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What are EmbeddedSystems?

• „Processor hidden in a product“, or
• „A computer that doesn‘t look like a computer“

+ = Embedded
System
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Characteristics of Embedded 
Systems

• Single purpose device

• Interacts with the world

• many,many applications
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current CPU market
by the numbers

Is this really important ?

So, how does embedded technology affect the future IT landscape?

PC & workstation
CPUs (32 bit)

all embedded CPUs
(4…32 bit) 

99.8 %

0.2 %

98 %

2 %

embedded CPUs
(32 bit) 

PC & workstation
CPUs (32 bit)
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Brave New Pervasive World
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• “We need security with less than 2000 gates”
Sanjay Sarma, AUTO-ID Labs, CHES 2002

Light-Weight Cryptography

• $3 trillions annually due to product piracy* (> US budget ‘07)

*Source: www.bascap.com

⇒ Authentication & identification problem: can both be fixed with 
cryptography 

⇒ How cheap can we make crypto algorithms?
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Strong Identification (w/ symmetric crypto)

1. random challenge r
r

ek (r) = y 2. encrypted response y

3. verification
ek (r) = y‘

y == y‘

ek()

ek()

Challenge: Encryption function e() at extremely low cost

• almost all symmetric ciphers optimized with SW in mind

• exception: DES
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SerializedSerialized DES ArchitectureDES Architecture

S-Boxes
• 4-to-6 substitution tables

Si

• crucial for security
• highly non-linear
→ high Boolean compl.

• 32% of area!
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DESL: A Single S-Box DES Variant

• DESL: replacing S1…S8 by S
• non-trivial problem
• no previous work (!)
• S must be robust against differential, linear, and David-

Murphy attack
• New S more robust against known attacks than S1…S8

S
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Results – Light-Weight DES

gates

3595

AES-128

1016 clk

1848

DESL-56

144 clk

2168

DESXL-112

144 clk

• smallest known secure block cipher
• TA product 12-14 times better than smallest AES architecture
• only block cipher based on HW-optimum design
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Strong Identification (w/ symmetric crypto)

r

ek (r) = yek()

Potential weakness: attacker gets access to key on host device

(e.g. firmware exploits) and starts cloning batteries

ek()
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Strong Identification (w/ asymmetric crypto)

1. random challenge r
r

sigkpr (r) = y 2. signed response y

3. verification
verkpub (r,y) = t/f

verkpub

sigkpr()

Attacker can only access public key from host device

• But how cheap can we build public-key algorithms?

• Idea: use OTS 8bit μP (< $1)
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Elliptic Curve PrimitiveElliptic Curve Primitive

• Given a Point P on an elliptic 
curve E over GF(p):

E:  y2=x3+ax+b mod p

P

kprkpub

• EC discrete logarithm problem:

ℓ = dlogP(Q)

Q = ℓ P

• Public key Q is multiple of base 
point P

Q = P+P+ … +P = ℓ P

group 
operation

3P

P+P
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a+b, a-b, a·b, 1/b

ECC System DesignECC System Design

x3=...
y3=...

kP

• Protocol 
– Point Mult (k.P)

• Group Operation
– Point Add/Double

• Field Operations
– Addition/Subtraction
– Multiplication
– Reduction
– Inverse
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Design Design PrinciplesPrinciples for for TinyTiny ECC ECC ProcessorProcessor

• Reduce memory
requirements

• Reduce arithemtic unit
area

• Keep it simple but
efficient

: memory amounts to more
than 50% of design

: avoid units like inverter
+ designed for specific size

: reduce control logic area -
multiplexers
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TinyTiny ECC ECC ProcessorProcessor UnitsUnits

• Arithmetic Units
– Multiplier
– Squarer
– inverter

• Point Multiplier
– Control Unit

• Memory Unit

– Most-Significant Bit Mult.
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Most Significant MultiplierMost Significant Multiplier

• A, B ∈ GF(2n)
• A(x) = am-1xm-1+L + a1x+a0

• C(x) = A(x) × B(x)
= A × ∑ bi xi mod F(x)
=(L(A × bm-1x + A × bm-2)xL)x+A × b0 mod F(x)
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The The ImplementationImplementation: MSB Multiplier: MSB Multiplier

A

C =A.B mod F(x)

c0c1c2c3c6c7c161c162

bi

163

163

a162 a161 a7 a3a6 a2 a1 a0

c162 c161 c7 c3c6 c2 c1 c0

Most-Significant Bit (MSB) Multiplier:  N cycles for n-bit multiplier

C(x)=A(x) × B(x) =(L(A × bm-1x + A × bm-2)xL)x+A × b0 mod F(
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TinyTiny ECC ECC ProcessorProcessor: Design : Design decisionsdecisions

• Arithmetic Units
– Multiplier
– Squarer
– inverter

• Point Multiplier
– Control Unit

• Memory Unit

– Most-Significant Bit Mult.
– Parallel Squaring
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SquaringSquaring

• A ∈ GF(2n)
• A(x) = am-1xm-1+L + a1x+a0

• A2(x) =
Step1:       am-1x2(m-1)+L + a1x2+a0

Step2:      (am-1x2(m-1)+L + a1x2+a0) mod F(x)
=  (am-1x2(m-1)+L + am/2xm) mod F(x)+

(am/2-1x(m-2)+L + a1x2+a0)
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The The ImplementationImplementation: : SquarerSquarer

• single cycle squaring
• low gate count
• low critical path
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TinyTiny ECC ECC ProcessorProcessor UnitsUnits

• Arithmetic Units
– Multiplier
– Squarer
– inverter

• Point Multiplier
– Control Unit

• Memory Unit

– Most-Significant Bit Mult.
– Parallel Squaring
– Fermat‘s Little Theorem
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The The ImplementationImplementation: : inverterinverter

Fermat‘s Little Theorem

A-1× A2m-2 mod F(x)  if A ∈ GF(2m)

For m=163 : A2163-2

Straightforward exponentiation: 161 Mult. + 162 Sqr.

Exploit exponent structure: 
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Inversion using ItohInversion using Itoh--TsujiiTsujii



Securing Pervasive Computing

The The ImplementationImplementation: Inverter: Inverter

Fermat‘s Little Theorem

A-1 × A2m-2 mod F(x)  if A ∈ GF(2m)

For m=163 : A2163-2

Straightforward exponentiation: 161 MUL + 162 SQ

Exploit exponent structure: 

(log2(m-1) + HW(m-1) - 1) MUL + (m-1) SQ

For m=163:   9 MUL + 162 SQ
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The The TinyTiny ECC ECC ProcessorProcessor DesignDesign

• ECC processor implementation
for 2113,2131,2163,2193

M
em

or
y
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Performance and Performance and ResultsResults

Field
Size

Arithmetic
Unit(gates)

Memory
(gates)

Total
(gates)

Time
(ms)

113 1,625

2,071

2,572

2,776

6,686 10,112 47

131 7,747 11,969 61

163 9,632 15,094 108

193 11,400 17,723 139

Performance @ 4 MHz for standardized curves

131, 163 bit: very practical bit sizes

Security levels?
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Security of midSecurity of mid--size ECCsize ECC

Costs for breaking ECC in one year 
w/ optimized attack ASICs:

ECC131p ≈ $2 million
ECC163p: ≈ $1 trillion (> 20 years security)

cf [CHES06 & Jan Pelzl’s talk at this workshop]
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Related Workshops

escar – Embedded Security in Cars
November 2006, Berlin, Germany

 

CHES – Cryptographic Hardware and Embedded Systems
September 2007, Vienna, Austria

SASC – Stream Ciphers Revisited
January 2007, Bochum, Germany

CHES 2007
Vienna, Austria

RFIDSec 2007
January 2007, Malaga, Spain
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