ElGamal Cryptosystem and Signature Algorithm

ElGamal Signature Scheme

- Taher ElGamal, originally from Egypt, was a graduate student at Stanford University, and earned a PhD degree in 1984, Martin Hellman as his dissertation advisor
- He published a paper in 1985 titled "A public key cryptosystem and a signature scheme based on discrete logarithms" in which he proposed the ElGamal discrete log cryptosystem and the signature scheme
- The ElGamal cryptosystem essentially turns the Diffie-Hellman key exchange method into an encryption algorithm
- The ElGamal signature scheme is the basis for Digital Signature Algorithm (DSA) adopted by the NIST

ElGamal Signature Scheme

- **Domain Parameters:** The prime p and the generator g of \mathcal{Z}_p^*
- **Keys:** The private key is the integer $x \in \mathbb{Z}_p^*$ and the public key y is computed as $y = g^x \pmod{p}$
- **Signing:** The User A forms a message $m \in \mathbb{Z}_p^*$, generates a random number r and computes the signature pair (s_1, s_2)

$$s_1 = g^r \pmod{p}$$

 $s_2 = (m - x \cdot s_1) \cdot r^{-1} \pmod{p-1}$

- The message and signature consists of $[m, s_1, s_2]$
- Similar to the encryption case, the size of the signature is twice the size of the message

Spring 2018

ElGamal Cryptosystem Signature Scheme

• **Verifying:** The verifier receives the triple $[m, s_1, s_2]$ and also has access to the public key y, and computes u_1 and u_2 as

$$u_1 = g^m \pmod{p}$$

$$u_2 = y^{s_1} \cdot s_1^{s_2} \pmod{p}$$

If $u_1 = u_2$, then, the signature is valid

Proof.

The equality $u_1 = u_2$

$$g^m = y^{s_1} \cdot s_1^{s_2} = (g^x)^{s_1} \cdot (g^r)^{s_2} \pmod{p}$$

implies

$$m = x \cdot s_1 + r \cdot s_2 \pmod{p-1}$$

according to the Fermat's theorem

ElGamal Cryptosystem Signature Example

- The parameters: the prime p=2579 and the generator g=2, the private key x=765, and the public key y=949
- We compute the signature pair on the message m = 2013 using the random number r = 999 as

$$s_1 = g^r \pmod{p}$$

 $= 2^{999} = 1833 \pmod{2579}$
 $s_2 = (m - x \cdot s_1) \cdot r^{-1} \pmod{p-1}$
 $= (2013 - 765 \cdot 1833) \cdot 999^{-1} \pmod{2578}$
 $= 2200 \cdot 1329 = 348 \pmod{2578}$

The message and signature triple is $[m, s_1, s_2] = [2013, 1833, 348]$

ttp://koclab.org Cetin Kaya Koc Spring 2018 5/6

ElGamal Cryptosystem Signature Example

- The verifier has access to (p, g, y) = (2579, 2, 949)
- The verifier receives $[m, s_1, s_2] = [2013, 1833, 348]$ and computes

$$u_1 = g^m \pmod{p}$$

$$= 2^{2013} \pmod{2579}$$

$$= 713$$

$$u_2 = y^{s_1} \cdot s_1^{s_2} \pmod{p}$$

$$= 949^{1833} \cdot 1833^{348} \pmod{2579}$$

$$= 385 \cdot 2333 \pmod{2579}$$

$$= 713$$

Since $u_1 = u_2$, the signature is valid

4 D > 4 A > 4 B > 4 B > B 900