Computational Requirements of PKC

Computational Requirements for PKC

- All public-key cryptographic functions, such as public-key encryption and decryption operations, digital signature generation and verification operations, homomorphic functions, variety of cryptographic protocols, and post-quantum cryptographic functions, are based on the arithmetic of number and polynomial groups, rings and fields
- Mathematical properties of these structures, efficient representations of their elements, and algorithms for arithmetic operations need to be well understood in order to design suitable software and hardware
- This endeavor is in a way similar to the design and implementation of error-detecting and error-correcting codes, however, in cryptography the lengths of the elements are significantly larger

Computational Requirements for RSA

- The RSA public-key cryptographic algorithm is based on the arithmetic of the ring Z_n where *n* is the product of two primes *p* and *q*
- The fundamental RSA operation is the exponentiation, defined as

$$s \leftarrow m^d \pmod{n}$$

- Operands in RSA are in the range [0, n)
- They are represented as k-bit integers, where $k = \log_2 n$
- The operand ranges are usually $k \in [1024, 4096]$

Computational Requirements for RSA

• The computation of $m^d \pmod{n}$ is accomplished by performing multiplication and squaring operations in \mathcal{Z}_n , which require additions and subtractions in \mathcal{Z}_n

$$t \leftarrow a \cdot b \pmod{n}$$
$$u \leftarrow a \cdot a \pmod{n}$$
$$v \leftarrow a + b \pmod{n}$$
$$w \leftarrow a - b \pmod{n}$$

- The exponentiation operation is accomplished using addition chains
- There are sophisticated algorithms for modular multiplication and addition, for example, the Montgomery multiplication algorithm, the Karatsuba algorithm, and the spectral methods

Computational Requirements for RSA

- Since n = p · q, the RSA operations may use the Chinese Remainder Algorithm, which require computations in Z_p and Z_q
- For example, the exponentiation $s = m^d \pmod{n}$ is performed as

$$s \leftarrow \mathsf{CRT}(s_p, s_q; p, q) \left\{ egin{array}{cc} s_p &\leftarrow & m^{d_p} \pmod{p} \ s_q &\leftarrow & m^{d_q} \pmod{q} \end{array}
ight.$$

• The sizes of d_p and d_q are half of the size of d, which are defined as

$$d_p \leftarrow d \pmod{p-1}$$

 $d_q \leftarrow d \pmod{q-1}$

• The CRT operation requires modular additions and multiplications, and we also need the multiplicative inverse of *p* mod *q*

Computational Requirements for ECC

- Elliptic curves used in cryptography are Weierstrass and Edwards curves over finite fields GF(p) and GF(2^k)
- The points on the curve are pairs of (x, y) where x and y are elements of the finite fields GF(p) or $GF(2^k)$, satisfying the curve equation
- The points on the curve with the neutral element O and the point addition operation ⊕ form an additive group of order n denoted as E
- The fundamental operation of the ECC is the point multiplication operation for a given integer d ∈ [0, n)

$$Q \leftarrow [d]P$$

• The point multiplication operation is accomplished using addition or addition-subtraction chains

Computational Requirements for ECC

 The point multiplication operation Q ← [d]P is accomplished by performing point addition, doubling, and subtraction operations

$$\begin{array}{rcl} R & \leftarrow & P \oplus Q \\ T & \leftarrow & P \oplus P \\ U & \leftarrow & P \ominus Q \end{array}$$

 These point operations in the elliptic curve group *E* requires the computation of field additions, subtractions, multiplication, and inversion operations in the finite fields GF(p) or GF(2^k)

$$egin{array}{cccc} t &\leftarrow a \mp b \ u &\leftarrow a \cdot b \ v &\leftarrow a^{-1} \end{array}$$

Computational Requirements for DH, ElGamal, and DSA

• Public-key cryptographic algorithms based on the discrete logarithm problem in the multiplicative group Z_p have their fundamental operation as the exponentiation

$$s \leftarrow g^r \pmod{p}$$

- The ranges of the prime p and the other parameters are usually $k \in [1024, 4096]$, where $k = \log_2 p$
- g is a primitive element mod p
- These algorithms including their ECC variants require deterministic or true random numbers

Computational Requirements for DH, ElGamal, and DSA

 The computation of g^r (mod p) is accomplished by performing multiplication and squaring operations in Z_p, which may require additions in Z_p or GF(p)

 $t \leftarrow a \cdot b \pmod{p}$ $u \leftarrow a \cdot a \pmod{p}$ $v \leftarrow a + b \pmod{n}$

- The exponentiation operation is accomplished using addition chains
- There are sophisticated algorithms for modular multiplication and addition operations, for example, the Montgomery multiplication algorithm, the Karatsuba algorithm, and the spectral methods

Computational Requirements of Cryptographic Protocols

- Cryptographic protocols, such as coin flipping, secret sharing, and zero knowledge require a diverse set of fundamental operations
- Protocols based on the number-theoretic concepts require multiplication, squaring, gcd and inverse computation, square roots modulo a composite or prime number, and the CRT computation

n	\leftarrow	$p \cdot q$
t	\leftarrow	$u^2 \pmod{n}$
и	\leftarrow	$gcd(n, a \mp b)$
V	\leftarrow	$\sqrt{a} \pmod{p}$
а	\leftarrow	$CRT(a_1, a_2,, a_k; m_1, m_2,, m_k)$
ai	\leftarrow	$a \pmod{m_i}$
y	\leftarrow	$r_1 \cdot r_2 \pmod{n}$
y	\leftarrow	$x^2 \pmod{n}$

Representations of Polynomials

- The elements of GF(2^k) or various other structures used in post-quantum cryptography use polynomials as their operands
- Often the coefficients of these polynomials are in GF(2), however, they may also be in a ring Z_n
- Polynomials with binary coefficients can be represented as if they are binary integers, however, the arithmetic functions using these operands perform appropriate arithmetic operations
- Elements of GF(2^k) may also be represented in a normal basis, which in fact also uses a binary representation
- The ranges of the lengths of polynomials used in ECC are generally in [163,571] however some post-quantum algorithms use long operands

Representations of Integers

- Integer operands in PKC range from 160 to 4096 bits
- Integers as elements of Z_n and GF(p) are assumed to be k bits in binary with k ∈ [160, 4096]
- In software implementations, the word size *w* of the computer, and similarly, in hardware implementations, the width *w* of the data path should be taken into account
- An efficient way to represent large integers is to break the k-bit number (k ≥ 160) into w-bit words
- For example, a 256-bit integer *a* can be represented using an 8-word vector such that each vector element *A_i* is *w* = 32 bits

Interplay of Finite Fields and PKC

- All public-key cryptographic algorithms are based on computationally intensive finite field and ring arithmetic
- The primary operation for the PKC algorithms is the exponentiation or point multiplication operation in the group built upon the finite field or ring arithmetic
- Cryptographic protocols aim to minimize field and ring operations for efficiency, without sacrificing security
- On the other hand, efficient finite field and ring arithmetic leads to efficient public-key cryptography
- This is an interdisciplinary research area, involving
 - Mathematics
 - Computer science
 - Electrical engineering

PKC Computational Pyramid

PKC ALU Design

- The basic arithmetic operations used in PKC are addition, subtraction and multiplication operations
- These basic functions can be designed into an ALU so that they are available for use in various cryptographic algorithms and protocols
- By designing a data path and an instruction set architecture, we can create a cryptographic processor or co-processor on a given computational platform
- More complicated functions such as modular multiplication, elliptic curve point addition, modular exponentiation, and elliptic curve point multiplications can use these basic functions repeatedly with the help of finite state machines

PKC ALU Design

- The complexity of the PKC ALU design is determined by the variety of the basic functions and the width of the data path
- We need to build a computational pyramid

The processor architecture provides a constant width data path which is the building block of longer operands

The basic functions are the computational elements of more complicated functions and cryptographic algorithms

• A design-at-once approach or short-cutting almost never works

• R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. *Communications of the ACM*, vol. 21, pages 120-126, 1978.

• R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. *Communications of the ACM*, vol. 21, pages 120-126, 1978.

• R. L. Rivest. A Description of a Single-Chip Implementation of the RSA Cipher. *Lambda*, vol. 1, no. 3, pages 14-18, Fourth Quarter 1980.

http://koclab.org

14 A Description of a Single-Chip Implementation of the RSA Cipher

Ronald L. Rivest, Massachusetts Institute of Technology

This public-key encryption/decryption chip features a 512-bit ALU.

14 A Description of a Single-Chip Implementation of the RSA Cipher

Ronald L. Rivest, Massachusetts Institute of Technology

This public-key encryption/decryption chip features a 512-bit ALU.

A Description of a Single-Chip Implementation of the RSA Cipher

Ronald L. Rivest, Massachusetts Institute of Technology

In 1959 Diffic and Hellman introduced the recolutionary concept of a packhol-key cryoborycome (Diffie and Hellmann, 1956). Unlike classical cryotosystems, in a publickey cryotosystem the encryotion and doer, alknogh it is simply to industry in calculate the order, alknogh it is simply to crease the matched pair of keys in the fractional simply on crease the matched pair of keys in the fractional simply on providing simply and the pair of the pair of the simply on providing simply and the pair of the pair of the providing key alternative simple simply and the pair of the "digital signature" that are invaluable in the design of modern information protection and automatical simplexes the pairs.

To illustrate these capabilities, consider the following implementation of "ligital signatures." Every user of a publickey creptosystem publishes a decryption key and keyps the maching encryption key server. The create a signature K 36 or key, the resulting eighertex it S. Anvone else can verify the validities of a message-ignature pair (k10k) by checking that the signature S decodes to M under the signer's public encryption lexe, It is no possible to forge signatures or modify a signed message, given that knowledge of the signer's decrypkey.

To ensure confidentialing of communications, each user A of a communication system can publish the encryption bx $P_{\rm E}$ A while keeping the corresponding decryption kkep D weret. Whenever summore which to word A a published key to obtain the ejentress C = RedAL Kern hough an accordinger knows what the encryption key is, the nature of a public key exception was a set of the that the eacodopare doesn't know when the neuropian law is the nature of a public key to exploring the each set of the that the eacodopare doesn't know the decryption key prevent him from realing the main Mun A reversition key and the one declipter in using DA.

This furp parcial proposal for a public-leve encryption algorithm was by Krees, Mannii, and Alferma, Rivers, Stamit, and Alferna, 1979. This scheme, based on the diffition of the scheme programmed series of the scheme series and results of the scheme series of the scheme series of the "KSA methad" and has retried extensive coverage in the popular and robustic provide scheme series of the scheme Diffic and Hollmann. 1979; Binder's and Binder's 1979; Longel, 1979; Diffic and Hollmann. 1979; Binder's and Binder's 1979; Longel, 1979; Diffic and Hollmann. 1979; Binder's and Binder's 1979; Longel, 1979; Diffic and Hollmann 1979; Binder's and Binder's 1979; Longel, 1979; Diffic and the Hollmann, 1979; Binder's and Binder's 1979; Longel, 1979; Diffic and the Hollmann, 1979; Binder's and Binder's 1979; Longel, 1979; Diffic and the Hollmann 1979; Binder's and Binder's 1979; Longel, 1979; Diffic and the Hollmann, 1979; Binder's and Binder's 1979; Longel, 1979; Diffic and the Hollmann, 1979; Binder's 1970; Binder's 1979; Diffic and the Hollmann 1979; Binder's 1970; Diffic and the Hollmann 1979; Binder's 1970; Diffic and the Hollmann 1970; Binder's 1970; Diffic and the scheme s

14 LAMBDA Fourth Quarter 1980

A potential disadvantage of the RSA method is that encryption and decryption are computationally demanding, rehundred bit numbers. A typical micronrocessor-based implementation might achieve an encryption rate of ten bits per second, while a costly TTL implementation (e.g., \$3K, 160 chins) might reach 6K bits/second. Some interesting "hybrid" RSA/DES schemes have been developed which use RSA for key distribution only and DES for fast data encryption. This paper describes a cost-effective alternative: a specialnumose 151 chin to implement the RSA method. Shamir, Adleman, and I have designed such a "big-number ALU" chip which can support all of the usual big-number operations, including those needed to perform RSA encryption. This "RSA chip" has a 512-bit ALU and eight generalpurpose 512-bit registers: it can perform RSA encryption at rates in excess of 1200 bits/second (even faster if keys shorter

The RSA Method

The encryption method is only summarized here; the reader is referred to Rivest, Shamir, and Adleman, 1978, for a full exposition.

An RSA encryption key consists of a pair of positive integers: (c,n). A message M to be encrypted must be an integer in the range 0 to n-1. The ciphertext C is obtained by encrypting M as follows:

$C \equiv M^r \pmod{\pi}$

That is, C is the remainder obtained when the e-th power of M is divided by n.

Similarly, a decryption key is a pair of positive integers: (d, n). Here, n is the same as in the encryption key. The message M can be obtained by deciphering the ciphertest C: $M = C^{2}$ (mod n).

Note that the encryption and decryption operations have a common form, which simplifies implementation.

The modulus n is chosen to be the product of two large piner numbers, pande, (As idapoens, large piner numbers, are relatively common, and ussing a large number for pairnulity is not codificient (Sobora and Strassen, 1977; Allerman, 1980)). A cryptanulyst conditaterrupt or "bread" the RSA method by factoring the modulus n. (Recall that in a public-key cryptosystem the encryption key (ca) may be public knowledge: However, factoring large integers seems

A potential disadvantage of the RSA method is that encryption and decryption are computationally demanding, requiring up to several hundred multiplication of several hundred bit numbers. A typical microprocessor-based implementation might achieve an encryption rate of ten bits per second, while a costly TTL implementation (e.g., \$3K, 160 chips) might reach 6K bits/second. Some interesting "hybrid" RSA/DES schemes have been developed which use RSA for key distribution only and DES for fast data encryption. This paper describes a cost-effective alternative: a specialpurpose LSI chip to implement the RSA method. Shamir, Adleman, and I have designed such a "big-number ALU" chip which can support all of the usual big-number operations, including those needed to perform RSA encryption. This "RSA chip" has a 512-bit ALU and eight generalpurpose 512-bit registers; it can perform RSA encryption at rates in excess of 1200 bits/second (even faster if keys shorter than the maximum length are used).

A potential disadvantage of the RSA method is that encryption and decryption are computationally demanding, requiring up to several hundred multiplication of several hundred bit numbers. A typical microprocessor-based implementation might achieve an encryption rate of ten bits per second, while a costly TTL implementation (e.g., \$3K, 160 chips) might reach 6K bits/second. Some interesting "hybrid" RSA/DES schemes have been developed which use RSA for key distribution only and DES for fast data encryption. This paper describes a cost-effective alternative: a specialpurpose LSI chip to implement the RSA method. Shamir, Adleman, and I have designed such a "big-number ALU" chip which can support all of the usual big-number operations, including those needed to perform RSA encryption. This "RSA chip" has a 512-bit ALU and eight generalpurpose 512-bit registers; it can perform RSA encryption at rates in excess of 1200 bits/second (even faster if keys shorter than the maximum length are used).

A SHORT REPORT ON THE RSA CHIP

Ronald L. Rivest

MIT Laboratory for Computer Science Cambridge, Mass. 02139

The nMOS "RSA chip" described in our article [1] was initially fabricated by Hewlett-Packard. Testing revealed that while the control portion of the chip worked correctly, the arithmetic section suffered from transient errors and was usually too unreliable to complete a full encryption. We tested a number of chips and found the same problem, enough to convonce us that (the cause was probably a design error and not a fabrication problem.

• R. L. Rivest. A short report on the RSA Chip. Crypto, pages 327-327, 1982.

RSA Chips (Past/Present/Future)*

(Extended abstract)

Ronald L. Rivest MIT Laboratory for Computer Science Cambridge, Mass. 02139

Brief Abstract We review the issues involved in building a special-purpose chip for performing RSA encryption/decryption, and review a few of the current implementation efforts.

 R. L. Rivest. RSA Chips (Past/Present/Future). *Eurocrypt*, pages 159-165, LNCS Nr. 209, 1984.

IV.A. The "first" RSA chip

This chip was designed by Rivest, Shamir, and Adleman, and is described in [Ri80].

It was a single-chip nMOS design; using 4-micron design rules, the chip occupied 42 mm². It contained a 512-bit ALU in bit-slice design with eight 512-bit registers for storage of intermediate results, carry-save adder logic, and up-down shifter logic. The 224-word microcode ROM contained control routines for encryption, decryption, finding large primes, gcd, etc. It used a 5V supply, and drew approximately 1 watt of power. It contained approximately 40,000 transistors. It communicated with a host microprocessor using an 8-bit I/O port. The encryption rate was designed to be slightly in excess of 1200 bits/second. Due to an as yet undiagnosed error in the memory cell design, this chip never worked reliably.

R. L. Rivest. RSA Chips (Past/Present/Future). *Eurocrypt*, pages 159-165, LNCS Nr. 209, 1984.

Evolution of Intel Microprocessors: 1971 to 2007

Family	Trade Name (Code Name for Future Chips)	Clock Frequency in MegaHertz**	Millions of Instructions per Second	Date of Introduction	Number of Transistors	Design Rule (Pixel Size)	Address Bus Bits
80986 80886 80886 80886 80886 80886	Projected Roadmap (Northwood) (Madison) (Deerfield)*** (McKinley)	24,000.0 MHz 3,000.0 MHz TBA TBA 1,000.0 MHz	+125,000. MIPS TBA TBA TBA TBA	2007 2003 2003 2002Q2 2002Q1	1 billion TBA TBA TBA TBA	0.045 micron 0.13 micron 0.13 micron 0.13 micron 0.18 micron	64 bit 64 bit 64 bit 64 bit 64 bit
80786 80686 80686 80686 80686 80686 80686	Pentium 4 Pentium III P III Xeon Mobile P II P III Xeon Pentium III	1,500.0 MHz 1,000.0 MHz 733.0 MHz 400.0 MHz 550.0 MHz 500.0 MHz	+2,300.00 MIPS *1,500.00 MIPS *1,000.00 MIPS *733.00 MIPS *400.00 MIPS *550.00 MIPS *550.00 MIPS	May 29, 2001 November 20, 2000 March 1, 2000 October 25, 1999 June 14, 1999 March 17, 1999 February 26, 1999	42 million 28.1 million 28.1 million 27.4 million 9.5 million 9.5 million	0.18 micron 0.18 micron 0.18 micron 0.18 micron 0.25 micron 0.25 micron	32 bit 32 bit 32 bit 32 bit 32 bit 32 bit 32 bit
80686 80686 80686	P II Xeon Pentium II Pentium II	400.0 MHz 333.0 MHz 300.0 MHz	*400.00 MIPS *333.00 MIPS *300.00 MIPS	June 29, 1998 January 26, 1998 May 7, 1997	7.5 million 7.5 million 7.5 million	0.25 micron 0.25 micron 0.35 micron	32 bit 32 bit 32 bit 32 bit
80586 90586 80586 80586	Pentium Pro Pentium Pentium Pentium	200.0 MHz 133.0 MHz 90.0 MHz 60.0 MHz	*200.00 MIPS *133.00 MIPS *90.00 MIPS *60.00 MIPS	November 1, 1995 June 1995 March 7, 1994 March 22, 1993	5.5 million 3.3 million 3.2 million 3.1 million	0.35 micron 0.35 micron 0.60 micron 0.80 micron	32 bit 32 bit 32 bit 32 bit 32 bit
80486 80486 80386 80286	80486 DX2 486 DX 386 DX 80286	50.0 MHz 25.0 MHz 16.0 MHz 6.0 MHz	*50.00 MIPS 20.00 MIPS 5.00 MIPS 0.90 MIPS	March 3, 1992 April 10, 1989 October 17, 1985 February 1982	1.2 million 1.2 million 275,000 (134,000)	0.80 micron 1.00 micron 1.50 micron 1.50 micron	32 bit 32 bit 16 bit 16 bit
8086 8080 8008 4004	8086 8080 8008 4004	5.0 MHz 2.0 MHz .2 MHz .1 MHz	0.33 MIPS 0.64 MIPS 0.06 MIPS 0.06 MIPS	June 8, 1978 April 1974 April 1972 November 15, 1971	29,000 6,000 3,500 2,300	3.00 micron 6.00 micron 10.00 micron 10.00 micron	16 bit 8 bit 8 bit 4 bit

http://koclab.org

Spring 2018 2

Timeline of PKC Hardware Design

- Naive algorithms, 1978-1985
- Classical Montgomery algorithm, 1985
- Fast exponentiation and multiplication, 1990
- Advanced Montgomery algorithms, 1996
- Montgomery algorithm in *GF*(2^k), 1998
- Scalable arithmetic, 1999
- Dual-field arithmetic, 2000
- RNS arithmetic, 2000
- Spectral arithmetic, 2006