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Elliptic Curves

An elliptic curve is the solution set of a nonsingular cubic polynomial
equation in two unknowns over a field F

E = {(x , y) ∈ F × F | f (x , y) = 0}

The general equation of a cubic in two variables is given by

ax3 + by3 + cx2y + dxy2 + ex2 + fy2 + gxy + hx + iy + j = 0

The short forms of elliptic curves over finite fields are useful in
cryptography
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Elliptic Curves

The short Weierstrass elliptic curves are given as

y2 = x3 + ax + b

where the characteristic of the field is not 2 or 3

The Edwards and Montgomery are also useful in cryptography

The Edwards curves are given as

x2 + y2 = 1 + dx2y2

where d is not a square in the field

The general form of a Montgomery curve is

by2 = x3 + ax2 + x

where b 6= ±2 and a 6= 0
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Weierstrass Elliptic Curves over R

The field in which this equation solved can be an infinite field, such
as C (complex numbers), R (real numbers), or Q (rational numbers)

The point at infinity defined with the pair (x , y) as

lim
x→∞

y =∞

and denoted as O
O is also considered a solution of the equation

The elliptic curves over R for different values of a and b make
continuous curves on the plane, which have either one or two parts
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Weierstrass Elliptic Curves over R
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Weierstrass Elliptic Curves over R

∆ = 4a3 + 27b2 is called the discriminant

When ∆ = 0, the curve becomes singular

∆ = 419 > 0 for a = −4 and b = 5 (red, smooth)

∆ = −229 < 0 for a = −4 and b = 1 (blue, smooth)

∆ = 0 for a = −4 and
√

256/27 = 3.079201 (green, singular)
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Singular vs Smooth Curves over R

∆ = 0 makes singular curves while ∆ 6= 0 makes smooth curves
Elliptic curves: singular vs. smooth

In E/K : y2 = x3 + ax + b, we need 4a3 + 27b2 6= 0 in K , or
else things don’t go “smoothly”

•

Singular curve
y2 = x3 − 3x + 2
over R.

•

Singular curve
y2 = x3

over R.

Smooth curve
y2 = x3+x+1
over R.

Smooth curve
y2 = x3 − x
over R.
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Singular curve Singular curve Smooth curve Smooth curve
y2 = x3 − 3x + 2 y2 = x3 y2 = x3 + x + 1 y2 = x3 − x

over R over R over R over R
∆ = 0 ∆ = 0 ∆ = 31 ∆ = −4
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Weierstrass Elliptic Curves over R

-4 -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 4

-5

-4

-3

-2

-1

1

2

3

4

5
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Bezout Theorem

Theorem

A line that intersects an elliptic curve at 2 points crosses at a third point.

Consider the elliptic curve and the linear equation together:

y2 = x3 + ax + b

y = cx + d

Substituting y from the second equation to the first one, we obtain a
cubic equation in x

(cx + d)2 = x3 + ax + b
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Elliptic Curve Chord

This is simplified as

x3 − c2x2 + (a− 2cd)x + (b − d2) = 0

This is a cubic equation in x with real coefficients

A cubic equation with real coefficients has either:

1 real and 2 complex (conjugate) roots, or
3 real roots

Since we already have 2 real points on the curve (2 real roots), the
third point must be real too
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Elliptic Curve Chord with Line y = x

For example, by solving y2 = x3 − 4x with the linear equation y = x
together, we find x3 − 4x = x2, and thus

x(x2 − x − 4) = 0

This equation has 3 solutions: x = 0, x = 1−
√
17

2 , and x = 1+
√
17

2

By evaluating the elliptic curve equation y2 = x3 − 4x at these x
values, we find the solution points as(

1
2
(1−
√
17),

√
1
2
(9−
√
17)

)
, (0, 0),

(
1
2
(1+
√
17),

√
1
2
(9+
√
17)

)

Approximate values of the points are

(−1.56155,−1.56155), (0, 0), (2.56155, 2.56155)
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Elliptic Curve Chord with Line y = x

This graph shows the elliptic curve equation y2 = x3 − 4x

The line y = x intersects the curve at 3 points
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Elliptic Curve Chord with Line y = 1

By solving y2 = x3 − 4x with the linear equation y = 1 together, we
find x3 − 4x = 1, and thus x3 − 4x − 1 = 0

This equation in x has 3 real solutions and their approximate values
are x = −1.86081, x = −0.254102, and x = 2.11491

Approximate values of the points are

(−1.86081, 1), (−0.254102, 1), (2.11491, 1)
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Elliptic Curve Chord with Line y = 4/(27)1/4 = 1.75477

By solving y2 = x3 − 4x with the linear equation y = 4/(27)1/4

together, we obtain x3 − 4x − 16/
√

27 = 0

This equation in x has 2 repeated solutions and 1 other solution as
−2/
√

3, −2/
√

3, and 4/
√

3

Their approximate values of the points are

(−1.1547, 1.75477), (−1.1547, 1.75477), (2.3094, 1.75477)
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Elliptic Curve Chord with Line x = −1/2

By solving y2 = x3 − 4x with the linear equation x = −1/2 together,
we obtain y2 = −1/8 + 2 = 15/8

Solving for y , we find ONLY two points

(−1/2,−
√

15/8), (−1/2,
√

15/8)

The third point is the point at infinity O
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Elliptic Curve Chord and Tangent
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Weierstrass Curve Chord-and-Tangent Rule

The Weierstrass curves has a chord-and-tangent rule for adding two
points on the curve to get a third point

Together with this addition rule, the set of points on the curve forms
an Abelian additive group in which the point at infinity is the zero
element of the group

The point at infinity, denoted as O is also a solution of the
Weierstrass equation y2 = x3 + ax + b

The best way to explain the addition rule is to use geometry over R
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http://koclab.org


ECC Fundamentals EC Groups, EC Arithmetic

Weierstrass Curve Point Addition

Q1 �Q1 = Q3

P3

�P3

P1 � P2 = P3
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Weierstrass Curve Point Addition

The “point addition” is a geometric operation: a linear line that
connects P1 and P2 also crosses the elliptic curve at a third point,
which we name it as −P3

−P3 = (x3,−y3) is the mirror image (with respect to the x axis) of P3

−P3 is also called the negative of P3

The new “sum” point P3 = P1 ⊕ P2

The point at infinity O acts as the neutral (zero) element

P ⊕O = O ⊕ P = P

P ⊕ (−P) = (−P)⊕ P = O
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Weierstrass Curve Point Addition

The addition rule for P3 = P1 ⊕ P2 can be algebraically obtained by
first computing the slope m of the straight line that connects
P1 = (x1, y1) and P2 = (x2, y2) using

m =
y2 − y1
x2 − x1

In the case of doubling Q3 = Q1 ⊕ Q1 = (x1, y1)⊕ (x1, y1), the slope
m of the linear line is equal to the derivative of the elliptic curve
equation y2 = x3 + ax + b evaluated at point (x1, y1) as

2yy ′ = 3x2 + a → y ′ =
3x21 + a

2y1
= m

Once the slope m is obtained, the linear equation can be written, and
solved together with the elliptic curve equation to find x3 and y3
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Weierstrass Curve Point Addition

Since the slope is m, and the linear line goes through (x1, y1), its
equation would be of the form

y − y1 = m(x − x1)

Therefore, the new coordinates of new point (x3, y3) can be obtained
by solving these two equations together

y2 = x3 + ax + b

y = m(x − x1) + y1

This gives

x3 = m2 − x1 − x2

y3 = m (x1 − x3)− y1
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Weierstrass Curve Addition P3 = P1 ⊕ P2

If P1 = O, then P3 = O ⊕ P2 = P2

If P2 = O, then P3 = P1 ⊕O = P1

If P2 = −P1, then P3 = P1 ⊕ (−P1) = O
Otherwise, first compute the slope using

m =


y2−y1
x2−x1 for x1 6= x2

3x21+a
2y1

for x1 = x2 and y1 = y2

Then, (x3, y3) is computed using

x3 = m2 − x1 − x2

y3 = m (x1 − x3)− y1
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Elliptic Curves over Finite Fields

The field in which the Weierstrass equation solved can also be a finite
field, which is of interest in cryptography

We have 3 types of finite fields:

Characteristic p: GF(p)
Characteristic 2: GF(2k)
Characteristic p: GF(pk)

The elliptic curves over GF(p) and GF(2k) are more common and
standardized by the NIST and other standard organizations
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Elliptic Curves over GF(p)

In GF(p) for a prime p 6= 2, 3, we can use the Weierstrass equation

y2 = x3 + ax + b

with the understanding that the solution of this equation and all field
operations are performed in the finite field GF(p)

We will denote this group by E(a, b, p)

For example, the elliptic curve group E(1, 1, 23) is the set of solutions
(x , y) of the equation y2 = x3 + x + 1 over the finite field GF(23)
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An Elliptic Curve over GF(23)

Since the group is small, we call obtain all elements of the group by
solving the equation in GF(23) for all values of x ∈ Z∗23
As we give a particular value for x , we obtain a quadratic equation
such as y2 = z (mod 23)

The solution of this quadratic equation gives the values y and −y ,
implying the pair (x , y) and (x ,−y) are on the curve

When (x , y) is a solution, so must (x ,−y) be, because y2 = (−y)2

The Weierstrass elliptic curve is symmetric with respect to the x axis
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Elliptic Curves over GF(p)

Assigning a particular value of x ∈ GF(23) in the right hand side of
equation z = x3 + ax + b, we solve for the quadratic equation

y2 = z (mod p)

in order to obtain the point (x , y) in the elliptic curve

The computation of y is called Discrete Square Root computation
for which polynomial algorithms exist for any prime p

Since p = 23 is small, we can solve such equations using enumeration

Starting with x = 0, we get y2 = 1 (mod 23) which immediately
gives two solutions as (0, 1) and (0,−1) = (0, 22)
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An Elliptic Curve over GF(23)

For x = 1, we obtain y2 = 13 + 1 + 1 = 3 (mod 23)

As we observed, this is a quadratic equation, and thus, the solution
depends on whether 3 is a square mod 23

We can discover all squares mod 23 by enumeration

y2 : 0 1 2 3 4 5 6 7 8 9 10 11
y : 0 1 5 7 2 11 10 3

y2 : 12 13 14 15 16 17 18 19 20 21 22
y : 9 6 4 8

The table shows that the solution of y2 = 3 (mod 23) is y = 7

Therefore, we get two points: (1, 7) and (1,−7) = (1, 16)
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An Elliptic Curve over GF(23)

For x = 2, we obtain y2 = 23 + 2 + 1 = 11 (mod 23)

However, 11 is not a square, as our table shows

There is no solution for y2 = 11 (mod 23)

This elliptic curve does not have a point whose x coordinate is 2

For x = 3, we have y2 = 33 + 3 + 1 = 31 = 8 (mod 23)

The table shows that the solution of y2 = 8 (mod 23) is y = 10

Therefore, we get two points: (1, 10) and (1,−10) = (1, 13)
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An Elliptic Curve over GF(23)

For x = 4, we have y2 = 43 + 4 + 1 = 69 = 0 (mod 23)

The solution of y2 = 0 (mod 23) is y = 0

There is only one solution since y = −y = 0

Therefore, we get one point: (4, 0)
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An Elliptic Curve over GF(23)

Proceeding for the other values of x ∈ Z∗23, we find all 27 solutions:

(0, 1) (0, 22) (1, 7) (1, 16)
(3, 10) (3, 13) (4, 0)
(5, 4) (5, 19) (6, 4) (6, 19)
(7, 11) (7, 12) (9, 7) (9, 16)
(11, 3) (11, 20) (12, 4) (12, 19)
(13, 7) (13, 16) (17, 3) (17, 20)
(18, 3) (18, 20) (19, 5) (19, 18)

The solutions come in pairs (x , y) and (x ,−y)

Except one of them is alone: (4, 0)
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An Elliptic Curve over GF(23)
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y^2 = x^3 + x + 1
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Elliptic Curve Point Addition over GF(23)

Given P1 = (3, 10) and P2 = (9, 7), compute P3 = P1 ⊕ P2

Since x1 6= x2, we use the first formula for m

m = (y2 − y1) · (x2 − x1)−1 (mod 23)

= (7− 10) · (9− 3)−1 (mod 23)

= (−3) · 6−1 (mod 23)

= 20 · 4 (mod 23)

= 80 (mod 23)

= 11
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Elliptic Curve Point Addition over GF(23)

We use the value of m = 11 to compute x3 and y3

x3 = m2 − x1 − x2 (mod 23)

= 112 − 3− 9 (mod 23)

= 17 (mod 23)

y3 = m (x1 − x3)− y1 (mod 23)

= 11 · (3− 17)− 10 (mod 23)

= 20 (mod 23)

Therefore, we obtain (x3, y3) = (3, 10)⊕ (9, 7) = (17, 20)

Question: Is the geometry of point addition still valid?
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Elliptic Curve Point Addition over GF(23)
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(3,10) + (9,7) = (17,20)
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Elliptic Curve Point Doubling over GF(23)

Given P1 = (3, 10), compute P3 = P1 ⊕ P1

Since x1 = x2 and y1 = y2, we use the second formula for m

m = (3x21 + a) · (2y1)−1 (mod 23)

= (3 · 32 + 1) · (20)−1 (mod 23)

= 28 · 15 (mod 23)

= 5 · 15 (mod 23)

= 75 (mod 23)

= 6
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Elliptic Curve Point Doubling over GF(23)

We use the value of m = 6 to compute x3 and y3

x3 = m2 − x1 − x2 (mod 23)

= 62 − 3− 3 (mod 23)

= 7

y3 = m (x1 − x3)− y1 (mod 23)

= 6 · (3− 7)− 10 (mod 23)

= 12

Thus, we have (x3, y3) = (3, 10)⊕ (3, 10) = (7, 12)

Question: Is the geometry of point doubling still valid?
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Elliptic Curve Point Doubling over GF(23)
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Elliptic Curve Point Multiplication

The elliptic curve point multiplication operation takes an integer k
and a point on the curve P, and computes

[k]P =

k terms︷ ︸︸ ︷
P ⊕ P ⊕ · · · ⊕ P

This can be accomplished with the binary method, using the binary
expansion of the integer k = (km−1 · · · k1k0)2

For example [17]P is computed using the addition chain

P
d→ [2]P

d→ [4]P
d→ [8]P

d→ [16]P
a→ [17]P

The symbol
d→ stands for doubling, such as [2]P ⊕ [2]P = [4]P

The symbol
a→ stands for addition, such as P ⊕ [16]P = [17]P
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Number of Points on an Elliptic Curve

Our elliptic curve group E(1, 1, 23) had the following elements:

(0, 1) (0, 22) (1, 7) (1, 16)
(3, 10) (3, 13) (4, 0)
(5, 4) (5, 19) (6, 4) (6, 19)
(7, 11) (7, 12) (9, 7) (9, 16)
(11, 3) (11, 20) (12, 4) (12, 19)
(13, 7) (13, 16) (17, 3) (17, 20)
(18, 3) (18, 20) (19, 5) (19, 18)

There are 27 points in the above list

The elliptic curve group E(1, 1, 23) has 27 + 1 = 28 elements,
including the point at infinity O
The order of the elliptic curve group E(1, 1, 23) is 28
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Order of Elliptic Curve Groups

The order of E(a, b, p) is always less than 2p + 1

The finite field has p elements, and we solve the equation

y2 = x3 + ax + b

for values of x = 0, 1, . . . , p − 1, and obtain a pair of solutions (x , y)
and (x ,−y) for every x , we can have no more than 2p points

Including the point at infinity, the order is bounded as

order(E(a, b, p)) ≤ 2p + 1

The order of E(1, 1, 23) is 28 which is less than 2 · 23 + 1 = 47
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Order of Elliptic Curve Groups

However, this bound is not very precise

A more precise bound was given by Hasse

As we discovered, for a solution (x , y) ∈ E to exist, the right hand
side z = x3 + ax + b needs to be a square mod p

As x takes values in GF(p), depending on whether

z = x3 + ax + b

is a square mod p or not, we will have a solution or not

Therefore, the number of solutions will be less than 2p
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Order of Elliptic Curve Groups

If we define χ(z) as

χ(z) =

{
+1 if z is square
−1 if z is not square

This gives the number of solutions to y2 = z (mod p) as 1 + χ(z)

Therefore, we find the size of the group including O as

order(E) = 1 +
∑

x ∈GF(p)

(1 + χ(x3 + ax + b))

= p + 1 +
∑

x ∈GF(p)

χ(x3 + ax + b)

which is a function of χ(x3 + ax + b) as x takes values in GF(p)
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Hasse Theorem

As x takes values in GF(p), the value of χ(x3 + ax + b) will be
equally likely as +1 and −1

This is a random walk where we toss a coin p times, and take either a
forward and backward step

According to the probability theory, the sum
∑
χ(x3 + ax + b) is of

order
√
p

More precisely, this sum is bounded by 2
√
p

Thus, we have a bound on the order of E(a, b, p), due to Hasse:

Theorem

The order of an elliptic curve group over GF(p) is bounded by

p + 1− 2
√
p ≤ order(E) ≤ p + 1 + 2

√
p
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http://koclab.org


ECC Fundamentals EC Groups, EC Arithmetic

Order of Elements

The order of an element P is the smallest integer k such that

[k]P =

k terms︷ ︸︸ ︷
P ⊕ P ⊕ · · · ⊕ P = O

According to the Lagrange Theorem, the order of any point divides
the order of the group

The primitive element is defined as the element P ∈ E whose order
n = order(P) is equal to the group order

n = order(P) = order(E)

According to the Hasse Theorem, we have

p + 1− 2
√
p ≤ order(E(a, b, p)) ≤ p + 1 + 2

√
p
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Order of Elements

For the group E(1, 1, 23), we have d
√

23e = 5, and the bounds are

14 ≤ order(E(1, 1, 23)) ≤ 34

Indeed, we found it as order(E(1, 1, 23)) = 28

According to the Lagrange Theorem, the element orders in E(1, 1, 23)
can only be the divisors of 28 which are 1, 2, 4, 7, 14, 28

The order of a primitive element is 28

The order of O is 1 since [1]O = O
The order (4, 0) is 2 since [2](4, 0) = (4, 0)⊕ (4, 0) = O
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Order of Elements

Compute the order of the point P = (11, 3) in E(1, 1, 23)

[2]P = (11, 3)⊕ (11, 3) = (4, 0)
[3]P = (11, 3)⊕ (4, 0) = (11, 20) ←

Note that
(11, 20) = (11,−3) = −P

This gives [3]P = −P and thus

[4]P = [3]P ⊕ P = (−P)⊕ P = O

Therefore, the order of (11, 3) is 4
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Order of Elements

Compute the order of the point P = (1, 7) in E(1, 1, 23)

[2]P = (1, 7)⊕ (1, 7) = (7, 11)
[3]P = (1, 7)⊕ (7, 11) = (18, 20)
[4]P = (7, 11)⊕ (7, 11) = (17, 20)
[7]P = (18, 20)⊕ (17, 20) = (11, 3) ←

[14]P = (11, 3)⊕ (11, 3) = (4, 0)
[21]P = (11, 3)⊕ (4, 0) = (11, 20) ←

Since the order of (1, 7) is not 2, or 7, or 14, it must be 28

Indeed (11, 20) and (11, 3) are negatives of one another

[28]P = [7]P ⊕ [21]P = (11, 3)⊕ (11,−3) = O

Therefore, the order of P = (1, 7) is 28 and (1, 7) is primitive
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Elliptic Curve Group Order

One remarkable property of the elliptic curve groups is that the order
n can be a prime number, while the multiplicative group Z∗p order is
always even: p − 1

When the group order is a prime, all elements of the group are
primitive elements (except the neutral element O whose order is 1)

As a small example, consider E(2, 1, 5): The equation

y2 = x3 + 2x + 1 (mod 5)

has 6 finite solutions (0, 1), (0, 4), (1, 2), (1, 3), (3, 2), and (3, 3)

Including O, this group has 7 elements, and thus, its order is a prime
number and all elements (except O) are primitive
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Elliptic Curve Point Multiplication

The elliptic curve point multiplication operation is the computation of
the point Q = [k]P given an integer k and a point on the curve P

Q = [k]P =

k terms︷ ︸︸ ︷
P ⊕ P ⊕ · · · ⊕ P

If the order of the point P is n, we have [n]P = O
Thus, the computation of [k]P effectively gives

[k]P = [k mod n]P

Similarly, we have

[a]P ⊕ [b]P = [a + b mod n]P

[a][b]P = [a · b mod n]P
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Elliptic Curve DLP

Once we have a primitive element P ∈ E whose order n equal to the
group order, we can execute the steps of the Diffie-Hellman key
exchange algorithm using the elliptic curve group E
The security of the classical Diffie-Hellman key exchange, the
ElGamal public-key encryption and the signature algorithm, and the
NIST Digital Signature Algorithm depends on the difficulty of the
DLP in Z∗p
However, these algorithms work over any group as long as the DLP in
that group is a difficult problem

Another type of group for which the DLP is difficult is the elliptic
curve group over a finite field
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Elliptic Curve DLP

The Elliptic Curve DLP is defined as the computation of the integer k
given P and Q such that

Q = [k]P =

k terms︷ ︸︸ ︷
P ⊕ P ⊕ · · · ⊕ P

The Elliptic Curve DLP seems to be a much more difficult problem
than the DLP in Z∗p
The ECDLP requires an exhaustive search on the integer k

No subexponential algorithm for the ECDLP exists as of yet

Moreover, the elliptic curve variants of the Diffie-Hellman, the
ElGamal, and the DSA require significantly smaller group size for the
same amount of security, as compared to that of Z∗p groups
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Elliptic Curve Diffie-Hellman

A and B agree on the elliptic curve group E of order n and a primitive
element P ∈ E (whose order is also n)

This is done in public: E , n, and P are known to the adversary

A selects integer a ∈ [2, n− 1], computes Q = [a]P, and sends Q to B

B selects integer b ∈ [2, n− 1], computes R = [b]P, and sends R to A

A receives R, and computes S = [a]R

B receives Q, and computes S = [b]Q

S = [a]R = [a][b]P = [a · b mod n]P

S = [b]Q = [b][a]P = [b · a mod n]P
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Elliptic Curve Diffie-Hellman

User A

a

[a]P

[a][b]P

S = [ab]P

User B

b

[b]P

[b][a]P

S = [ab]P

Adversary

E, n, P

[a]P

[b]P
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