT computation and particularly evaluate this transform.
We obtain the result of the DFT as

Θ(t) = 18 + 164093t+ 3077t2 + 262301t3 + 1048569t4 +
884478t5 + 1045510t6 + 786270t7 .

Recall that we work in the finite ring Zq for q = 220 + 1 = 1048577, and thus, the
coefficients of the polynomial Θ(t) are in the range [0, 220 + 1).
In this step, we also compute and save d−1 (mod q) as

d−1 = 8−1 (mod 220 + 1) = 917505 .

4. We compute the Montgomery coefficient and its square as

λ = 168 (mod 31417) = 12060 ,
δ = 120602 (mod 31417) = 14307 .

The polynomial representation of δ is found using δ = (14307)10 = (37E3)16 as

δ(t) = 3 + 14t+ 7t2 + 3t3 .

Furthermore, we obtain the spectral representation of δ(t) using the DFT as

∆(t) = 27 + 105923t+ 11260t2 + 451683t31048570t4 +
956996t5 + 1037309t6 + 582564t7 .



Confidential Document, Koç & Saldamlı c© April 22, 2005 8

5. Given x(t) = 1, the spectral representation of x(t) is found as

X(t) = 1 + t+ t2 + t3 + t4 + t5 + t6 + t7 .

Preprocessing with m: Given m = (27182)10 = (6A2E)16, we have m(t) = 14 + 2t+ 10t2 + 6t3.

1. Given m(t), we obtain its spectral representation M(t) using the DFT as

M(t) = 32 + 206926t+ 1044485t2 + 55502t3 + 16t4

862159t5 + 4100t6 + 972623t7 .

2. The initial value of C(t) is given as

C(t) = X(t) = 1 + t+ t2 + t3 + t4 + t5 + t6 + t7 .

3. The SMM method is used to compute M(t) = SMM[M(t),∆(t)] with inputs

M(t) = 32 + 206926t+ 1044485t2 + 55502t3 + 16t4 +
862159t5 + 4100t6 + 972623t7 ,

∆(t) = 27 + 105923t+ 11260t2 + 451683t3 + 1048570t4 +
956996t5 + 1037309t6 + 582564t7 .

We then use the SMM method to find the resulting polynomial M(t) given the inputs
M(t) and ∆(t). First we execute Step 1 in the SMM method, and obtain the initial
value of R(t) using the rule Ri = Mi ·∆i (mod q) for i = 0, 1, . . . , 7 as

R(t) = 864 + 866244t+ 61468t2 + 979527t3 + 1048465t4 +
464721t5 + 987165t6 + 834767t7 .

In Step 2 of the SMM method, We assign the initial value of α = 0, and start the for loop
for i = 0, 1, . . . , 7. We illustrate the computation of the instance of the loop for i = 0 in
Table 2. The for loop needs to execute for the remaining values of i as i = 1, 2, . . . , 7
in order to compute the resulting product M(t) which is found as

M(t) = 354 + 463771t+ 11385t2 + 686651t3 +
156t4 + 722398t5 + 1037434t6 + 225086t7 .



Confidential Document, Koç & Saldamlı c© April 22, 2005 9

Table 2: The SME method for loop instance i = 0.

Step Operation and Result
4: r0 = d−1 · (R0 +R1 +R2 +R3 +R4 +R5 +R6 +R7) (mod q)

r0 = 917505 · (864 + 866244 + 61468 + 979527 + 104846+
464721 + 987165 + 834767) (mod 1048567) = 42

5: β = −(r0 + α) (mod b) = −(42 + 0) (mod 16) = 6
6: α = (r0 + 0 + β)/b = (42 + 6)/16 = 3
7: Ri = Ri + β ·Θi (mod q)

R(t) = 972 + 802225t+ 79930t2 + 456179t3 + 1048417t4+
528704t5 + 968763t6 + 309502t7

8: Ri = Ri − (r0 + β) = Ri − 48 (mod q)
R(t) = 924 + 802177t+ 79882t2 + 456131t3 + 1048369t4+

528656t5 + 968715t6 + 309454t7

9: Ri = Ri · Γi (mod q)
R(t) = 924 + 802177t+ 79882t2 + 456131t3 + 1048369t4+

528656t5 + 968715t6 + 599495t7

4. In this step, the SMM method is used to compute C(t) = SMM[C(t),∆(t)] with inputs

C(t) = 1 + t+ t2 + t3 + t4 + t5 + t6 + t7 ,

∆(t) = 27 + 105923t+ 11260t2 + 451683t3 + 1048570t4 +
956996t5 + 1037309t6 + 582564t7 .

We will not give the details of this multiplication since it is similar to the previous one.
The result is obtained as

C(t) = 342 + 472129t+ 17495t2 + 875041t3 +
132t4 + 730372t5 + 1031256t6 + 20260t7 .

Exponentiation Loop: The loop starts with the values of M(t) and C(t) computed above as

M(t) = 354 + 463771t+ 11385t2 + 686651t3 +
156t4 + 722398t5 + 1037434t6 + 225086t7 .

C(t) = 342 + 472129t+ 17495t2 + 875041t3 +
132t4 + 730372t5 + 1031256t6 + 20260t7 .

Given the exponent value e = (53)10 = (110101)2, the exponentiation algorithm performs
squarings and multiplications using the SMM method. Since j = 6, the value of i starts from
i = 5 and moves down to zero, and computes the new value of C(t) using the binary method
of exponentiation as described. The steps of the exponentiation and intermediate values of
C(t) are tabulated in Table 3. The final value is computed as

C(t) = 123 + 34099t+ 40979t2 + 229426t3 +
43t4 + 31539t5 + 1007636t6 + 753717t7 .



Confidential Document, Koç & Saldamlı c© April 22, 2005 10

Table 3: The steps of the exponentiation loop.

i ei Operation C(t)

Start 342 + 472129t+ 17495t2 + 875041t3+
132t4 + 730372t5 + 1031256t6 + 20260t7

C(t) =SMM[C(t), C(t)] 270 + 44476t+ 108628t2 + 286841t3+
5 58t4 + 37692t5 + 940117t6 + 680064t7

1 C(t) =SMM[C(t),M(t)] 288 + 741281t+ 71696t2 + 769759t3+
68t4 + 473378t5 + 976913t6 + 113124t7

C(t) =SMM[C(t), C(t)] 348 + 869774t+ 81984t2 + 183179t3+
4 92t4 + 338831t5 + 966721t6 + 705938t7

1 C(t) =SMM[C(t),M(t)] 297 + 42796t+ 20613t2 + 615596t3+
129t4 + 39470t5 + 1028230t6 + 351407t7

3 C(t) =SMM[C(t), C(t)] 123 + 34099t+ 40979t2 + 229426t3+
43t4 + 31539t5 + 1007636t6 + 753717t7

0 123 + 34099t+ 40979t2 + 229426t3+
43t4 + 31539t5 + 1007636t6 + 753717t7

C(t) =SMM[C(t), C(t)] 336 + 857269t+ 74835t2 + 1014675t3+
2 94t4 + 326774t5 + 973908t6 + 947609t7

1 C(t) =SMM[C(t),M(t)] 183 + 162592t+ 51267t2 + 691423t3+
67t4 + 945569t5 + 997444t6 + 297954t7

1 C(t) =SMM[C(t), C(t)] 348 + 869774t+ 81984t2 + 183179t3+
92t4 + 338831t5 + 966721t6 + 705938t7

0 348 + 869774t+ 81984t2 + 183179t3+
92t4 + 338831t5 + 966721t6 + 705938t7

C(t) =SMM[C(t), C(t)] 297 + 42796t+ 20613t2 + 615596t3+
0 129t4 + 39470t5 + 1028230t6 + 351407t7

1 C(t) =SMM[C(t),M(t)] 123 + 34099t+ 40979t2 + 229426t3+
43t4 + 31539t5 + 1007636t6 + 753717t7

Postprocessing: After the exponentiation loop is completed, we have the final value C(t). In this
step, we have two consecutive SMM executions.

• We obtain C(t) using C(t) = SMM[C(t), X(t)] using the inputs

C(t) = 123 + 34099t+ 40979t2 + 229426t3 +
43t4 + 31539t5 + 1007636t6 + 753717t7 .

X(t) = 1 + t+ t2 + t3 + t4 + t5 + t6 + t7 .

This computation finds C(t) as

C(t) = 312 + 76043t+ 36932t2 + 58506t3 +



Confidential Document, Koç & Saldamlı c© April 22, 2005 11

112t4 + 71693t5 + 1011781t6 + 842895t7 ,

• We obtain c(t) using the inverse DFT function c(t) = IDFT[C(t)], which gives

c(t) = 9 + 4t+ 3t2 + 6t3 .

Thus, we obtain the final value as c = (6349)16 = (25417)10, which is equal to

25417 = 22718253 (mod 31417)

as required.

5 Computation of Discrete Fourier Transform in Zq

The DFT of a sequence a = [a0, a1, . . . , ad−1] is defined as the sequence A = [A0, A1, . . . , Ad−1]
such that

Aj =
d−1∑
i=0

aiw
ij
d (mod q) ,

where w is the dth root of unity. The DFT function is normally used over the field of complex
numbers C, however, in our application, we need a finite ring or field since we cannot perform
infinite precision arithmetic.

The above sum can also be written as a matrix-vector product as
A0

A1

A2
...

Ad−1

 =


1 1 1 · · · 1
1 w w2 · · · wd−1

1 w2 w4 · · · w2(d−1)

...
...

...
...

...
1 wd−1 w2(d−1) · · · w(d−1)(d−1)




a0

a1

a2
...

ad−1

 (mod q) .

We denote this matrix-vector product by A = Ta, where T is the d×d transformation matrix. The
inverse DFT is defined as a = T−1A. It turns out that the inverse of T is obtained by replacing w
with w−1 in the matrix, and by placing the multiplicative factor d−1 in front of the matrix. The
inverse matrix is given as

T−1 = d−1 ·


1 1 1 · · · 1
1 w−1 w−2 · · · w−(d−1)

1 w−2 w−4 · · · w−2(d−1)

...
...

...
...

...
1 w−(d−1) w−2(d−1) · · · w−(d−1)(d−1)

 (mod q) .

The matrix-vector product definition of the DFT implies an algorithm to compute the DFT func-
tion, however, it requires d multiplications and d− 1 additions to compute an entry of the output
sequence A. Thus, the total number of multiplications is d2, and the total number of additions
is d(d − 1). This complexity is acceptable for the SME method since we need to use the DFT or
IDFT functions only 4 times. If desired, the Fast Fourier Transform (FFT) algorithm can be used
which reduces the complexity from O(d2) to O(d log d).



Confidential Document, Koç & Saldamlı c© April 22, 2005 12

We now derive the transformation and inverse transformation matrices for the example DFT
in Section 4, and perform a DFT computation for illustrating the properties of the arithmetic of
the DFT in Zq. In our example, we have q = 220 + 1, d = 8, and w = 32. The elements of the
transformation matrix T are of the form wi·j (mod q) for i, j = 0, 1, . . . , 7. We compute these
values and place it in the transformation matrix as follows:

T =



1 1 1 1 1 1 1 1
1 32 1024 32768 1048576 1048545 1047553 1015809
1 1024 1048576 1047553 1 1024 1048576 1047553
1 32768 1047553 32 1048576 1015809 1024 1048545
1 1048576 1 1048576 1 1048576 1 1048576
1 1048545 1024 1015809 1048576 32 1047553 32768
1 1047553 1048576 1024 1 1047553 1048576 1024
1 1015809 1047553 1048545 1048576 32768 1024 32


.

The inverse transformation matrix T−1 can be obtained similarly using the multiplicative inverses

d−1 = 8−1 (mod 220 + 1) = 917505 .
w−1 = 32−1 (mod 220 + 1) = 1015809 .

We obtained it as

T−1 =



1 1 1 1 1 1 1 1
1 1015809 1047553 1048545 1048576 32768 1024 32
1 1047553 1048576 1024 1 1047553 1048576 1024
1 1048545 1024 1015809 1048576 32 1047553 32768
1 1048576 1 1048576 1 1048576 1 1048576
1 32768 1047553 32 1048576 1015809 1024 1048545
1 1024 1048576 1047553 1 1024 1048576 1047553
1 32 1024 32768 1048576 1048545 1047553 1015809


.

We will now perform the DFT computation Θ(t) = DFT[θ(t)] with the input polynomial

θ(t) = 1 + 8t+ 5t3 + 4t4 ,

as mentioned in Section 4. This polynomial is expressed as a vector

θ = [1, 8, 0, 5, 4, 0, 0, 0]

and enters the DFT function, producing the output vector Θ. Using the matrix-vector product
algorithm, we obtain the vector Θ as

1 1 1 1 1 1 1 1
1 32 1024 32768 1048576 1048545 1047553 1015809
1 1024 1048576 1047553 1 1024 1048576 1047553
1 32768 1047553 32 1048576 1015809 1024 1048545
1 1048576 1 1048576 1 1048576 1 1048576
1 1048545 1024 1015809 1048576 32 1047553 32768
1 1047553 1048576 1024 1 1047553 1048576 1024
1 1015809 1047553 1048545 1048576 32768 1024 32





1
8
0
5
4
0
0
0


=



18
164093
3077

262301
1048569
884478
1045510
786270


.



Confidential Document, Koç & Saldamlı c© April 22, 2005 13

Recall that all multiplications and additions are performed modulo q where q = 220 +1. We express
Θ as a polynomial

Θ(t) = 18 + 164093t+ 3077t2 + 262301t3 + 1048569t4 +
884478t5 + 1045510t6 + 786270t7

which was the result obtained in Step 4 of ‘Preprocessing with n’ in Section 4.

6 Parameter Selection

In this section, we describe the methodology for selecting the parameters for the DFT and SME
functions in order to apply the method in public-key cryptography. We will tabulate some example
parameters for modular exponentiations using the SME method, starting from 530 bits up to 4,110
bits. We also tabulate typical rings and their DFT parameters for use in the SME function.

A ring for which q is of the form 2v ± 1 is the most suitable for the SME computation since the
modular arithmetic operations for such q are simplified. The rings of the form 2v − 1 are called
the Mersenne rings, while the rings of the form 2v + 1 are called the Fermat rings. In Table 8
and Table 9 in the Appendix Section of this document, we tabulate the Fermat and Mersenne
rings suitable for the SME function. Furthermore, we also tabulate a root of unity and the DFT
length for each ring. Whenever possible, we select the root of unity as w = 2 or w = −2 since
multiplication with such numbers are accomplished by shifting.

The Mersenne and Fermat rings are not the only suitable rings for the SME method. Let q′′

(not necessarily a prime) be a small divisor of q′. The rings of the form Zq′/q′′ are also quite useful.
Since q′′ divides q′, the arithmetic modulo (q′/q′′) can be carried in the ring Zq′ . By selecting Zq′ as
a Mersenne or Fermat ring, we also simplify the arithmetic. Such rings are called pseudo Mersenne
or pseudo Fermat rings. We also propose the use of such rings in the SME method. In Table 10A,
10B, 10C and Tables 11A, 11B, we tabulate the pseudo Mersenne and Fermat rings together
with their root of unity and the length of the DFT values.

Once the underlying ring and the DFT length and the root of unity are selected, the maximum
modulus size in the SME method can be computed by finding the radix b. The relation between
these parameters is given by the following inequality

b4 <
3q
s3

. (1)

In Table 4, we give some example rings and their parameters. To illustrate the methodology, we
select a ring from this table, e.g., q = q′/q′′ = (257 − 1)/7. This ring comes with the root of unity
w = −2 and the length s = 57. Using the q and s values and the above inequality, we compute

b < 4

√
3 · (257 − 1)

7 · (57)3
≈ 759.93 .

Therefore, we find u = blog2(b)c = 9. Since s = 57, we find the maximum bit length of the
exponentiation as k = s · u = 57 · 9 = 513 as given in Table 4.



Confidential Document, Koç & Saldamlı c© April 22, 2005 14

Table 4: Parameter selection.

Bits Ring DFT Root Wordsize Words
k q d w u s

513 (257 − 1)/7 114 -2 10 53

518 273 − 1 73 2 14 37

518 (273 + 1)/3 73 4 14 37

768 264 + 1 128 2 12 64

1,185 279 − 1 158 -2 15 79

1,792 2128 + 1 128 2 28 64

2,060 (2103 + 1)/3 206 2 20 103

2,163 2103 − 1 206 -2 21 103

3,456 (2128 + 1) 256 -2 27 128

4,170 2139 − 1 274 -2 30 139

7 Improved Parameter Selection

The SMM method can be improved with a simple arrangement. It is possible to replace the
multiplication β ·Θ(t) in Step 7 of the SMM method with additions at a cost of precomputations
and storage space. This approach increases the wordsize and allows the selection of a smaller ring
for a similar modulus size.

Let θi(t) be the polynomial representation of an integer multiple of n such that θi0 = 2i−1 for
i = 1, 2, . . . , u. We can now write β ·Θ(t) as

β ·Θ(t) =
u∑
i=1

βi ·Θi(t) , (2)

where βi is a binary digit of β and Θi(t) = DFT[θi(t)] for i = 1, 2, . . . , u. Note that β < 2u and
βi = 0 for i ≥ u. The polynomial set {Θ1(t),Θ2(t), . . . ,Θu(t)} needs to be precomputed and stored.
The precomputation can be done in the Preprocessing with n phase: Starting with multiplying θ1(t)
(which is θ(t) of the SMM) by powers of 2 after finding ν0. We then apply the DFT function to
these polynomials in order to get Θi(t) = DFT[θi(t)] for i = 1, 2, . . . , u. With this adjustment a
better bound for b could be given as

b2 log2(b) <
3q
s3

. (3)

This bound gives us the improved parameters which are tabulated in Table 5 below.



Confidential Document, Koç & Saldamlı c© April 22, 2005 15

Table 5: Improved parameter selection.

Bits Ring DFT Root Wordsize Words
k q d w u s

540 (259 + 1)/3 59 2 19 30

564 247 − 1 94 -2 12 47

570 259 − 1 59 2 19 30

620 261 − 1 61 2 20 31

672 264 + 1 64 4 21 32

1,098 261 − 1 122 2 18 61

1,120 279 − 1 79 2 28 40

1,216 264 + 1 128 2 19 64

2,054 279 − 1 158 2 26 79

2,160 2107 − 1 107 2 40 54

3,200 2128 + 1 128 4 50 64

4,173 2107 − 1 214 -2 39 107

6,272 2128 + 1 256 2 49 128

Furthermore, in Tables 4 & 5, there are two important issues that should be considered for an
efficient design. First issue is the number of words (s) or the DFT length (d) which are related to
one another by s = dd/2e. Observe that the maximum modulus size is given as k = su. Moreover,
the loop in the SMM algorithm runs d times. Therefore, a decrease in d is desirable for some designs
even it is at a cost of using larger rings (q) and requiring some more storage space. In Table 6, we
demostrate parameters of this nature.

Table 6: Decreasing d.

Bits Ring DFT Root Wordsize Words
k q d w u s

540 (2115 − 1)/31 23 32 45 12

560 (293 + 1)/9 31 64 35 16

608 296 + 1 32 64 38 16

1,024 (2155 + 1)/33 31 1024 64 16

1,122 (2129 + 1)/9 43 64 51 22

2,150 (2129 + 1)/9 86 64 50 43

The second issue is the wordsize u which determines the maximum modulus size k as k = su
and the number of elements in the set {Θ1(t),Θ2(t), . . . ,Θu(t)} which needs to be stored. For
instance, in the ring q = 247 − 1, the value of u = 12 implies that {Θ1(t),Θ2(t), . . . ,Θ12(t)} need
to be stored. Here Θi(t) is a sequence of length 86 whose elements are from the ring q = 247 − 1
for all i = 1, 2, . . . , 12. This storage requirements of the above strategy can be excessive, however,



Confidential Document, Koç & Saldamlı c© April 22, 2005 16

a hybrid stragedy is also possible. This can be summarized with the following equation

β ·Θ(t) = β′ ·Θ1(t) +
u∑

i=u′

βi ·Θi(t) ,

where β′ = β mod 2u
′

and βi stands for binary digits of β ÷ 2u
′

for some 0 ≤ u′ ≤ u.

8 Spectral Point Multiplication for Elliptic Curve Cryptography

An elliptic curve E over a prime field GF (n) (i.e., n is a prime) is determined by parameters
a, b ∈ GF (n) which satisfy 4a3 + 27b2 6= 0. The curve consists of the set of solutions or points
P = (x, y) for x, y ∈ GF (n) to the equation

y2 ≡ x3 + ax+ b mod n

together with an extra point O called the point at infinity. The set of points on E forms a group
under the following addition rule: Let (x1, y1) ∈ E(GF (n)) and (x2, y2) ∈ E(GF (n)) be two points
such that x1 6= x2. Then, we have (x1, y1) + (x2, y2) = (x3, y3), where

λ = (y2 − y1)(x2 − x1)−1 (mod n) ,
x3 = λ2 − x1 − x2 (mod n) ,
y3 = λ(x1 − x3)− y1 (mod n) .

All computations are performed within the finite field GF (n). The security provided by ECC is
guaranteed by the difficulty of the discrete logarithm problem in the elliptic curve group. The
discrete logarithm problem is the problem of finding the least positive number, k, which satisfies
the equation

P1 = e× P0 = P0 + P0 + · · ·+ P0︸ ︷︷ ︸
e times

,

where P0 and P1 are points on the elliptic curve. Naturally, the basic computation (called point
multiplication) in ECC is finding the eth (additive) power of an element P0 in the group. This
involves additions, multiplications, and inversions of integers which are in the coordinates of the
points. That is, it relies completely upon calculations in the underlying field, GF (n). But since the
underlying field is a prime field the arithmetic is not different from the usual modular arithmetic.
Therefore, the spectral methods can be employed for elliptic point multiplication likewise described
for the modular exponentiation.

8.1 Modified Spectral Modular Multiplication Algorithm

It turns out that the least magnitude residue representation of integers in the ring Zq is more suit-
able for applying the Spectral Modular Multiplication method in elliptic curve cryptography. We
represent the integers in the ring Zq with the set {−q/2, . . . ,−1, 0, 1, . . . , q/2}. In this convention,
the modular reduction method picks values from the least magnitude set, e.g., 12 mod 7 is equal
to −2 instead of 5. We make some small changes in the SMM method in order to utilize the least
magnitude residues properly. The modified spectral multiplication algorithm is denoted with the
following operation

R(t) = SMM2[A(t), B(t)] .

The detailed steps of the SMM2 method are given below.



Confidential Document, Koç & Saldamlı c© April 22, 2005 17

1: R(t) = A(t)�B(t) (mod q)
2: α = 0
3: for i = 0 to d− 1
4: r0 = d−1(R0 +R1 + · · ·+Rd−1) (mod q)
5: β = r0 + α (mod b)
6: α = (r0 + α)/b
7: R(t) = R(t)− β ·Θ(t) (mod q)
8: R(t) = R(t)− (r0 − β) (mod q)
9: R(t) = R(t)� Γ(t) (mod q)
10: end for
11: return R(t)

We will now describe the spectral point multiplication method for elliptic curves. We would like
to remark that different representations of points on elliptic curves brings various realizations of the
elliptic curve system which are suitable for different purposes. The two common representations
are deduced by presenting the curve in the affine and projective coordinates. The former gives
a straightforward representation involving inversions in the finite field, while the latter replaces
inversions by multiplications. In general, this is desired since the inversion operation in GF (n) is
more time- and resource-intensive operation than the multiplication.

8.2 Spectral Projective Point Multiplication (SPPM)

We describe the spectral point multiplication method for projective coordinates. The SPPM method
computes Q = e×P given the integer e and the point P. The underlying field is GF (n), and there-
fore, we need to setup a mod n spectral arithmetic as was the case for the modular exponentiation
operation. The preprocessing step of the SPPM method is essentially the same the preprocessing
step of the SMM method (Preprocessing with n): Given n, we need to compute ν0, θ, Θ(t), λ, δ,
∆(t), and and K(t). After these computations, we start the Preprocessing with P phase, and move
into the Exponentiation Loop and Postprocessing phases.

Preprocessing with P: Given P = (x, y, z), obtain P(t) = (x(t), y(t), z(t)).

1. Compute the point P′(t) = (X(t), Y (t), Z(t)) = (DFT[x(t)],DFT[y(t)],DFT[z(t)]).

2. Assign Q′(t) = O
′(t) = (0,K(t), 0). Note that O = (0, 1, 0) is the projective coordinate

representation of the point at infinity and O′(t) = (0,K(t), 0) is its DFT.

3. Use the modified Spectral Modular Multiplication (SMM2) method to compute

P
′(t) = (X(t), Y (t), Y (t))

as follows

X(t) = SMM2[X(t),∆(t)] ,
Y (t) = SMM2[Y (t),∆(t)] ,
Z(t) = SMM2[Z(t),∆(t)] .

4. Use the SMM2 method to compute

Q
′(t) = (0,K(t), 0)



Confidential Document, Koç & Saldamlı c© April 22, 2005 18

such that
K(t) = SMM2[K(t),∆(t)] .

Exponentiation Loop: The exponentiation operation is performed as soon as the j-bit exponent
e is available. Let the binary expansion of e be (ej−1ej−2 · · · e1e0)2. The exponentiation
operation needs Q′(t) and P′(t) in addition to the exponent e. The exponentiation method
(the point multiplication) method relies on elliptic curve point doubling and point addition
methods. Since we work in the spectral domain and in the projective coordinate systems,
we name these methods as the Spectral Projective Point Doubling (SPPD) and the Spectral
Projective Point Additions (SPPA) methods.

for i = j − 1 downto 0
Q
′(t) = SPPD[Q′(t)]

if ei = 1 then Q
′(t) = SPPA[Q′(t),P′(t)]

Postprocessing: After the additive exponentiation loop is completed, we will have a final value
of

Q
′(t) = (X(t), Y (t), Z(t)) .

This vector now needs to be brought back to the time domain.

1. Obtain Q′(t) = (X(t), Y (t), Z(t)) using the SMM2 method by multiplying K(t) as

X(t) = SMM2[X(t),K(t)] ,
Y (t) = SMM2[Y (t),K(t)] ,
Z(t) = SMM3[Z(t),K(t)] .

2. Obtain Q(t) = (x(t), y(t), z(t)) using the Inverse DFT function as follows

x(t) = IDFT[X(t)] ,
y(t) = IDFT[Y (t)] ,
z(t) = IDFT[Z(t)] .

Output: The point Q(t) = (x(t), y(t), z(t)) is the output of the SPPM method, such that

Q(t) = e× P(t) .

8.3 Spectral Projective Point Addition (SPPA)

Let P0(t) = (X0(t), Y0(t), Z0(t)) and P1(t) = (X1(t), Y1(t), Z1(t)) be spectral representation of
two points on an elliptic curve E. The SPPA algorithm computes the projective point addition
P2 = P0 + P1 in the spectral domain. We will denote the operation using

P2(t) = (X2(t), Y2(t), Z2(t)) = SPPA[P0(t),P1(t)] .

The steps of the SPPA method are given below.

Ψ0(t) = SMM2[X0(t),SMM2[Z1(t), Z1(t)]] ,
Ψ1(t) = SMM2[SMM2[Y0(t), Z1(t)],SMM2[Z1(t), Z1(t)]] ,



Confidential Document, Koç & Saldamlı c© April 22, 2005 19

Ψ2(t) = SMM2[X1(t),SMM2[Z0(t), Z0(t)]] ,
Ψ3(t) = SMM2[SMM2[Y1(t), Z0(t)],SMM2[Z0(t), Z0(t)]] ,
Ψ4(t) = Ψ0(t)−Ψ2(t) ,
Ψ5(t) = Ψ0(t) + Ψ2(t) ,
Ψ6(t) = Ψ1(t)−Ψ3(t) ,
Ψ7(t) = Ψ1(t) + Ψ3(t) ,
Z2(t) = SMM2[Z0(t),SMM2[Z1(t),Ψ4(t)]] ,
X2(t) = SMM2[Ψ6(t),Ψ6(t)]− SMM2[Ψ5(t),SMM2[Ψ4(t),Ψ4(t)]] ,
Ψ8(t) = SMM2[Ψ5(t),SMM2[Ψ4(t),Ψ4(t)]]− 2X2(t) ,

2Y2(t) = SMM2[Ψ8(t),Ψ6(t)]− SMM2[SMM2[Ψ7(t),Ψ4(t)],SMM2[Ψ4(t),Ψ4(t)]] .

8.4 Spectral Projective Point Doubling (SPPD)

The SPPD algorithm computes the projective doubling 2 × P1(t) operation. We will denote the
operation using

P2(t) = (X2(t), Y2(t), Z2(t)) = 2× P1(t) = SPPD[P1(t)] .

The steps are given below.

Ψ0(t) = 3 · SMM2[X1(t), X1(t)] + a · SMM2[SMM2[Z1(t), Z1(t)],SMM2[Z1(t), Z1(t)]] ,
Z2(t) = 2 · SMM2[Y1(t), Z1(t)] ,
Ψ1(t) = 4 · SMM2[X1(t),SMM2[Y1(t), Y1(t)]] ,
X2(t) = SMM2[Ψ0(t),Ψ0(t)]− 2Ψ1(t) ,
Ψ2(t) = 8 · SMM2[SMM2[Y1(t), Y1(t)],SMM2[Y1(t), Y1(t)]] ,
Y2(t) = SMM2[Ψ0(t),Ψ0(t)−X2(t)]−Ψ2(t) .

8.5 Spectral Affine Point Multiplication (SAPM)

If the affine coordinates used to represent the curve, the addition and doubling formulae get simpler
but one needs to deal with the inversions in the finite field. The flow the the point multiplication
algorithm is same as the projective case with a fewer coordinates. The preprocessing step of the
SAPM method is exactly the same the preprocessing step of the SPPM method: Given n, we
need to compute ν0, θ, Θ(t), λ, δ, ∆(t), and and K(t). After these computations, we start the
Preprocessing with P phase, and move into the Exponentiation Loop and Postprocessing phases.

Preprocessing with P = (x, y): Given P, obtain P(t) = (x(t), y(t)).

1. Compute the point P′(t) = (X(t), Y (t)) = (DFT[x(t)],DFT[y(t)]).

2. Assign Q′(t) = O
′(t) = (0,K(t)). Note that O = (0, 1) is the projective coordinate

representation of the point at infinity and O′(t) = (0,K(t)) is its DFT.

3. Use the SMM2 method to compute P(t) = (X(t), Y (t)), where

X(t) = SMM2[X(t),∆(t)] ,
Y (t) = SMM2[Y (t),∆(t)] .



Confidential Document, Koç & Saldamlı c© April 22, 2005 20

4. Use the SMM2 method to compute

Q
′(t) = (K(t), 0)

such that
K(t) = SMM2[K(t),∆(t)] .

Exponentiation Loop: The exponentiation operation is performed as soon as the j-bit exponent
e is available. Let the binary expansion of e be (ej−1ej−2 · · · e1e0)2. The exponentiation
operation needs Q′(t) and P′(t) as input in addition to the exponent e.

for i = j − 1 downto 0
Q
′(t) = SAPD[Q′(t)]

if ei = 1 then Q
′(t) = SAPA[Q′(t),P′(t)]

Postprocessing: After the additive exponentiation loop is completed, we will compute the final
value of Q′(t) = (X(t), Y (t)). This vector will now be brought back to the time domain as
follows.

1. Obtain Q′(t) = (X(t), Y (t)) using the SMM2 method by multiplying K(t) as

X(t) = SMM2[X(t),K(t)] ,
Y (t) = SMM2[Y (t),K(t)] .

2. Obtain Q(t) = (x(t), y(t)) using the Inverse DFT function as follows

x(t) = IDFT[X(t)] ,
y(t) = IDFT[Y (t)] .

Output: The point Q(t) = (x(t), y(t)) is the output of the SPPM method, such that

Q(t) = e× P(t) .

8.5.1 Spectral Affine Point Addition (SAPA)

Let P0(t) = (X0(t), Y0(t)) and P1(t) = (X1(t), Y1(t)) be spectral representation of two points on
an elliptic curve E. The SAPA algorithm computes the affine point addition P2 = P0 + P1 in the
spectral domain. We will denote the operation using

P2(t) = (X2(t), Y2(t)) = SAPA[P0(t),P1(t)] .

The steps of the SAPA method are given below;

Ψ(t) = SMM2[Y1(t)− Y0(t), (X1(t)−X0(t))−1] ,
X2(t) = SMM2[Ψ(t),Ψ(t)]−X1(t)−X0(t) ,
Y2(t) = SMM2[X0(t)−X2(t),Ψ(t)]−X2(t)− Y0(t) .



Confidential Document, Koç & Saldamlı c© April 22, 2005 21

8.6 Spectral Affine Point Doubling (SAPD)

The SAPD algorithm computes the affine point doubling 2 × P1(t) operation. We will denote the
operation using

P2(t) = (X2(t), Y2(t)) = 2× P1(t) = SAPD[P1(t)] .

The steps are given below.

Ψ(t) = SMM2[3X0(t) + a(t), (2Y1(t))−1] ,
X2(t) = SMM2[Ψ(t),Ψ(t)]− 2X1(t) ,
Y2(t) = SMM2[X0(t)−X2(t),Ψ(t)]−X2(t)− Y0(t) .

8.7 Parameter Selection for Elliptic Curve Cryptography

In Section 6, we described the parameter selection methodology for the SME method enriched by
some sample parameters giving the key sizes around the most popular key sizes. In this section, we
will present some similar examples for the ECC. Practically, the SMM2 and SMM algorithms give
the same bounds enforced by the inequalities (1) and (2). The improvements desribed in Section
6.1 are also applicable to SMM2 method. In Table 7, we demonstrate the suitable parameters for
the SPM (valid for both PSPM and ASPM). We would like to add that the main characteristic of
the ECC is having shorter key sizes ranges from 160 bits to 540 bits. Thus, these tables can be
seen as a continuation of the parameter selection tables of Section 6.



Confidential Document, Koç & Saldamlı c© April 22, 2005 22

Table 7: Standard and improved parameter selections for ECC.

Bits Ring DFT Root Wordsize Words
k q d w u s

176 243 − 1 43 2 8 22

185 237 − 1 74 -2 5 37

190 (238 − 1)/3 76 -2 5 38

192 247 − 1 47 2 8 24

234 (251 − 1)/7 51 2 9 26

270 253 − 1 53 2 10 27

384 264 + 1 64 4 12 32

580 (258 − 1)/3 116 -2 10 58

171 (237 + 1)/3 37 4 9 19

186 231 − 1 62 -2 6 31

190 237 − 1 37 2 10 19

210 (241 + 1)/3 41 4 10 21

224 232 + 1 64 2 7 32

231 241 − 1 41 2 11 21

264 243 − 1 43 2 12 22

296 237 − 1 74 -2 8 37

405 (253 + 1)/3 53 4 15 27

410 241 − 1 82 -2 10 41

540 (259 + 1)/3 59 2 19 30

564 247 − 1 94 -2 12 47

9 Hardware Architectures for Spectral Modular Arithmetic

The core part of the SME, SPPM, SAPM methods consists of the SMM and SMM2 algorithms.
These two multiplication algorithms (SMM and SMM2) are same except the representation set of
Zq. From a design point of view, this difference is quite insignificant, and can be dealt with in the
circuit level. In this section, we will describe the hardware architecture implementing the SMM
method by going through its steps, as described in Section 3.

• In Step 1, the convolution property is employed. Given the vectors A(t) and B(t), we compute
R(t) such that Ri = AiBi (mod q) for i = 0, 1, . . . , d− 1. Recall that our targeted rings are
the Mersenne or Fermat rings for which q is of the form 2v ± 1. Hence, these multiplications
can be realized by employing v×v modulo multipiers and the complexities of these multipliers
are not difficult from the usual integer multiplication. This computation is accomplished using
the hardware architecture given in Figure 1.



Confidential Document, Koç & Saldamlı c© April 22, 2005 23

Figure 1: The archictecture for Step 1 of SMM.

B Bus

A Bus
A0

B0

@@ ��

��
��
×

?
R0

A1

B1

@@ ��

��
��
×

?
R1

Ad−1

Bd−1

@@ ��

��
��
×

?
Rd−1

• For simplicity, the reduction steps which correspond to the loop with i is divided into two
parts:

– Parameter Generation: This corresponds to Steps 4, 5 and 6. Here, we compute the
parameters r0, α, and β, and feed feed them to the main processing units.

– Processing Engine: This corresponds to steps 7, 8, and 9, in which we add a multiple
of the modulus to the partial sum and then divide it by the base.

• In Parameter Generation, Step 4 corresponds to a partial interpolation in which a d-input
multi-operand addition followed by a multiplication by d−1 is performed in order to find the
zeroth coefficient of the polynomial. Figure 2 shows the architecture for these computations.

Figure 2: Partial interpolation.

R0

?

R1

?

R2

?
. . .

Rd−2

?

Rd−1

?

Parallel Adder

v
?

��
��
×-d−1

?
r0

Observe that d−1 is a constant v-bit number (recall that q = 2v ± 1), therefore, this can be
accomplished using a multi-operand addition.

Whenever d and w are both a power of 2, multiplication by d−1 can be replaced with shifts.
This can be seen as follows: Let w = 2l, and thus, we have wd = 2ld = 1 mod q. We can write
d−1 as d−1 = 2ld−log d mod q, hence, multiplication by d−1 modulo q can be accomplished with
a ld − log d bit circular shift. Therefore, for special Fermat or Mersenne rings, it is possible
drop the multiplication by d−1 in Figure 2.



Confidential Document, Koç & Saldamlı c© April 22, 2005 24

• Steps 5 and 6 as seen in the Figure 3 are called the Parameter Generation Logic (PGL)
which computes the parameters r0 + β and β. The adders seen in Figure 3 are the usual
v-bit adders and they do not need modular reductions since α, (r0 + α), (r0 + α+ β) < q.

Figure 3: Parameter generation logic.

r0

? ?

v − u
α

@
@

�
�

Adder 1

v

v

� d��
HH

u

�
�

@
@

A
d
d
e
r

2

�

�
r0 + β

�β -

@
@

�
�

A
d
d
e
r

3

-
v − u

α-

• The Processing Engine is the most resource-consuming stage and it corresponds to Steps
7, 8, and 9. In Figure 4, we give the architecture of a single processing unit. The processing
engine consists of d such units.

Figure 4: A processing unit.

r0 + β
v

?

Ri

?

v

@@ ��Adder

?

β -u

Θi

v

�
�

��
��
×

?
@@ ��Adder

��
��
�

?

v

Ri



Confidential Document, Koç & Saldamlı c© April 22, 2005 25

Both adders in Figure 4 are modulo q adders. The shift operation at the bottom of the figure
corresponds to Step 9 of the SMM core. As we pick w as a power of 2, the multiplications
with the coeeficients of Γ(t) correspond to the constant d−1− i bit shifts for processing units
Ri where i = 1, 2, . . . , d− 1.

• We obtain the entire architecture of the SMM method by combining these individual pieces.
The architecture is illustrated in Figure 5. In this architecture, the outputs of the convolution
step (Step 1) feed the R MUXes. For the initial case, each MUX R chooses the input from
Step 1, and then the reduction loop starts. The loop runs d times: at every run, the outputs
of the processing units are passed to the interpolation and also fed back to the unit itself. The
processing engine waits until the parameters r0 + β and β are generated from the parameter
generation logic. After d runs of the loop, the processing units from 0 to d − 1 outputs the
coefficient of the resultant spectral polynomial R(t). It is important to realize that in this
architecture:

– All processing units work in parallel.

– The units are not completely identical. The cyclic shifts are different for each unit.

– We do not need a cyclic shifter in unit d− 1

– The same r0 + β and β are passed to all of the processing units.



Confidential Document, Koç & Saldamlı c© April 22, 2005 26

Figure 5: The hardware architecture of the SMM algorithm.

Step
1



A Bus

B Bus

A0r
v

B0r
v

@@ ��

��
��
×

A1r
v

B1r
v

@@ ��

��
��
×

Ad−1r
v

Bd−1r
v

@@ ��

��
��
×

Loop



Θ Bus

?
R0

?

r
Θ0

vr - r0 + β

u
r - βn� d− 1 bit

cyclic
shift

unit 0

?
R1

?

r
Θ1

vr - r0 + β

b
- βn� d− 2 bit

cyclic
shift

unit 1

?
Rd−1

?

r
Θd−1

vr - r0 + β

u
- βn� 0

cyclic
shift

unit d-1

??
v

Mux R

?

vr
??

v

Mux R

?

vr
??

v

Mux R

?

vr
Processing

Engine

Parameter
Generation

Partial Interpolation

?
v

Parameter
Generation

Logic
-

�

v + u

α register



Confidential Document, Koç & Saldamlı c© April 22, 2005 27

10 Appendix

Table 8: Suitable Fermat rings and the w and d values.

Ring Prime Factors w d w d

216 + 1 65537 4 16 2 32

220 + 1 17 · 61681 32 8 4100 16

224 + 1 97 · 257 · 673 8 16
√

8 32

232 + 1 641 · 6700417 4 32 2 64

240 + 1 257 · 4278255361 32 16
√

32 256

264 + 1 274177 · 67280421310721 4 64 2 128

280 + 1 414721 · 44479210368001 32 32
√

32 1024

296 + 1 641 · 6700417 · 18446744069414584321 8 64
√

8 128

2112 + 1 449 · 2689 · 65537 · 183076097 · 358429848460993 27 32
√

128 64

2128 + 1 59649589127497217 · 5704689200685129054721 4 128 2 256



Confidential Document, Koç & Saldamlı c© April 22, 2005 28

Table 9: Suitable Mersenne rings and the w and d values.

Ring Prime Factors w d w d

217 − 1 131071 2 17 −2 34

219 − 1 524287 2 19 −2 38

223 − 1 47 · 178481 2 23 −2 46

229 − 1 233 · 1103 · 2089 2 29 −2 58

231 − 1 2147483647 2 31 −2 62

237 − 1 223 · 616318177 2 37 −2 74

241 − 1 13367 · 164511353 2 41 −2 82

243 − 1 431 · 9719 · 2099863 2 43 −2 86

247 − 1 2351 · 4513 · 13264529 2 47 −2 94

253 − 1 6361 · 69431 · 20394401 2 53 −2 106

259 − 1 179951 · 3203431780337 2 59 −2 118

261 − 1 2305843009213693951 2 61 −2 122

267 − 1 193707721 · 761838257287 2 67 −2 134

271 − 1 228479 · 48544121 · 212885833 2 71 −2 142

273 − 1 439 · 2298041 · 9361973132609 2 73 −2 146

279 − 1 2687 · 202029703 · 1113491139767 2 79 −2 158

283 − 1 167 · 57912614113275649087721 2 83 −2 166

289 − 1 618970019642690137449562111 2 89 −2 178

297 − 1 11447 · 13842607235828485645766393 2 97 −2 196

2101 − 1 7432339208719 · 341117531003194129 2 101 −2 202

2103 − 1 2550183799 · 3976656429941438590393 2 103 −2 206

2107 − 1 162259276829213363391578010288127 2 107 −2 214

2109 − 1 745988807 · 870035986098720987332873 2 109 −2 218

2113 − 1 3391 · 23279 · 65993 · 1868569 · 1066818132868207 2 113 −2 226

2127 − 1 170141183460469231731687303715884105727 2 127 −2 254



Confidential Document, Koç & Saldamlı c© April 22, 2005 29

Table 10A: Suitable pseudo Fermat rings and the w and d values.

Ring Prime Factors Modulus w d w d

217 + 1 3 · 43691 (217 + 1)/3 −2, 4 17 2 34

219 + 1 3 · 174763 (219 + 1)/3 −2, 4 19 2 38

220 + 1 17 · 61681 (220 + 1)/17 4 20 2 40

221 + 1 32 · 43 · 5419 (221 + 1)/9 −2, 4 21 2 42

222 + 1 5 · 397 · 2113 (222 + 1)/5 4 22 2 44

223 + 1 3 · 2796203 (223 + 1)/3 −2, 4 23 2 46

228 + 1 17 · 15790321 (228 + 1)/17 4 28 2 56

229 + 1 3 · 59 · 3033169 (229 + 1)/3 −2, 4 29 2 58

231 + 1 3 · 715827883 (231 + 1)/3 −2, 4 31 2 62

234 + 1 5 · 137 · 953 · 26317 (234 + 1)/5 4 34 2 68

237 + 1 3 · 25781083 · 1777 (237 + 1)/3 −2, 4 37 2 74

238 + 1 5 · 229 · 457 · 525313 (238 + 1)/5 4 38 2 76

239 + 1 32 · 22366891 · 2731 (239 + 1)/9 −2, 4 39 2 78

240 + 1 257 · 4278255361 (240 + 1)/257 4 40 2 80

241 + 1 3 · 83 · 8831418697 (241 + 1)/3 −2, 4 41 2 82

243 + 1 3 · 2932031007403 (243 + 1)/3 −2, 4 43 2 86

244 + 1 17 · 353 · 2931542417 (244 + 1)/17 4 44 2 88

246 + 1 5 · 277 · 1013 · 1657 · 30269 (246 + 1)/5 4 46 2 92

247 + 1 3 · 283 · 165768537521 (247 + 1)/3 −2, 4 47 2 94

252 + 1 17 · 308761441 · 858001 (252 + 1)/17 4 52 2 102

253 + 1 3 · 107 · 28059810762433 (253 + 1)/3 −2, 4 53 2 106

256 + 1 257 · 54410972897 · 5153 (256 + 1)/257 4 56 2 112

257 + 1 32 · 571 · 160465489 · 174763 (257 + 1)/9 −2, 4 57 2 114

258 + 1 5 · 107367629 · 536903681 (258 + 1)/5 4 58 2 116

259 + 1 3 · 1824726041 · 37171 · 2833 (259 + 1)/3 −2, 4 59 2 118

260 + 1 17 · 241 · 4562284561 · 61681 (260 + 1)/17 4 60 2 120

261 + 1 3 · 768614336404564651 (261 + 1)/3 −2, 4 61 2 122

262 + 1 5 · 384773 · 49477 · 8681 · 5581 (262 + 1)/5 4 62 2 124

265 + 1 3 · 11 · 131 · 409891 · 7623851 · 2731 (265 + 1)/3 −2, 4 65 2 130



Confidential Document, Koç & Saldamlı c© April 22, 2005 30

Table 10B: Suitable pseudo Fermat rings and the w and d values.

Ring Prime Factors Modulus w d w d

266 + 1 5 · 13 · 397 · 4327489 · 312709 · 2113 (266 + 1)/5 4 66 2 132

267 + 1 3 · 6713103182899 · 7327657 (267 + 1)/3 −2, 4 67 2 134

268 + 1 172 · 2879347902817 · 354689 (268 + 1)/172 4 68 2 136

271 + 1 3 · 56409643 · 13952598148481 (271 + 1)/3 −2, 4 71 2 142

273 + 1 3 · 1795918038741070627 · 1753 (273 + 1)/3 −2, 4 73 2 146

274 + 1 5 · 149 · 593 · 184481113 · 231769777 (274 + 1)/5 4 74 2 148

276 + 1 17 · 1217 · 24517014940753 · 148961 (276 + 1)/17 4 76 2 152

279 + 1 3 · 201487636602438195784363 (279 + 1)/3 −2, 4 79 2 158

282 + 1 5 · 181549 · 12112549 · 43249589 · 10169 (282 + 1)/5 4 82 2 164

283 + 1 3 · 499 · 1163 · 13455809771 · 155377 · 2657 (283 + 1)/3 −2, 4 83 2 166

285 + 1 3 · 11 · 26831423036065352611 · 43691 (285 + 1)/33 −2, 4 85 2 170

286 + 1 5 · 173 · 1759217765581 · 500177 · 101653 (286 + 1)/5 4 86 2 172

287 + 1 32 · 59 · 96076791871613611 · 3033169 (287 + 1)/531 −2, 4 87 2 174

288 + 1 257 · 43872038849 · 119782433 · 229153 (288 + 1)/257 4 88 2 176

289 + 1 3 · 179 · 18584774046020617 · 62020897 (289 + 1)/3 −2, 4 89 2 178

291 + 1 3 · 43 · 25829691707 · 1210483 · 2731 · 224771 (291 + 1)/129 −2, 4 91 2 182

292 + 1 17 · 291280009243618888211558641 (292 + 1)/17 4 92 2 184

293 + 1 32 · 529510939 · 2903110321 · 715827883 (293 + 1)/9 −2, 4 93 2 186

294 + 1 5 · 7484047069 · 140737471578113 · 3761 (294 + 1)/5 4 94 2 188

296 + 1 641 · 18446744069414584321 · 6700417 (296 + 1)/641 4 96 2 192

297 + 1 3 · 971 · 1553 · 1100876018364883721 · 31817 (297 + 1)/3 −2, 4 97 2 194

2101 + 1 3 · 845100400152152934331135470251 (2101 + 1)/3 −2, 4 101 2 202

2103 + 1 3 · 8142767081771726171 · 415141630193 (2103 + 1)/3 −2, 4 103 2 206

2104 + 1 257 · 78919881726271091143763623681 (2104 + 1)/257 4 104 2 208

2106 + 1 5 · 15358129 · 586477649 · 1801439824104653 (2106 + 1)/5 4 106 2 212

2107 + 1 3 · 643 · 84115747449047881488635567801 (2107 + 1)/3 −2, 4 107 2 214

2109 + 1 3 · 2077756847362348863128179 · 104124649 (2109 + 1)/3 −2, 4 109 2 218



Confidential Document, Koç & Saldamlı c© April 22, 2005 31

Table 10C: Suitable pseudo Fermat rings and the w and d values.

Ring Prime Factors Modulus w d w d

2111 + 1
32 · 1777 · 3331 · 17539

(2111 + 1)/9 −2, 4 111 2 222
·25781083 · 107775231312019

2113 + 1
3 · 227 · 48817

(2113 + 1)/3 −2, 4 113 2 226
·636190001 · 491003369344660409

2114 + 1
5 · 13 · 229 · 457 · 131101

(2114 + 1)/65 −2, 4 114 2 228
·160969 · 525313 · 275415303169

2116 + 1
17 · 59393

(2116 + 1)/17 4 116 2 232
·82280195167144119832390568177

2118 + 1
5 · 1181 · 3541 · 157649

(2118 + 1)/5 −2, 4 118 2 236
·174877 · 5521693 · 104399276341

2120 + 1
97 · 257 · 673 · 394783681

(2120 + 1)/257 32 48
√

32 96
·46908728641 · 4278255361

2121 + 1
3 · 683 · 117371

(2121 + 1)/4098 −2, 4 121 2 242
·11054184582797800455736061107

2122 + 1
5 · 733 · 1709 · 3456749

(2122 + 1)/5 4 122 2 244
·8831418697 · 13194317913029593

2123 + 1
32 · 83 · 739 · 165313

(2123 + 1)/747 −2, 4 123 2 146
·8831418697 · 13194317913029593

2124 + 1
17 · 290657 · 3770202641

(2124 + 1)/17 4 124 2 248
·1141629180401976895873

2127 + 1 3 · 56713727820156410577229101238628035243 (2127 + 1)/3 −2, 4 127 2 254



Confidential Document, Koç & Saldamlı c© April 22, 2005 32

Table 11A: Suitable pseudo Mersenne rings and the w and d values.

Ring Prime Factors Modulus w d w d

225 − 1 31 · 601 · 1801 (225 − 1)/31 2 25 −2 50

226 − 1 3 · 2731 · 8191 (226 − 1)/3 2 26 −2 52

227 − 1 7 · 73 · 262657 (227 − 1)/511 2 27 −2 54

234 − 1 3 · 43691 · 131071 (234 − 1)/3 2 34 −2 68

235 − 1 31 · 71 · 127 · 122921 (235 − 1)/3937 2 35 −2 70

238 − 1 3 · 174763 · 524287 (238 − 1)/3 2 38 −2 76

239 − 1 7 · 79 · 8191 · 121369 (239 − 1)/7 2 39 −2 78

246 − 1 3 · 47 · 178481 · 2796203 (246 − 1)/3 2 46 4 23

249 − 1 127 · 4432676798593 (249 − 1)/127 2 49 −2 98

251 − 1 7 · 103 · 2143 · 11119 · 131071 (251 − 1)/7 2 51 −2 102

257 − 1 7 · 32377 · 524287 · 1212847 (257 − 1)/7 2 57 −2 114

258 − 1 3 · 59 · 233 · 1103 · 2089 · 3033169 (258 − 1)/3 2 58 4 29

262 − 1 3 · 715827883 · 2147483647 (262 − 1)/3 2 62 −2 124

264 − 1 3 · 5 · 17 · 257 · 641 · 65537 · 6700417 (264 − 1)/255 2 64 −2 128

265 − 1 31 · 8191 · 145295143558111 (265 − 1)/31 2 65 −2 130

274 − 1 3 · 223 · 1777 · 25781083 · 616318177 (274 − 1)/3 2 74 −2 148

275 − 1 7 · 31 · 151 · 601 · 1801 · 100801 · 10567201 (275 − 1)/217 2 75 −2 150

278 − 1 32 · 7 · 79 · 2731 · 8191 · 121369 · 22366891 (278 − 1)/63 2 78 4 39

282 − 1 3 · 83 · 13367 · 164511353 · 8831418697 (282 − 1)/3 2 82 4 41

285 − 1 31 · 131071 · 9520972806333758431 (285 − 1)/31 2 85 −2 170

286 − 1 3 · 431 · 9719 · 2099863 · 2932031007403 (286 − 1)/3 2 86 4 43

291 − 1 127 · 911 · 8191 · 112901153 · 23140471537 (291 − 1)/127 2 91 −2 182

293 − 1 7 · 2147483647 · 658812288653553079 (293 − 1)/7 2 93 −2 186

294 − 1
3 · 283 · 2351 · 4513·

(294 − 1)/3 2 94 4 47
13264529 · 165768537521

2106 − 1
3 · 107 · 6361 · 69431 · 20394401

(2106 − 1)/3 2 106 4 53
·28059810762433



Confidential Document, Koç & Saldamlı c© April 22, 2005 33

Table 11B: Suitable pseudo Mersenne rings and the w and d values.

Ring Prime Factors Modulus w d w d

2111 − 1
7 · 223 · 321679 · 26295457 · 616318177

(2111 − 1)/7 2 111 −2 222
·319020217

2114 − 1
32 · 7 · 571 · 32377 · 174763·

(2114 − 1)/63 2 114 4 57
524287 · 1212847 · 160465489

2115 − 1
31 · 47 · 14951 · 178481 · 4036961

(2115 − 1)/1457 2 115 −2 230
·2646507710984041

2118 − 1
3 · 2833 · 37171 · 179951·

(2118 − 1)/3 2 118 4 59
1824726041 · 3203431780337

2121 − 1
23 · 89 · 727·

(2121 − 1)/2047 2 121 −2 242
1786393878363164227858270210279

2122 − 1
3 · 768614336404564651·

(2122 − 1)/3 2 122 −2 244
2305843009213693951

2128 − 1
3 · 5 · 17 · 257 · 641 · 65537·

(2128 − 1)/255 2 128 4 64
274177 · 6700417 · 67280421310721



Confidential Document, Koç & Saldamlı c© April 22, 2005 34

References

[1] Ç. K. Koç. High-Speed RSA Implementation. TR 201, RSA Laboratories, 73 pages, November
1994.

[2] Ç. K. Koç. RSA Hardware Implementation. TR 801, RSA Laboratories, 30 pages, April 1996.

[3] R. E. Blahut. Fast Algorithms for Digital Signal Processing, Chapter 6, Addison-Wesley
Publishing Company, 1985.

[4] H. J. Naussbaumer. Fast Fourier Transform and Convolution Algorithms, Chapter 8, Springer,
Berlin, Germany, 1982.

[5] J. M. Pollard. The fast Fourier transform in a finite field. Mathematics of Computation, vol.
25, pp. 365–374, 1971.


