Groups in Cryptography

Groups in Cryptography

- A set S and a binary operation \oplus
- A group $G = (S, \oplus)$ if S and \oplus satisfy:
 - Closure: If $a, b \in S$ then $a \oplus b \in S$
 - Associativity: For $a, b, c \in S$, $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 - A neutral element: $e \in S$ such that $a \oplus e = e \oplus a = a$
 - Every element $a \in S$ has an inverse $inv(a) \in S$:

$$a \oplus \operatorname{inv}(a) = \operatorname{inv}(a) \oplus a = e$$

- Commutativity: If a ⊕ b = b ⊕ a, then the group G is called an a commutative group or an Abelian group
- In cryptography we deal with Abelian groups

Multiplicative Groups

- The operation \oplus is a multiplication
- The neutral element is generally called the unit element e = 1
- Multiplication of an element k times by itself is denoted as

$$a^k = \overbrace{a \cdot a \cdots a}^{k \text{ copies}}$$

- The inverse of an element a is denoted as a^{-1}
- Example: $(\mathcal{Z}_n^*, * \mod n)$
- The operation * is multiplication mod n
- If *n* is prime, $Z_n^* = \{1, 2, ..., n-1\}$
- If n is not a prime, Z_n^* consists of elements a with gcd(a, n) = 1
- In other words, Z_n^* is the set of invertible elements mod n

Multiplicative Group Examples

• Consider the multiplication tables for mod 5 and mod 6

* mod 5	1	2	2	Л	* mod 6	1	2	3	4	5	
					1	1	2	3	4	5	
1	1	2	3	4							
2	2	Δ	1	3		2					
					3	3	0	3	0	3	
3	3	1	4	2		4					
4	4	3	2	1							
•	•	5	-	-	5	5	4	3	2	1	

• mod 5 multiplication on the set $\mathcal{Z}_5 = \{1,2,3,4\}$ forms the group \mathcal{Z}_5^*

- mod 6 multiplication on the set Z₆ = {1,2,3,4,5} does not form a group since 2, 3 and 4 are not invertible
- However, mod 6 multiplication on the set of invertible elements forms a group: (Z^{*}₆, * mod 6) = ({1,5}, * mod 6)

Additive Groups

- The operation \oplus is an addition
- The neutral element is generally called the zero element e = 0
- Addition of an element a k times by itself, denoted as

$$[k] a = \overbrace{a + \cdots + a}^{k \text{ copies}}$$

- The inverse of an element a is denoted as −a
- Example: (Z_n, + mod n) is a group; the set is
 Z_n = {0, 1, 2, ..., n − 1} and the operation is addition mod n

Additive Group Examples

Consider the addition tables mod 4 and mod 5

+ mod 4		1	c	2	$+ \mod 5$	0	1	2	3	4
					0	0	1	2	3	4
0	0	1	2	3						
					1	1	2	3	4	0
1	1	2	3	0						
•		2	~	-	2	2	3	4	0	T
2	2	3	0	T	2	2	4	0	1	0
2	3	Δ	1	2	5	3	4	U	T	2
5	5	0	Т	2	Λ	Λ	Ω	1	2	3
					4	4	0	т	2	5

• mod 4 addition on $\mathcal{Z}_4 = \{0, 1, 2, 3\}$ forms the group $(\mathcal{Z}_4, + \mod 4)$ • mod 5 addition on $\mathcal{Z}_5 = \{0, 1, 2, 3, 4\}$ forms the group $(\mathcal{Z}_5, + \mod 5)$

Order of a Group

- The order of a group is the number of elements in the set
- The order of (Z_{11}^* , * mod 11) is 10, since the set Z_{11}^* has 10 elements: {1,2,...,10}
- The order of group $(\mathcal{Z}_p^*, * \mod p)$ is equal to p-1
- Note that, since p is prime, the group order p-1 is not prime
- The order of $(Z_{11}, + \mod 11)$ is 11, since the set Z_{11} has 11 elements: $\{0, 1, 2, \dots, 10\}$
- The order of $(\mathcal{Z}_n, + \mod n)$ is n, since the set \mathcal{Z}_n has n elements: $\{0, 1, 2, \dots, n-1\}$; here n could be prime or composite

Order of an Element

The order of an element a in a multiplicative group is the smallest integer k such that a^k = 1, where 1 is the unit element of the group
order(3) = 5 in (Z^{*}₁₁, * mod 11) since

{ 3^{*i*} mod 11 | 1 ≤ *i* ≤ 10} = {3,9,5,4,1}

• order(2) = 10 in
$$(\mathcal{Z}_{11}^*, * \mod 11)$$
 since

{ $2^i \mod 11 \mid 1 \le i \le 10$ } = {2,4,8,5,10,9,7,3,6,1}

• Note that order(1) = 1

Order of an Element

- The order of an element *a* in an additive group is the smallest integer *k* such that [k] a = 0, where 0 is the zero element
- order(3) in (Z₁₁, + mod 11) is computed by finding the smallest k such that [k] 3 = 0
- This is obtained by successively computing

 $3 = 3, 3 + 3 = 6, 3 + 3 + 3 = 9, 3 + 3 + 3 + 3 = 1, \cdots$

until we obtain the zero element

• We find order(3) = 11 in $(\mathcal{Z}_{11}, + \mod 11)$

{ [*i*] 3 mod 11 | $1 \le i \le 11$ } = {3,6,9,1,4,7,10,2,5,8,0}

• Note that order(0) = 1

Lagrange's Theorem

Theorem

The order of an element divides the order of the group.

- The order of the group $(Z_{11}^*, * \mod 11)$ is equal to 10, while order(3) = 5 in $(Z_{11}^*, * \mod 11)$, and 5 divides 10
- $\operatorname{order}(2) = 10$ in $(\mathcal{Z}_{11}^*, * \mod 11)$, and 10 divides 10
- Similarly, order(1) = 1 in $(\mathcal{Z}_{11}^*, * \mod 11)$, and 1 divides 10
- Since the divisors of 10 are 1, 2, 5, and 10, the element orders can only be 1, 2, 5, or 10

Lagrange Theorem

- On the other hand, $\operatorname{order}(3) = 11$ in $(\mathcal{Z}_{11}, + \operatorname{mod} 11)$, and 11|11
- Similarly, order(2) = 11 in $(\mathcal{Z}_{11}, + \mod 11)$
- We also found order(0)=1
- The order of the group $(\mathcal{Z}_{11}, + \text{ mod } 11)$ is 11
- Since 11 is a prime number, the order of any element in this group can be either 1 or 11
- $\bullet~0$ is the only element in $(\mathcal{Z}_{11},+\mbox{ mod }11)$ whose order is 1
- All other elements have the same order 11 which is the group order

Primitive Elements

- An element whose order is equal to the group order is called primitive
- The order of the group $(Z_{11}^*, * \mod 11)$ is 10 and order(2) = 10, therefore, 2 is a primitive element of the group
- order(2) = 11 and order(3) = 11 in (Z₁₁, + mod 11), which is the order of the group, therefore 2 and 3 are both primitive elements in fact all elements of (Z₁₁, + mod 11) are primitive except 0

Theorem

The number of primitive elements in $(\mathcal{Z}_{p}^{*}, * \mod p)$ is $\phi(p-1)$.

- There are $\phi(10) = 4$ primitive elements in $(\mathcal{Z}_{11}^*, * \mod 11)$,
- The primitive elements are: 2, 6, 7, 8
- All of these elements are of order 10

Cyclic Groups and Generators

- We call a group **cyclic** if all elements of the group can be generated by repeated application of the group operation on **a single element**
- This element is called a generator
- Any primitive element is a generator
- For example, 2 is a generator of $(\mathcal{Z}_{11}^*, * \mod 11)$ since

$$\{2^i \mid 1 \le i \le 10\} = \{2, 4, 8, 5, 10, 9, 7, 3, 6, 1\} = \mathcal{Z}_{11}^*$$

• Also, 2 is a generator of $(\mathcal{Z}_{11}, + \mod 11)$ since

 $\{ \ [i] \ 2 \ \mathsf{mod} \ 11 \ | \ 1 \leq i \leq 11 \} = \{2, 4, 6, 8, 10, 1, 3, 5, 7, 9, 0\} = \mathcal{Z}_{11}$