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Abstract

This work presents the first known implementation of elliptic curve cryptography for sensor
networks, motivated by those networks’ need for an efficient, secure mechanism for shared
cryptographic keys’ distribution and redistribution among nodes. Through instrumentation of
UC Berkeley’s TinyOS, this work demonstrates that secret-key cryptography is already viable on
the MICA2 mote. Through analyses of another’s implementation of modular exponentiation and
of its own implementation of elliptic curves, this work concludes that public-key infrastructure
may also be tractable in 4 kilobytes of primary memory on this 8-bit, 7.3828-MHz device.

1 Introduction

Wireless sensor networks have been proposed for such applications as habitat monitoring [15],
structural health monitoring [38], emergency medical care [6], and vehicular tracking [8], all of
which demand some combination of authentication, integrity, privacy, and security. Unfortu-
nately, the state of the art offers weak, if any, guarantees of these needs.

The limited resources boasted by today’s sensor networks appear to render them ill-suited for
the most straightforward of implementations of these needs. Consider the MICA2 mote [3],
designed by researchers at the University of California at Berkeley and fabricated by Crossbow
Technology, Inc.: supported by Berkeley’s TinyOS operating system [34] and the NesC program-
ming language [26], this device, whose size is dominated by its two AA batteries, offers an 8-bit,
7.3828-MHz ATmega 128L processor, 4 kilobytes (KB) of SRAM, 128 KB of program space,
512 KB of EEPROM, and a 433-MHz radio, the baud rate of which is 38.4K and the default,
per-packet payload of which (under TinyOS) is 29 KB. Such a device, given these resources, is
seemingly unfit for computationally expensive or power-intensive operations. For this reason is
public-key cryptography often ruled out for sensor networks as an infrastructure for authenti-
cation, integrity, privacy, and security [56, 5].

But too infrequently are such condemnations backed by actual data. In fact, save for a cursory
analysis of an implementation of RSA on the MICA2 [64], little, if any, empirical research has
been published on the viability of public-key infrastructure (PKI) for sensor networks.

It is precisely this void that this paper aspires to fill. By way of its own implementation of
the Elliptic Curve Key Agreement Scheme, Diffie-Hellman 1 (ECKAS-DH1) [47], as well as an
analysis of another’s implementation of Public-Key Cryptography Standard (PKCS) #3: Diffie-
Hellman Key-Agreement Standard [39], this work argues that public-key cryptography may, in
fact, be tractable on the MICA2. Through instrumentation of TinyOS, it further argues that
secret-key cryptography is already tractable on the same.

These arguments begin in Section 2 with an analysis of TinySec, TinyOS’s existing secret-
key infrastructure for the MICA2 based on SKIPJACK [17]. Section 3 redresses shortcomings
in that infrastructure with a look at one implementation of Diffie-Hellman for the MICA2, based
on the Discrete Logarithm Problem (DLP), meanwhile exposing weaknesses in the same. Section
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4 aspires, in turn, to mitigate those weaknesses with its own implementation of Diffie-Hellman,
based on the Elliptic Curve Discrete Logarithm Problem (ECDLP), and an analysis thereof.
Section 5 proposes directions for future work, while Section 6 explores related work. Section 7
concludes.

2 SKIPJACK and the MICA2

TinyOS currently offers the MICA2 access control, authentication, integrity, and confidentiality
through TinySec, a link-layer security mechanism based on SKIPJACK in CBC mode. An 80-
bit symmetric cipher, SKIPJACK is the formerly classified algorithm behind the Clipper chip,
approved by the National Institute for Standards and Technology (NIST) in 1994 for the Es-
crowed Encryption Standard [50]. Through use of a shared, group key does TinySec provide for
access control; with message authentication codes does it provide for messages’ authentication
and integrity; and with encryption does it provide for confidentiality.

Unfortunately, TinySec’s reliance on shared keys render the mechanism particularly vulnera-
ble to attack. After all, the MICA2 is intended for deployment in sensor networks. For reasons
of cost and logistics, long-term physical security of the devices is unlikely. Compromise of the
network, therefore, reduces to compromise of any one node.

But the mechanism is not without value. After all, it does offer an 80-bit key space, known at-
tacks on which can involve up to 279 operations on average (assuming SKIPJACK isn’t reduced
from 32 rounds [12]). And, as packets with TinySec include a 4-byte message authentication
code (MAC), the probability of blind forgery is 2−32. This security comes at a cost of just
five bytes (B): whereas transmission of some 29-byte plaintext and its cyclic redundancy check
(CRC) requires a packet of 36 B, transmission of that plaintext’s ciphertext and MAC under
TinySec requires a packet of only 41 B, as the mechanism borrows TinyOS’s fields for Group
ID (TinyOS’s weak, default mechanism for access control) and CRC for its MAC, as per Figure 1.

Meanwhile, the impact of TinySec on the MICA2’s performance appears reasonable. On first
glance, it would appear that TinySec adds under 2 milliseconds (ms) to a packet’s transmission
time, as per Figure 2, and under 5 ms to a packet’s round-trip time (for packets echoed back to
their source by some neighbor), as per Figure 3. However, the apparent overhead of TinySec, as
suggested by transmission times, is nearly the data’s root mean squared. Though the round-trip
times exhibit less variance, additional benchmarks seem in order for TinySec’s accurate anal-
ysis. Figure 4, then, offers results of yet less variance from finer instrumentation of TinySec:
encryption of a 29-byte, random payload requires 2,190 µs on average, and computation of that
payload’s MAC requires 3,049 µs on average; overall, TinySec adds 5, 239± 18 µs to a packet’s
computational requirements. It appears, then, that some of those cycles can be subsumed by
delays in scheduling and medium access, at least for applications not already operating at full
duty. Figure 5, the results of an analysis of the MICA2’s maximal throughput, without and
with TinySec enabled, puts the mechanism’s computational overhead for such applications into
perspective: on average, TinySec may lower maximal throughput of acknowledged packets by
only 0.29 packets per second.

Of course, TinySec’s encryption and authentication does come at an additional cost. Per Fig-
ure 10, TinySec adds 3,352 B collectively to an application’s data and text segments, 454 B to
an application’s BSS segment, and 92 B to an application’s maximal stack size during execution.
For applications that don’t require the entirety of the MICA2’s 128 KB of program memory and
4 KB of SRAM, then, TinySec seems a viable addition.
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Unfortunately, the problem of shared keys remains. Pairwise keys among n nodes would cer-
tainly provide some defense against compromises of individual nodes. But n2 80-bit keys would
more than exhaust a node’s SRAM for n as small as 20. A more sparing use of shared keys is
in order, but secure, dynamic establishment of those keys, particularly for networks in which
the positions of sensors may be transient, requires a chain or infrastructure of trust. In fact,
the very design of TinySec requires as much for rekeying as well. Though TinySec’s 4-byte
initialization vector (IV) allows for secure transmission of some message 232 times, that bound
may be insufficient for embedded networks whose lifespans require larger IVs. Needless to say,
TinySec’s reliance on a single, shared key prohibits the mechanism from securely rekeying itself.

Fortunately, these problems of shared keys’ distribution and redistribution are redressed by
public-key infrastructure. The sections that follow thus explore that infrastructure’s design and
implementation on the MICA2.

Field Length
Destination Address 2 bytes
Active Message Type 1 byte
Group ID 1 byte
Data Length 1 byte
Data 29 bytes (max)
CRC 2 bytes
Total 36 bytes

Field Length
Destination Address 2 bytes
Active Message Type 1 byte
Data Length 1 byte
Initialization Vector 4 bytes
Encrypted Data 29 bytes (max)
MAC 4 bytes
Total 41 bytes

(a) (b)

Figure 1: (a) TinyOS packet format without TinySec; (b) TinyOS packet format with TinySec.

3 DLP and the MICA2

With the utility of SKIPJACK-based TinySec thus motivated and the mechanism’s costs ex-
posed, this work turns to DLP, on which Diffie-Hellman [22] is based, as the foundation for one
possible answer to the MICA2’s problems of shared keys’ distribution and redistribution. DLP
typically involves recovery of a x ∈ Zp, given p, g, and gx (mod p), where p is a prime integer
and g is a generator of Zp. By leveraging the presumed difficultly of DLP, Diffie-Hellman allows
two parties to agree, without prior arrangement, upon a shared secret, even in the midst of
eavesdroppers, with perfect forward secrecy, as depicted in Figure 7. Authenticated exchanges
are possible with the station-to-station protocol (STS) [23], a variant of Diffie-Hellman.

Transmission Time

without TinySec with TinySec Difference
Median 72,904 µs 74,367 µs 1,463 µs
Mean 74,844 µs 76,088 µs 1,244 µs
Standard Deviation 24,248 µs 24,645 µs n/a
Standard Error 767 µs 779 µs 1,093 µs

Figure 2: Results from 1000 trials, where transmission time is defined here as the time elapsed between
SendMsg.send(·,·,·) and SendMsg.sendDone() for the transmission of a 29-byte, random payload.
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Round-Trip Time

without TinySec with TinySec Difference
Median 145,059 µs 149,290 µs 4,231 µs
Mean 147,044 µs 152,015 µs 4,971 µs
Standard Deviation 30,736 µs 31,466 µs n/a
Standard Error 972 µs 995 µs 1,391 µs

Figure 3: Results from 1000 trials, where round-trip time is defined here as the time elapsed between
SendMsg.send(·,·,·) and ReceiveMsg.receive(·) for the transmission of a 29-byte, random payload and
subsequent receipt of the same.

Computational Overhead of TinySec

encrypt() computeMAC() Sum
Median 2,189 µs 3,038 µs 5,233 µs
Mean 2,190 µs 3,049 µs 5,239 µs
Standard Deviation 3 µs 281 µs 281 µs
Standard Error 0 µs 9 µs 9 µs

Figure 4: Results from 1000 trials, where encrypt() denotes the time required to encrypt a 29-byte,
random payload, and computeMAC() denotes the time required to compute that payload’s MAC.
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Figure 5: Actual throughput versus desired throughput for acknowledged (ACKed) and unacknowl-
edged (unACKed) transmissions between a sender and a receiver, averaged over 1000 trials per level
of desired throughput, where desired throughput is the rate at which calls to SendMsg.send(·,·,·)
were scheduled by Timer.start(·,·). ACKed actual throughput is the rate at which 29-byte, random
payloads from a sender were received and subsequently acknowledged by and an otherwise passive
recipient. UnACKed actual throughput is the rate at which the sender actually sent such packets,
acknowledged or not (i.e., the rate at which calls to SendMsg.send(·,·,·) were actually processed). For
clarity, where ACKed and unACKed throughput begins to diverge are points labelled with values for
actual throughput.
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Memory Overhead of TinySec

without TinySec with TinySec Difference
ROM 9,224 B 16,576 B 7,352 B
RAM 384 B 838 B 454 B
Stack 105 B 197 B 92 B

Figure 6: Results from instrumentation of CntToRfm, an application which simply broadcasts a
counter’s values over the MICA2’s radio. ROM is defined here as application’s data and text segments.
RAM is defined here as application’s BSS segment. Stack is defined here as the maximum of the
application’s stack size during execution.

With a form of Diffie-Hellman, then, could two nodes thus establish a shared secret for use
as TinySec’s key. At issue, though, is the cost of such establishment on the MICA2.

Inasmuch as the goal at hand is distribution of 80 bits of security, any mechanism of exchange
should provide at least as much security. According to NIST, then, the MICA2’s implementa-
tion of Diffie-Hellman should employ a modulus, p, of at least 1,024 bits and an exponent (i.e.,
private key), x, of at least 160 bits [52], per Figure 8.

Unfortunately, on an 8-bit architecture, computations with 160-bit and 1,024-bit values are not
inexpensive. However, modular exponentiation does not appear to be intractable on the MICA2.
Figure 9 offers the results of instrumentation of one implementation of Diffie-Hellman for the
MICA2 [63]: computation of 2x (mod p), where x is a 160-bit integer and p is a well-known,
768-bit prime, requires 31.0 s on average; computation of the same, where p is a well-known,
1,024-bit prime, requires 54.9 s. Assuming (generously) that nodes sharing some key need only
be rekeyed, on average, every 232 packets (at which time their initialization vectors are ex-
hausted), this computation and that for yx (mod p), where y is another node’s public key, may
be acceptable costs for an application’s longevity.

Of course, these computations require that the MICA2 operate at full duty cycle, the power
requirements of which may be unacceptable. After all, although the theoretical lifetime of the
MICA2, powered by two AA batteries, is as many as twenty years at minimal duty cycle, that
lifetime decreases to just a few days at maximal duty cycle.1 Figure 11 reveals the power
consumption of modular exponentiation on the MICA2: computation of 2x (mod p) appears to
require 1.185 J. Roughly speaking, a mote could devote its lifetime to 51,945 such computations.2

Unfortunately, these computations require not only time but also memory. Mere storage of
a public key requires as many bits as is the modulus in use. Accordingly, n 1,024-bit keys would
more than exhaust a node’s SRAM for n as small as 32. Although a node is unlikely to have—
or, at least, need—so many neighbors or certificate authorities for whom it needs public keys,
Diffie-Hellman’s relatively large key sizes are unfortunate in the MICA2’s resource-constrained
environment.

But, through elliptic curve cryptography (ECC), 80 bits of security may be available to the

1Of course, alkaline batteries would discharge of their own accord well before 20 years.
2According to [16], Energizer No. E91, an AA battery, offers an average capacity of 2,850 mAh. It follows that 2

× 2,850 mAh × 3600 s/h ÷ (7.3 mA × 54.1144 s) ≈ 51,945 modular exponentiations may be possible with two AA
batteries on the MICA2.
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Figure 7: Typical exchange of a shared key under Diffie-Hellman based on DLP. [55]

Strength of Diffie-Hellman

Bits of Security Modulus Exponent
80 1,024 160
112 2,048 224
128 3,072 256
192 7,680 384
256 15,360 512

Figure 8: Strength (i.e., bits of security) of Diffie-Hellman for various moduli and exponents. [52]

MICA2 at a lower price than 1,024 bits: 163 bits. Indeed, elliptic curves are thought to offer
computationally equivalent security with remarkably smaller key sizes insofar as subexponential
algorithms exist for DLP [9, 27, 57, 40], but no such algorithm is known or thought to exist for
ECDLP over certain fields [25, 18].

4 ECDLP and the MICA2

Elliptic curves offer an alternative foundation for the exchange of shared secrets among eaves-
droppers with perfect forward secrecy, as described in Figure 13. ECDLP, on which ECC [48, 36]
is based, typically involves recovery over some Galois (i.e., finite) field, F, of k ∈ F, given (at
least) k · G, G, and E, where G is a point on an elliptic curve, E, a smooth curve of the long
Weierstrass form

y2 + a1xy + a3y ≡ x3 + a2x
2 + a4x + a6, (1)

where ai ∈ F. Of interest to cryptographers in this context have been such fields as those
depicted in Figure 14. Of recent interest, however, are Fp and F2p , where p is prime, as nei-
ther appears vulnerable to subexponential attack [25]. Though once popular, extension fields
of composite degree over F2 are vulnerable by reduction with Weil descent [24] of ECDLP to
DLP over hyperelliptic curves [25]. But F2p , a binary extension field, remains popular among
implementations of ECC, especially those in hardware, inasmuch as it allows for particularly
space- and time-efficient algorithms. In light of its applications in coding, the field has also
received more attention in the literature than those of other characteristics [54].

It is with this history in mind that I proceeded with my first, and, later, second, implementation
of ECC over F2p toward an end of smaller public keys for the MICA2. Background for these
implementations’ designs now precedes their results.
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Figure 9: Time required to compute 2x (mod p), where p is a well-known prime, on the MICA2.

Memory Overhead of Diffie-Hellman

768-Bit Modulus 1,024-Bit Modulus
ROM 2,186 B 2,234 B
RAM 467 B 595 B
Stack 136 B 136 B

Figure 10: Results from instrumentation of an implementation of modular exponentiation on the
MICA2 which computes 2x (mod p), where x is a 512-bit integer and p is a well-known prime. ROM
is defined here as application’s data and text segments. RAM is defined here as application’s BSS
segment. Stack is defined here as the maximum of the application’s stack size during execution.
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Power Consumption of Modular Exponentiation

(a)

1,024-Bit Modulus, 160-Bit Exponent
Average Current 7.3 mA
Total Time 54.1144 s
Total CPU Utilization 3.9897× 108 cycles
Total Energy 1.185 J

(b)

Figure 11: Analyis, depicted in (a) and summarized in (b), of the power consumption of one execution
of an implementation of modular exponentiation on the MICA2 which computes 2x (mod p), where x
is a 160-bit integer and p is a well-known, 1,024-bit prime. It is the yellow waveform beneath the green
horizontal in (a) that represents the MICA2’s relative current consumption during computation.
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4.1 Elliptic Curves over F2p

It turns out that, over F2p , Equation 1 simplifies to

y2 + xy ≡ x3 + ax2 + b, (2)

where a, b ∈ F2p , upon substitution of a2
1x+ a3

a1
for x and a3

1y+ a2
1a4+a2

3
a3
1

for y, if we consider only
nonsupersingular curves, for which a1 6= 0. It is the set of solutions to Equation 2 and, more
generally, Equation 1 (i.e., the points on E), that actually provides the foundation for smaller
public keys on the MICA2. All that remains is specification of some algebraic structure over that
set. An Abelian group suffices but requires provision of some binary operator offering closure,
associativity, identity, inversion, and commutativity. As suggested by ECDLP’s definition, that
operator is to be addition.

The addition of two points on a curve, depicted in Figure 12 (albeit over R), over F2p is defined
as

(x1, y1) + (x2, y2) = (x3, y3),

where

(x3, y3) = (λ2 + λ + x1 + x2 + a, λ(x1 + x3) + x3 + y1),

where

λ = (y1 + y2)(x1 + x2)−1.

However, so that the group is Abelian, it is necessary to define a “point at infinity,” O, whereby

O +O = O,

(x, y) +O = (x, y), and
(x, y) + (x,−y) = O.

Doubling of some point, meanwhile, is defined as

(x1, y1) + (x1, y1) = (x3, y3),

where

(x3, y3) = (λ2 + λ + a, x2
1 + (λ + 1)x3),

where

λ = x1 + y1x
−1
1 ,

provided x1 6= 0.

With these primitives is point multiplication also possible [28]. With an algebraic structure
on the points of elliptic curves over F2p thus defined, implementation of a cryptosystem is now
possible.
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4.2 ECC over F2p

Implementation of ECC over F2p first requires a choice of basis for points’ representation, insofar
as each a ∈ F2p can be written as

a =
m−1∑

i=0

aiαi,

where ai ∈ {0, 1}. Thus defined, a can be represented as a binary vector, {a0, a1, . . . , ap−1},
where {α0, α1, . . . , αp−1} is its basis over F2. Most common for bases over F2 are polynomial
bases and normal bases, whereby the former tends to be more efficient in software [11], though
dual, triangular, and other bases exist. Admittedly, polynomial bases are also simpler concep-
tually and, thus, daresay, an apt choice for a first implementation of ECC on the MICA2.

When represented with a polynomial basis, each a ∈ F2p corresponds to a binary polynomial of
degree less than p, whereby

a = ap−1x
p−1 + ap−2x

p−2 + · · ·+ a0x
0,

where, again, ai ∈ {0, 1}. Accordingly, each a ∈ F2p will be represented in the MICA2’s SRAM
as a bit string, ap−1ap−2 · · · a0. All operations on these elements are performed modulo an irre-
ducible reduction polynomial, f , of degree p over F2, such that f(x) = xp +

∑p−1
i=0 fixi, where

fi ∈ {0, 1} for i ∈ {0, 1, . . . , p − 1}. Typically, if an irreducible trinomial, xp + xk + 1, exists
over F2p , then f(x) is chosen to be that with smallest k; if no such trinomial exists, then f(x)
is chosen to b a pentanomial, xp + xk3 + xk2 + xk1 + 1, such that k1 is minimal, k2 is minimal
given k1, and k3 is minimal given k1 and k2 [43].

In polynomial basis, addition of two elements, a and b is defined as a+ b = c, where ci ≡ ai + bi

(mod 2) (i.e., a sequence of XORs). Multiplication of a and b, meanwhile, is defined as a · b = c,
where c(x) ≡ (

∑p−1
i=0 aix

i)(
∑p−1

i=0 bix
i) (mod f(x)).

With a polynomial basis selected, all that remains is execution of this design on the MICA2.

4.3 EccM 1.0

Version 1.0 of EccM, my first attempt at an implementation of ECC on the MICA2 in the form
of a TinyOS module, is a partial success. Designed for execution on a single mote, this version
of EccM first selects a random curve in the form of Equation 2, such that a = 0 and b ∈ F2p . It
next selects from that curve a random point, G ∈ F2p × F2p . It further selects at random some
k ∈ F2p , the node’s private key. Finally, it computes k ·G, the node’s public key. The running
time of these operations is then transmitted to the node’s UART.

Based upon code by Michael Rosing [58], EccM 1.0 employs a number of optimizations. Ad-
dition of points is implemented in accordance with [59]; multiplication of points follows [37];
conversion of integers to non-adjacent form is accomplished as in [62]. Generation of pseudo-
random numbers, meanwhile, is achieved with [45].

On first glance, the results, offered in Figure 15, are encouraging, with 33-bit keys requiring
a running time of just 1.776 s. Unfortunately, for larger keys (e.g., 63-bit), the module fails to
produce results, instead causing the mote to reset cyclically. Though this behavior appears to
be undocumented [19], it seems the result of stack overflow. Although none of EccM’s functions
are recursive, several utilize a good deal of memory for multi-word arithmetic. In fact, Figure
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16 offers the results of an analysis of EccM 1.0’s usage of SRAM. Unfortunately, for keys of 63
bits or more, EccM 1.0 exhausts the MICA2’s SRAM.

Insofar as optimizations of EccM 1.0 fail to render generation of 63-bit keys possible, an overhaul
of this first implementation proves necessary. With EccM 2.0 do I achieve my goal of 163-bit
security.

4.4 EccM 2.0

Based upon the design of Dragongate Technologies Limited’s Java-based jBorZoi 0.9 [42], EccM 2.0
similarly implements ECC but with greater success than EccM 1.0. Again a TinyOS module,
EccM 2.0 selects for a node at random, using a polynomial basis over F2p , a private key, there-
after computing with a curve and base point recommended by NIST the node’s public key, the
running time of which is then transmitted to the node’s UART. In this version, multiplication
of points is achieved with Algorithm IV.1 in [13]. Multiplication of elements in F2p , meanwhile,
is implemented as Algorithm 2 in [32], while inversion is implemented as Algorithm 8 in the same.

Beyond rendering 163-bit keys feasible, EccM 2.0 also redresses another shortcoming in EccM
1.0. Inasmuch as 1.0 selects curves at random, it risks (albeit with exponentially small probabil-
ity) selection of supersingular curves which are vulnerable to sub-exponential attack via MOV
reduction [46] with index-calculus methods [60]. EccM 2.0 thus obeys NIST’s recommendation
for ECC over F2p [51], selecting, for the results herein,

f(x) = x163 + x7 + x6 + x3 + 1

for the reduction polynomial,

y2 + xy ≡ x3 + x2 + 2982236234343851336267446656627785008148015875581

for the curve, E, the order of (i.e., number of points on) which is

5846006549323611672814742442876390689256843201587,

and, for the point G = (Gx, Gy),

Gx = 5759917430716753942228907521556834309477856722486 and
Gy = 1216722771297916786238928618659324865903148082417.

Unfortunately, although EccM 2.0 employs much less memory than does EccM 1.0, per Figure
17, its running time is disappointing. The time required to generate a private and public key pair
with this module, averaged over 100 trials, is 466.9 s, with a standard deviation of 16.1 s. Such
performance is likely unacceptable for most applications. Moreover, the module’s consumption
of power is significant, as per Figure 18: generation of the node’s private key requires approxi-
mately 5.7 mJ, and computation of the node’s public key requires approximately 12.6402 J. In
contrast with its calculation of 2x (mod p), it appears the MICA2 could devote its lifetime to,
approximately, just 4,868 of these computations.3

With ECC thus implemented on the MICA2 in EccM 2.0, future work nonetheless remains,
the most obvious of which is reduction of this implementation’s running time.

3This estimate follows from 2 × 2,850 mAh × 3600 s/h ÷ (8.8 mA × 216.597 ms + 8.5 mA × 495.70 s) ≈ 4,868.
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Figure 12: A representative elliptic curve (albeit of insufficient order for actual cryptography) upon
which addition of a + b = c is depicted. [1]

Figure 13: Typical exchange of a shared secret under Diffie-Hellman based on ECDLP.

Figure 14: Finite fields proposed for use in public-key schemes. [54]
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Figure 15: Running time for EccM 1.0, a TinyOS module which selects for a node at random, using a
polynomial basis over F2p , a curve, a point, and a private key, thereafter computing the node’s public
key, the running time of which is then transmitted to the node’s UART. Points are labelled with
running times. For larger keys (e.g., 63-bit), the module failed to produce results.
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during execution. Keys of 63 bits or more exhaust the MICA2’s 4,096 KB of SRAM.
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Memory Usage of EccM 2.0

163-Bit Key
ROM 43,286 B
RAM 820 B
Stack 81 B

Figure 17: Analyis of EccM 2.0, a TinyOS module which selects for a node at random, using a poly-
nomial basis over F2p , a private key, thereafter computing with a curve and base point recommended
by NIST the node’s public key, the running time of which is then transmitted to the node’s UART.
RAM is defined here as application’s BSS segment. Stack is defined here as the maximum of the
application’s stack size during execution.

Power Consumption of EccM 2.0

(a) (b)

Private-Key Generation Public-Key Generation
Average Current 8.8 mA 8.5 mA
Total Time 216.597 ms 495.70 s
Total CPU Utilization 1.597× 106 cycles 3.65× 109 cycles
Total Energy 5.7 mJ 12.6402 J

(c)

Figure 18: Analyis, depicted in (a) and (b) and summarized in (c), of the power consumption during
one execution of EccM 2.0, a TinyOS module which selects for a node at random, using a polynomial
basis over F2p , a private key, thereafter computing with a curve and base point recommended by NIST
the node’s public key, the running time of which is then transmitted to the node’s UART. It is the
yellow waveform beneath the green horizontal in (a) that represents the MICA2’s relative current
consumption during generation of its private key; it is the same in (b) that represents the MICA2’s
relative current consumption during computation of its public key.
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5 Future Work

Most gratifying is 163-bit ECC’s actual execution on the MICA2, but this work is but the foun-
dation for what will hopefully become TinyCrypt, a cryptographic library for the MICA2 with
support for symmetric and asymmetric keys alike.

EccM 3.0 will incorporate a number of optimizations into the source of EccM 2.0. Perhaps
of greatest benefit will be 3.0’s version’s re-write in AVR assembly of 2.0’s multi-precision arith-
metic routines, to which many of the module’s other functions ultimately reduce. Like C, NesC
hides hardware’s carry bits and overflow flags and impedes particularly efficient execution of
multi-word additions, multiplications, and shifts, all of which are crucial to ECC’s performance.

Although EccM 1.0 and 2.0 already incorporate a number of published algorithms, I will return
to the literature for alternatives for 3.0’s design.

And, perhaps more drastically, I will consider a normal basis for 3.0’s arithmetic, the advan-
tage of which is its implementation using only ANDs, XORs, and cyclic shifts, beneficiaries of
which are multiplication and squaring. (For this reason do normal bases tend to be popular
in implementations of ECC in hardware.) In this basis, every element a ∈ F2p can be written
as a =

∑p−1
i=0 aiβ

2i

, where ai ∈ {0, 1}. Thus defined, each such a can be represented as a bi-
nary vector, {a0, a1, . . . , ap−1}, where {β, β2, . . . , β2p−1} is its basis over F2. Accordingly, each
a ∈ F2p can be represented in the MICA2’s SRAM as a bit string, a0a1 · · · ap−1.

Of value to 3.0 as well might be a hybrid of polynomial and normal bases, as such is thought to
leverage advantages of each simultaneously [58].

Of course, I could reconsider 3.0’s choice of fields, opting instead to implement ECC over Fp.
In fact, implementation of ECC over Fp is relatively straightforward, as Equation 1 simplifies
over prime fields to

y2 ≡ x3 + ax + b, (3)

where a, b ∈ Fp and −(4a3 +27b2) 6= 0, upon substituting x− a2
3 for x and y− a1x+a3

2 for y [53].
Addition of two points, (x1, y1) and (x2, y2), is defined as

(x1, y1) + (x2, y2) = (x3, y3),

where

(x3, y3) = (λ2 − x1 − x2, λ(x1 − x3)− y1)

where

λ = (y2 − y1)(x2 − x1)−1,

provided x1 6= x2. Again, so that the points of the curve form an Abelian group, O is defined
as before. And doubling of some point, (x1, y1), is defined is

(x1, y1) + (x1, y1) = (x3, y3),

where

(x3, y3) = (λ2 − 2x1, λ(x1 − x3)− y1),
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Recommendations for ECC

Length of Shared Key Recommended ||p|| for Fp Recommended p for F2p

80 192 163
112 224 233
128 256 283
192 384 409
256 521 571

Figure 19: Recommended lengths (in bits) of private keys for ECC for exchange of shared keys of
various lengths (in bits). [51]

where

λ = (3x2
1 + a)(2y1)−1,

provided x1 6= 0. Unfortunately, inversion, as in the above, is not inexpensive. But the opera-
tion can be avoided through use of projective (as opposed to affine) coordinates [29]. Although
relatively efficient algorithms exist for modular reduction (e.g., those of Montogomery [49] or
Barrett [10]), selection of a generalized Mersene number for p would also allow modular reduc-
tion to be executed as a more efficient sequence of three additions (mod p) [61].

Contingent on its optimization, EccM 3.0 might incorporate support for larger keys, partic-
ularly those sizes in Figure 19 recommended by NIST, as well as pseudorandom generation of
curves and base points in lieu of its reliance on NIST’s samples.

If a success, EccM 3.0 will provide the foundation for TinyCrypt 1.0’s distribution and re-
distribution of keys.

6 Related Work

Studied by mathematicians for more than a century, elliptic curves claim significant coverage in
the literature. Similarly has ECC received much attention since its discovery in 1985.

Of particular relevance to this work is Woodbury’s recommendation of an optimal extension
field, F(28−17)17 , for low-end, 8-bit processors [66]. Jung et al. propose supplementary hardware
for AVR implementing operations over binary fields [35]. Handschuh and Paillier propose cryp-
tographic coprocessors for smart cards [31], whereas Woodbury et al. describe ECC for smart
cards without coprocessors [67]. Albeit for a different target, Hasegawa et al. provide a “small
and fast” implementation of ECC in software over Fp for a 16-bit microcomputer [33]. Guajardo
et al. describe an implementation of ECC for the 16-bit TI MSP430x33x family of microcon-
trollers [30]. Weimerskirch et al., meanwhile, offer an implementation of ECC for Palm OS [65],
and Brown et al. offer the same for Research In Motion’s RIM pager [14]. ZigBee, on the other
hand, shares this work’s aim of wireless security for sensor networks albeit not with ECC but
with AES-128 [7].

Meanwhile, recommendations for ECC’s parameters abound, among academics [41], among
corporations [20], and within government [51, 47].

A number of implementations of ECC in software are freely available, though none are par-
ticularly well-suited for the MICA2, in no small part due to their memory requirements. Ros-
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ing [58] offers his C-based implementation of ECC over F2p with both polynomial and normal
bases. ECC-LIB [68] and pegwit [4] offer their own C-based implementations over F2p with
polynomial bases. MIRACL [44] provides the same, with an additional option for curves over
Fp. LibTomCrypt [21], also in C, focuses on Fp. Dragongate Technologies Limited, meanwhile,
offers borZoi and jBorZoi [42], implementations of ECC over F2p with polynomial bases in C++
and Java, respectively. Another implementation in C++, also using a polynomial basis over
F2p , is available through libecc [2].

Testament to current interest in ECC, the Workshop on Elliptic Curve Cryptography is now in
its eighth year.

7 Conclusion

Despite claims to the contrary, public-key infrastructure appears viable on the MICA2. Although
the implementations, studied herein, of modular exponentiation and ECC in 4 KB of primary
memory on this 8-bit, 7.3828-MHz device require improvement, this work’s initial results are
promising indeed. AVR assembly alone offers significant potential for ECC’s enhancement.

The need for PKI’s success on the MICA2 seems clear. TinySec’s shared keys do allow for
efficient, secure communications among nodes. But such devices as those in sensor networks, for
which physical security is unlikely, require some mechanism for those shared keys’ distribution
and redistribution.

In that it offers equivalent security at lower cost to memory and bandwidth than does Diffie-
Hellman based on DLP, public-key infrastructure based on elliptic curves does seem an apt
choice for the MICA2. Ahead now is pursuit of this cryptosystem’s minimal cost in cycles and
power.
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