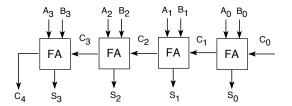
Arithmetic in Integer Rings and Prime Fields



Contents

- Integer Rings and Finite Fields
- Addition and Multiplication
- Modular Addition and Multiplication
- Montgomery Multiplication and Exponentiation
- The CIOS Algorithm
- Arithmetic with Special Primes

Integer Rings and Finite Fields in Cryptography

- Several cryptographic algorithms are based on similar mathematical structures built upon finite sets of integers:
 - Rings Z_n or groups Z_n^* for a composite n
 - Fields GF(p) or their multiplicative groups for a prime p
- The arithmetic of such structures are often called modular arithmetic
- The arithmetic operations of interest in cryptography are addition, multiplication and inversion mod *n* or mod *p*
- The modulus *n* or *p* is either composite or prime
- The fact that modulus is prime or composite makes little difference in addition and multiplication algorithms

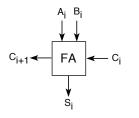
Integer Addition

- The computation of two k-bit numbers a and b
- The bits are represented using A_i and B_i

- Carry propagate adder
- Carry completion sensing adder
- Carry look-ahead adder
- Carry save adder

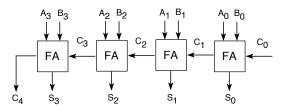
Carry Propagate Adder: CPA

• The full adder box: FA



 $S_{i} = A_{i} \oplus B_{i} \oplus C_{i}$ $C_{i+1} = A_{i} \cdot B_{i} + A_{i} \cdot C_{i} + B_{i} \cdot C_{i}$ $\oplus \rightarrow XOR$ $\cdot \rightarrow AND$ $+ \rightarrow OR$

• Topology:



Spring 2018 5 / 71

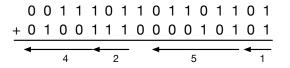
Properties of CPA

- Total (worst case) delay = $k \times FA$ delay
- The circuit needs consider the worst case scenarios

- Total area = $k \times FA$ area
- Scales up easily for k
- Subtraction is easy: Use 2's complement arithmetic
- Sign detection is easy: MSB gives the sign

Carry Completion Sensing Adder

- While the worst case carry propagation length is k, there will be many cases in which carry propagation length will be a lot less
- The carry completion sensing adder waits only as long as the longest carry, which is less than *k*
- The carry completion sensing adder is an asynchronous adder which detects the completion of the carry propagation process
- An example of carry propagation processes



Analysis shows that average carry length is bounded by log₂(k)

Carry Completion Sensing Adder

- Carry completion signal is a bit pair (*C*, *N*) which is produced from the current input bit pair (*A*, *B*)
- The carry completion signals are then applied to a wide AND gate which computes the product of all carry completion signals C + N

$$\begin{array}{ll} (A,B) = (0,0) & \Rightarrow & (C,N) \leftarrow (0,1) \\ (A,B) = (1,1) & \Rightarrow & (C,N) \leftarrow (1,0) \\ (A,B) = (0,1) & \Rightarrow & (C,N) \leftarrow \text{previous } (C,N) \\ (A,B) = (1,0) & \Rightarrow & (C,N) \leftarrow \text{previous } (C,N) \end{array}$$

• When C + N is determined, it will be 1 and it remains at 1

• Undetermined C + N values are kept at logic 0

Carry Completion Sensing Adder

Α	0	1	1	1	0	1	1	0	1	1	0	1	1	0	1
В	1	0	0	1	1	1	0	0	0	0	1	0	1	0	1
С				1		1		0					1	0	1
Ν				0		0		1					0	1	0
C + N				1		1		1					1	1	1
С			1	1	1	1	0	0				1	1	0	1
Ν			0	0	0	0	1	1				0	0	1	0
C + N			1	1	1	1	1	1				1	1	1	1
С		1	1	1	1	1	0	0			1	1	1	0	1
Ν		0	0	0	0	0	1	1			0	0	0	1	0
C + N		1	1	1	1	1	1	1			1	1	1	1	1
С	1	1	1	1	1	1	0	0		1	1	1	1	0	1
Ν	0	0	0	0	0	0	1	1		0	0	0	0	1	0
C + N	1	1	1	1	1	1	1	1		1	1	1	1	1	1
С	1	1	1	1	1	1	0	0	1	1	1	1	1	0	1
Ν	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0
C + N	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
											• • • •	• • • •	7 F -	020	~ 문)

Carry Look-Ahead Adder

- Compute C_is in advance using more logic
- Then, use C_i s to compute S_i s in parallel
- Let $G_i = A_i B_i$ and $P_i = A_i + B_i$
- C_{i+1} is a function of C_0 and G_0, G_1, \ldots, G_i and P_0, P_1, \ldots, P_i

$$C_{1} = A_{0}B_{0} + C_{0}(A_{0} + B_{0})$$

$$= G_{0} + C_{0}P_{0}$$

$$C_{2} = G_{1} + C_{1}P_{1} = G_{1} + G_{0}P_{1} + C_{0}P_{0}P_{1}$$

$$C_{3} = G_{2} + C_{2}P_{2} = G_{2} + G_{1}P_{2} + G_{0}P_{1}P_{2} + C_{0}P_{0}P_{1}P_{2}$$

$$C_{4} = G_{3} + C_{3}P_{3} = G_{3} + G_{2}P_{3} + G_{1}P_{2}P_{3} + G_{0}P_{1}P_{2}P_{3} + C_{0}P_{0}P_{1}P_{2}P_{3}$$

Properties of CLA

- The total delay is $O(\log k)$
- The total area is essentially O(k) using parallel prefix circuits (See: Ladner & Fischer, Brent & Kung)
- A complete CLA is not cost-effective for large k (> 256)
- By grouping G and P functions, larger CLAs can be designed
- Even with grouping, design of a 1024-bit adder may not be feasible or cost-effective

Carry Save Adder

Input: 3 k-bit numbers a, b, and c

$$a = (A_{k-1}A_{k-2}\cdots A_1A_0)$$

$$b = (B_{k-1}B_{k-2}\cdots B_1B_0)$$

$$c = (C_{k-1}C_{k-2}\cdots C_1C_0)$$

• Output: 2 k-bit numbers c' and s such that c' + s = a + b + c

$$s = (S_k S_{k-1} \cdots S_1 S_0)$$

 $c' = (C'_k C'_{k-1} \cdots C'_2 C'_1)$

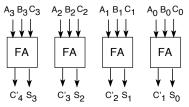
• The individual bits of s and c' are computed as

$$S_i = A_i \oplus B_i \oplus C_i$$

$$C'_{i+1} = A_i \cdot B_i + A_i \cdot C_i + B_i \cdot C_i$$

Carry Save Adder

• Topology:



• An example: $40 + 25 + 20 \rightarrow 48 + 37$

	Α	=	40	101000
	В	=	25	011001
,	С	=	20	010100
	S	=	37	100101
	C'	=	48	011000

Properties of Carry Save Adder

- The total delay is O(1) (a single FA delay)
- The total area is $k \times FA$ area
- Scales up easily for large k
- Subtraction is easy: Use 2's complement arithmetic
- Sign detection is "complicated"

Sign Detection Problem for Carry Save Adders

- Numbers are represented in Carry and Sum pairs x = (c', s)
- The actual value of the number is x = c' + s
- Unless the addition is performed in full length, the correct sign may never be determined
- Example: a = -18, b = 19, and c = 6 are given
- We compute their sum using the CSA

а	=	-18	101110	
Ь	=	19	010011	
С	=	6	000110	
5	=	-5	111011	
c'	=	12	000110	
			1	(1 MSB)
			11	(2 MSB)
			000	(3 MSB)
			0001	(4 MSB)
			00011	(5 MSB)

A Sign Estimation Algorithm for CSA

• We add the most significant t bits of c' and s to estimate the sign of x = c' + s, represented as $\operatorname{esign}_t(c', s)$

<i>c</i> ′	=	011110
5	=	001010
$esign_1(c',s)$	=	0
$\operatorname{esign}_2(c',s)$	=	0 1
$\operatorname{esign}_3(c',s)$	=	1 00
$esign_4(c',s)$	=	1 001
$esign_5(c',s)$	=	1 0100

• It is shown: if $\operatorname{esign}_t(c', s)$ is used for mod *n* reduction, then:

$$C' + S < n + 2^{k-t}$$

where n is the modulus and k is its length in bits

http://koclab.org

Addition and Subtraction mod n

- The computation of $s = a + b \mod n$
- Add and Reduce: Given a, b < nCompute s' = a + bCompute s'' = s' - nIf $s'' \ge 0$ then s = s''else s = s'
- Requires fast sign detection: Is $s'' \ge 0$?

Incomplete (Lazy) Reduction

• Correction factor: $m = 2^k - n$ (precomputed)

Incomplete Reduction

• Carry out of the k-bit register implies

$$(s') = a + b \ge 2^k$$

• Thus, if the carry is discarded, we essentially compute

$$s' = a + b - 2^k$$

• The result is then corrected by adding *m* to *s'*

$$s = s' + m$$

= $a + b - 2^k + m$
= $a + b - n$

- A temporary value may be larger than n, but it is always less than 2^k
- Whenever it exceeds 2^k , we discard the carry, and perform a correction

http://koclab.org

Incomplete Reduction Example

•
$$n = 39$$
, thus $m = 64 - 39 = 25 = (011001)$

$$a = 40 = (101000)$$

$$b = 30 = (011110)$$

$$s' = s + b = 1(000110)$$
 carry out

$$m = (011001)$$

$$s = s' + m = (011111)$$
 correction

Final Correction Phase

• After all additions are completed, a final result that is out of range can be corrected by adding *m*:

5	=		(110001)
т	=		(011001)
5	=	s + m =	1(001010)
5	=		(001010)

Modular Multiplication

- Given a, b < n, compute $p = a \cdot b \mod n$
- Methods:
 - Multiply and reduce: Multiply: p' = a · b (2k-bit number) Reduce: p = p' mod n (k-bit number)
 - Interleave multiply and reduce steps
 - The Montgomery multiplication

• The product $p' = a \cdot b$ can be written as

$$p' = a \cdot \sum_{i=0}^{k-1} B_i 2^i = a \cdot (B_0 + B_1 2^1 + B_2 2^2 + \dots + B_{k-1} 2^{k-1})$$

- We can apply Horner's rule to this formulation of p'
- The initial value p' = 0 and the loop starts with B_{k-1} and moves down with B_{k-2}, B_{k-3}, \ldots

$$p' \leftarrow 2 \cdot p' + a \cdot B_{k-1}$$

$$= a \cdot B_{k-1}$$

$$p' \leftarrow 2 \cdot p' + a \cdot B_{k-2}$$

$$= 2 \cdot a \cdot B_{k-1} + a \cdot B_{k-2}$$

$$\vdots$$

$$p' \leftarrow 2 \cdot p' + a \cdot B_{i}$$

This formulation yields the shift-add multiplication algorithm

1:
$$p' \leftarrow 0$$

2: for $i = k - 1$ downto 0
2a: $p' \leftarrow 2 \cdot p' + a \cdot B_i$
3: return p'

• We can also reduce the partial product mod *n* at each step:

1:
$$p \leftarrow 0$$

2: for $i = k - 1$ downto 0
2a: $p \leftarrow 2 \cdot p + a \cdot B_i$
2b: $p \leftarrow p \mod n$
3: return p

• Assuming that a, b, p < n, we have

$$p \leftarrow 2 \cdot p + a \cdot B_j$$

$$\leq 2(n-1) + (n-1) = 3n-3$$

- Thus, at most two subtractions are needed to reduce p to the range $0 \le p < n$
- We can use

$$p' \leftarrow p - n$$
; if $p' \ge 0$ then $p \leftarrow p'$
 $p' \leftarrow p - n$; if $p' \ge 0$ then $p \leftarrow p'$

• Addition and subtraction steps need to be performed faster

- Carry propagate adder gives O(k) delay
- Incomplete reduction can be used to avoid unnecessary subtractions:
 - 2a. $p \leftarrow 2p$
 - 2b. if carry-out then $p \leftarrow p + m$
 - 2c. $p \leftarrow p + a \cdot B_j$
 - 2d. if carry-out then $p \leftarrow p + m$
- Carry save adder gives O(1) delay; fast sign detection is needed to decide if the partial product needs to be reduced modulo n
 - 2a. $(c,s) \leftarrow 2c + 2s + a \cdot B_i$

2b.
$$(c',s') \leftarrow c+s-n$$

- 2c. if $\operatorname{esign}_t(c',s') \geq 0$ then $(c,s) \leftarrow (c',s')$
- Function $\operatorname{esign}_t(c',s')$ estimates the sign of c'+s'

Montgomery Multiplication

- The Montgomery multiplication algorithm replaces division by n operation with division by $r = 2^k$
- If n is a k-bit odd integer, i.e., $2^{k-1} < n < 2^k$, we assign $r = 2^k$
- We map the integers $a \in [0, n-1]$ to the integers $ar{a} \in [0, n-1]$ using

$$\bar{a} = a \cdot r \pmod{n}$$

• For example, for n = 11 and r = 16 the mapping is

Definition of Montgomery Product

• The Montgomery product of $a, b \in [0, n-1]$ is defined as

$$MonPro(a, b) = a \cdot b \cdot r^{-1} \pmod{n}$$

- Here r^{-1} is the multiplicative inverse of r modulo n
- The inverse of $r = 2^k$ exists if the modulus *n* is odd
- Interestingly the Montgomery product of two integers actually involves two multiplications, instead of one
- Furthermore, we need $r^{-1} \pmod{n}$, but it can be precomputed

Properties of the Montgomery Product

• **Property 1:** If $c = a \cdot b \pmod{n}$, then $\overline{c} = \text{MonPro}(\overline{a}, \overline{b})$

Properties of the Montgomery Product

• **Property 2:**
$$\bar{a} = \text{MonPro}(a, r^2)$$

$$MonPro(a, r^2) = a \cdot r^2 \cdot r^{-1} \pmod{n} = a \cdot r \pmod{n} = \bar{a}$$

• **Property 3:**
$$c = MonPro(\bar{c}, 1)$$

$$MonPro(\bar{c}, 1) = \bar{c} \cdot 1 \cdot r^{-1} \pmod{n} = (c \cdot r) \cdot 1 \cdot r^{-1} \pmod{n} = c$$

Classical Montgomery Algorithm

- Peter Montgomery introduced his original algorithm in 1985
- The function MonPro(a, b) computes $a \cdot b \cdot r^{-1} \pmod{n}$
- Interestingly the algorithm does not need $r^{-1} \pmod{n}$
- However, it requires another quantity n' which is related to it

```
function MonPro(a, b)

Input: a, b, n, n'

Output: u = a \cdot b \cdot r^{-1} \mod n

1: t \leftarrow a \cdot b

2: m \leftarrow t \cdot n' \pmod{r}

3: u \leftarrow (t + m \cdot n)/r

4: if u \ge n then u \leftarrow u - n
```

5: return u

Computation of n'

- The quantity n' appears in the computation of $r^{-1} \pmod{n}$ using the extended Euclidean algorithm
- The EEA computes r^{-1} and n' using

$$(s,t) \leftarrow \mathsf{EEA}(r,n) \Rightarrow s \cdot r + t \cdot n = 1$$

- Here we have $r^{-1} = s \pmod{n}$ and n' is defined to be n' = -t
- While $r^{-1} \pmod{n}$ is not needed, the Montgomery function requires n' which is also computed using the EEA
- Furthermore, they are related as

$$r^{-1} \cdot r + (-n') \cdot n = 1 \quad \Rightarrow \quad n' = \frac{-1 + r \cdot r^{-1}}{n}$$

Properties of the Montgomery Algorithm

- Steps 2 and 3 of the Montgomery algorithm seem complicated, as they are modular multiplication and division operations
- However, the modular reduction and division operations involve the modulus and divisor as *r* which is a power of 2
- Step 2: The Montgomery function performs modular multiplication m ← t ⋅ n' (mod r), however, the modulus is r = 2^k, which means the reduction by r is accomplished by taking the least significant k bits of the product
- Example: Given 273 = (101010110111), we reduce it mod $16 = 2^4$ by taking its least significant 4 bits: (0111) = 7
- Indeed 273 = 7 (mod 16)

Properties of the Montgomery Algorithm

- Step 3: The Montgomery function first performs u ← (t + m ⋅ n), and then divides u by r = 2^k, which implies a k-bit right shift u ← (t + m ⋅ n)/2^k, i.e., discarding the least significant k bits
- Example: Given $208 = (\underline{1101}0000)$, we divide it by $16 = 2^4$ by discarding its least significant 4 bits and obtain (1101) = 13
- Indeed 208/16 = 13
- Thus, we conclude that the modular reduction by *r* in Step 2 and the division by *r* in Step 3 are simple operations on a digital computer
- They are easily accomplished: Reduction by r = 2^k: "taking least significant k bits" Division by r = 2^k: "discarding least significant k bits"

Properties of the Montgomery Algorithm

- To compute a · b · r⁻¹ (mod n) for a k-bit odd n < r and r = 2^k, the MonPro function performs only multiplications in Steps 1, 2, and 3
- Multiplication operations require $O(k^2)$ bit operations if the standard algorithms are being utilized
- The modular reduction by r operation in Step 2 and the division by r operation in Step 3 require only O(k) bit operations
- Similarly, the subtraction in Step 4 is also O(k)
- The power of the Montgomery algorithm is that it requires no division or reduction by *n* which is an arbitrary *k*-bit integer
- However, it requires computation of n' using the EEA
- It also requires 3 integer multiplications (Steps 1, 2, and 3)

Correctness of the Montgomery Algorithm

• For proof, we use two facts

•
$$n' = (-1 + r \cdot r^{-1})/n$$
 implies $1 + n' \cdot n = r \cdot r^{-1}$

•
$$m = t \cdot n' \pmod{r}$$
 implies $m = t \cdot n' + N \cdot r$ for some N

MonPro computes

$$u = (t + m \cdot n)/r$$

= $(t + [t \cdot n' + N \cdot r] \cdot n)/r$
= $(t \cdot [1 + n' \cdot n] + N \cdot r \cdot n)/r$
= $(t \cdot r \cdot r^{-1} + N \cdot r \cdot n)/r$
= $t \cdot r^{-1} + N \cdot n$
= $a \cdot b \cdot r^{-1} + N \cdot n$
= $a \cdot b \cdot r^{-1}$ (mod n)

Montgomery Exponentiation

- MonPro function is not suitable for a single modular multiplication $c = a \cdot b \pmod{n}$ since it has significant overhead
- Compute n' using the EEA

$$(s,t) \leftarrow \mathsf{EEA}(r,n) \Rightarrow n' = -t$$

• Convert *a* and *b* to bar notation

$$\bar{a} \leftarrow \text{MonPro}(a, r^2)$$

 $\bar{b} \leftarrow \text{MonPro}(b, r^2)$

- Perform the Montgomery product: $\bar{c} \leftarrow MonPro(\bar{a}, \bar{b})$
- Convert \bar{c} to unbar notation: $c \leftarrow \text{MonPro}(\bar{c}, 1)$

Montgomery Exponentiation

 However, MonPro function is very suitable for several modular multiplications with the same modulus: Montgomery Exponentiation

```
function MonExp(m, d, n)

Input: m, d, n

Output: s = m^d \mod n

1: \bar{m} \leftarrow \operatorname{MonPro}(m, r^2)

2: \bar{s} \leftarrow \operatorname{MonPro}(1, r^2)

3: for i = k - 1 downto 0

4a: \bar{s} \leftarrow \operatorname{MonPro}(\bar{s}, \bar{s})

4b: if d_i = 1 then \bar{s} \leftarrow \operatorname{MonPro}(\bar{s}, \bar{m})

5: s \leftarrow \operatorname{MonPro}(\bar{s}, 1)
```

3: return s

Montgomery Exponentiation Example

- Computation of $MonExp(3, 50, 55) = 3^{50} \pmod{55}$
- Since n = 55, we can take r is the next power of 2 as r = 64
- Using the EEA we compute

$$\mathsf{EEA}(r,n) = \mathsf{EEA}(64,55) \Rightarrow (r^{-1},-n') = (49,-57)$$

- Thus, we obtain $r^{-1} = 49$ and n' = 57
- We start with m = 3 and s = 1
- $\bar{m} \leftarrow \text{MonPro}(m, r^2) = \text{MonPro}(3, 64^2)$ which gives $\bar{m} = 27$
- $\bar{s} \leftarrow \mathsf{MonPro}(s, r^2) = \mathsf{MonPro}(1, 64^2)$ which gives $\bar{s} = 9$

Montgomery Exponentiation Example

• $e = 50 = (110010)_2$

ei	Step 5	Step 6
1	MonPro(9,9) = 9	MonPro(9, 27) = 27
1	MonPro(27, 27) = 26	MonPro(26, 27) = 23
0	MonPro(23, 23) = 16	
0	MonPro(16,16) = 4	
1	MonPro(4,4) = 14	MonPro(14, 27) = 42
0	MonPro(42, 42) = 31	

• s = MonPro(31, 1) = 34

The Montgomery Exponentiation Example

• Computation of MonPro(27, 27):

$$t \leftarrow 27 \cdot 27$$

 $m \leftarrow 729 \cdot 57 \pmod{64}$

$$\leftarrow \ \ 41553 \pmod{64}$$

$$\leftarrow \quad (1010001001 \ \underline{010001})$$

$$u \leftarrow (729 + 17 \cdot 55)/64$$

$$\leftarrow \ 1664/64$$

$$\leftarrow$$
 (11010 000000)

= 26

The Montgomery Exponentiation Example

- Computation of MonPro(31, 1):
 - $t \leftarrow 31 \cdot 1$ = 31 $m \leftarrow 31 \cdot 57 \pmod{64}$ $\leftarrow 1767 \pmod{64}$ $\leftarrow (11011 \ \underline{100111})$ = 39
 - $u \leftarrow (31 + 39 \cdot 55)/64 \\ \leftarrow 2176/64 \\ \leftarrow (100010 \ 000000)$
 - = 34

Derivation of the CIOS Algorithm

- CIOS stands for Coarsely Integrated Operand Scanning
- CIOS performs the MonPro function
- It is more efficient than the classical Montgomery algorithm
- CIOS requires 1.5 integer multiplications instead of 3
- Furthermore, the binary CIOS algorithm does not require the computation of n'_0 because it is always equal to 1
- The word-level CIOS requires the computation of only the least significant word (the least significant *w* bits) of n'_0

• Consider the Montgomery function which computes

$$\mathsf{MonPro}(a,b) = a \cdot b \cdot r^{-1} \pmod{n}$$

• Since $r = 2^k$, we can write it as

L

$$u = a \cdot b \cdot 2^{-k} \pmod{n}$$

= $\left(\sum_{i=0}^{k-1} A_i 2^i\right) \cdot b \cdot 2^{-k} \pmod{n}$
= $\left(\sum_{i=0}^{k-1} A_i 2^{i-k}\right) \cdot b \pmod{n}$

Thus, we obtain

$$u = (A_0 2^{-k} + A_1 2^{-k+1} + \dots + A_{k-1} 2^{-1}) \cdot b \pmod{n}$$

• We can apply Horner's rule to this formulation of u

$$u = (A_0 2^{-k} + A_1 2^{-k+1} + \dots + A_{k-1} 2^{-1}) \cdot b \pmod{n}$$

• The initial value of the sum u = 0 and the innermost loop starts with A_0 and moves up with $A_1, A_2, ...$

$$u \leftarrow (u + A_0 \cdot b) \cdot 2^{-1} \pmod{n}$$

= $A_0 \cdot b \cdot 2^{-1} \pmod{n}$
$$u \leftarrow (u + A_1 \cdot b) \cdot 2^{-1} \pmod{n}$$

= $A_0 \cdot b \cdot 2^{-2} + A_1 \cdot b \cdot 2^{-1} \pmod{n}$
$$u \leftarrow (u + A_2 \cdot b) \cdot 2^{-1} \pmod{n}$$

= $A_0 \cdot b \cdot 2^{-3} + A_1 \cdot b \cdot 2^{-2} + A_2 \cdot b \cdot 2^{-1} \pmod{n}$
:
$$u \leftarrow (u + A_i \cdot b) \cdot 2^{-1} \pmod{n}$$

• This formulation gives the following code for the binary CIOS:

1:
$$u \leftarrow 0$$

2: for $i = 0$ to $k - 1$
3: $u \leftarrow (u + A_i \cdot b) \cdot 2^{-1} \pmod{n}$
4: return u

• We can separate Step 3 into two steps

1:
$$u \leftarrow 0$$

2: for $i = 0$ to $k - 1$
3a: $u \leftarrow u + A_i \cdot b$
3b: $u \leftarrow u \cdot 2^{-1} \pmod{n}$
4: return u

- The computation of $u \cdot 2^{-1} \pmod{n}$ for a given u can be performed without explicitly computing $2^{-1} \pmod{n}$
- If u in Step 3a is **even**, such that u = 2v, then Step 3b gives

$$u = 2v \qquad \{ \text{ Step 3a } \}$$

$$u \leftarrow (2v) \cdot 2^{-1} \pmod{n}$$

$$= v$$

 If u in Step 3a is odd, then we know u + n will be even since n is always odd, therefore, Step 3 gives

$$u = \text{odd} \{ \text{Step 3a} \}$$

$$u + n = 2v$$

$$u \leftarrow (2v) \cdot 2^{-1} \pmod{n}$$

$$= v$$

- Furthermore, v is easily computed for an even u as $v \leftarrow u/2$
- Therefore, we revise Step 3b into two steps, the first step is the if-then statement checking if the number is odd, while the second step performs division by 2

1:
$$u \leftarrow 0$$

2: for $i = 0$ to $k - 1$
3a: $u \leftarrow u + A_i \cdot b$
3b: if u is odd then $u \leftarrow u + n$
3c: $u \leftarrow u/2$

- 4: return u
- The resulting algorithm has several nice properties

The Binary CIOS Algorithm

- However, we should also add the subtraction step
- Furthermore, checking if *u* is odd can be made more efficient
- Given u, the LSB $U_0 = 1$ implies that u is odd

1:
$$u \leftarrow 0$$

2: for $i = 0$ to $k - 1$
3a: $u \leftarrow u + A_i \cdot b$
3b: $u \leftarrow u + U_0 \cdot n$
3c: $u \leftarrow u/2$
4: if $u > n$ then $u \leftarrow u - n$
5: return u

An Example of the Binary CIOS Algorithm

- Consider the computation of MonPro(27, 27) using the binary CIOS algorithm for n = 55 and k = 6
- We have a = 27 = (011011) and b = 27

i	ai	Step 3a (<i>u</i>)	<i>u</i> 0	Step 3b (<i>u</i>)	Step 3c (<i>u</i>)
0	1	$0 + 1 \cdot 27 = 27$	1	$27 + 1 \cdot 55 = 82$	82/2 = 41
1	1	$41 + 1 \cdot 27 = 68$	0	68	68/2 = 34
2	0	$34 + 0 \cdot 27 = 34$	0	34	34/2 = 17
3	1	$17 + 1 \cdot 27 = 44$	0	44	44/2 = 22
4	1	$22 + 1 \cdot 27 = 49$	1	$49 + 1 \cdot 55 = 104$	104/2 = 52
5	0	$52 + 0 \cdot 27 = 52$	0	52	52/2 = 26

- The subtraction (Step 4) is not needed since u < n
- The result is found as MonPro(27, 27) = 26

Properties of the Binary CIOS Algorithm

- The binary CIOS algorithm performs 2 multiplications with *k*-bit numbers in Steps 3a and 3b, requiring $O(k^2)$ operations
- Step 3c is a simple bit-level shift operation, requiring at most O(k)
- However, Step 3b does not perform a multiplication when $u_0 = 0$
- Assuming U_0 will be 1 or 0 with uniform probability, we can deduce that, in the average, half of the time Step 3b will be skipped
- Thus, the binary CIOS algorithm requires 1.5 multiplications with *k*-bit numbers in the average

The Word-Level CIOS Algorithm

• The word-level algorithm scans the words of a, n, and u

$$a = (A_{s-1}A_{s-2}\cdots A_1A_0)$$

$$n = (N_{s-1}N_{s-2}\cdots N_1N_0)$$

$$u = (U_{s-1}U_{s-2}\cdots U_1U_0)$$

for sw = k where w is the word size in bits

- The least significant *w* bits, in other words, the least significant words (LSW) of *a*, *n*, *u* are *A*₀, *N*₀, *U*₀
- Now we consider the steps of the binary CIOS algorithm, and extend them to word level
- Step 3a is easily extended as $u \leftarrow u + A_i \cdot b$

The Word-Level CIOS Algorithm

- Since Step 3c performs a *w*-bit right shift, Step 3b should update *u* so that its LSW is zero
- Let *M* be a 1-word integer such that the LSW of $u + M \cdot n$ is zero

$$u + M \cdot n = 0 \pmod{2^w} \Rightarrow M = -u \cdot n^{-1} \pmod{2^w}$$

• Since the modulus is 2^w, we only need the LSW of u and n

$$M = U_0 \cdot (-N_0^{-1}) \pmod{2^w}$$

• Interestingly, the identity $r \cdot r^{-1} + (-n') \cdot n = 1$ implies

$$(-n') \cdot n = 1 \pmod{2^w} \Rightarrow -N_0^{-1} = N_0' \pmod{2^w}$$

• Therefore, $-N_0^{-1}$ is actually equal to N_0' , the LSW of N'

The Word-Level CIOS Algorithm

1:
$$u \leftarrow 0$$

2: for $i = 0$ to $s - 1$
3a: $u \leftarrow u + A_i \cdot b$
3b: $M \leftarrow U_0 \cdot (-N_0^{-1}) \pmod{2^w}$
3c: $u \leftarrow u + M \cdot n$
3d: $u \leftarrow u/2^w$
4: if $u > n$ then $u \leftarrow u - n$
5: return u

Integer, Mod n, GF(p)

An Example of the Word-Level CIOS Algorithm

- Consider the computation of MonPro(27, 27) using the word-level CIOS algorithm for n = 55, k = 6, and w = 3
- We have $a = 27 = (011011)_2 = (33)_8$ and b = 27
- We also have $n = 55 = (110111)_2 = (67)_8$
- Furthermore, $N_0 = 7$ an $N_0' = -N_0^{-1} = -7^{-1} = 1 \pmod{8}$

i	A_i	Step 3a (u)	U_0	Step 3b (<i>M</i>)	Step 3c (<i>u</i>)	Step 3d (<i>u</i>)
0	(3)8	$0 + 3 \cdot 27 = 81$	$(1)_{8}$	$1 \cdot 1 = 1$	$81 + 1 \cdot 55 = 136$	136/8 = 17
1	(3)8	$17 + 3 \cdot 27 = 98$	(2)8	$1 \cdot 2 = 2$	$98 + 2 \cdot 55 = 208$	208/8 = 26

- The subtraction (Step 4) is not needed since u < n
- The result is found as MonPro(27, 27) = 26

Properties of the Word-Level CIOS Algorithm

- The word-level CIOS performs 2 multiplications with s word numbers in Steps 3a and 3c, requiring $O(s^2)$ operations
- Step 3b requires a 1-word operation: O(1)
- Step 3d is a simple word-level shift operation, requiring at most O(s)
- The word-level CIOS algorithm is more efficient than the classical Montgomery algorithm because:
 - It does not require the k-bit (s-word) number n', instead, it only requires computation of the w-bit (1-word) number N'_0
 - The classical Montgomery algorithm requires the k-bit number n'
 - It requires 2 multiplications with k-bit (s-word) numbers
 - The classical Montgomery algorithm requires 3 multiplications with *k*-bit numbers

Fast Computation of N'_0

• There is an efficient algorithm for computing the one-word integer

$$N'_0 = -N_0^{-1} \pmod{2^w}$$

- It is based on a specialized version of the extended Euclidean algorithm for computing the inverse
- The following algorithm computes $x^{-1} \pmod{2^w}$ for an odd x

function ModInverse
$$(x, 2^w)$$

1: $y \leftarrow 1$
2: for $i = 2$ to w
3: if $2^{i-1} < x \cdot y \pmod{2^i}$ then $y \leftarrow y + 2^{i-1}$
4: return y

An Example Computation of n'_0

• As an example, we compute $23^{-1} \pmod{2^6}$

• Here we have
$$x = 23$$
 and $w = 6$.

• We start with y = 1

i	2 ^{<i>i</i>-1}	2 ⁱ	у	$x \cdot y \pmod{2^i}$		у
2	2	4	1	$23\cdot 1=3 \pmod{4}$	3 > 2	1 + 2 = 3
3	4	8	3	$23 \cdot 3 = 5 \pmod{8}$	5 > 4	3+4=7
4	8	16	7	$23\cdot 7=1 \pmod{16}$	7 ≯ 8	7
5	16	32	7	$23\cdot 7=1 \pmod{32}$	7 ≯ 14	7
6	32	64	7	$23 \cdot 7 = 33 \pmod{64}$	33 > 32	7 + 32 = 39

• Thus, we find y = 39, implying $23^{-1} = 39 \pmod{64}$

• This is true, since $23 \cdot 39 = 897 = 1 \pmod{64}$

Arithmetic with Special Primes

- Until now we considered modular arithmetic with arbitrary composite or prime numbers
- However, elliptic cryptographic algorithms often use special primes
- For example, the NIST elliptic curves over GF(p) use these primes

Curve	Field prime <i>p</i>
P-192	$2^{192} - 2^{64} - 1$
P-224	$2^{224} - 2^{96} + 1$
P-256	$2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$
P-384	$2^{384} - 2^{128} - 2^{96} + 2^{32} - 1$
P-521	$2^{521} - 1$

Arithmetic with Special Primes

• Similarly, SECG elliptic curves over GF(p) use these primes

Curve	Field prime <i>p</i>
secp192k1	$2^{192} - 2^{32} - 2^{12} - 2^8 - 2^6 - 2^6 - 2^3 - 1$
secp192r1	$2^{192} - 2^{64} - 1$
secp224k1	$2^{224} - 2^{32} - 2^{12} - 2^{11} - 2^9 - 2^7 - 2^4 - 2 - 1$
secp224r1	$2^{224} - 2^{96} + 1$
secp256k1	$2^{256} - 2^{32} - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1$
secp256r1	$2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$
secp384r1	$2^{384} - 2^{128} - 2^{96} + 2^{32} - 1$
secp521r1	$2^{521} - 1$

• Furthermore, Curve25519 also uses a special prime $p = 2^{255} - 19$

Arithmetic with Special Primes

- We can use the existing modular addition and multiplication algorithms, including the classical Montgomery algorithm and the binary and word-level versions of the CIOS algorithm for arithmetic with these special primes
- However, these algorithms are designed for arbitrary primes
- They will not be as efficient as the algorithms that are designed and optimized for particular primes
- Several algorithms proposed for such special primes
- These algorithms however work only for the type of primes or for the primes for which they are designed

Arithmetic with NIST Prime P-192

- Consider the NIST prime P-192 which is $p = 2^{192} 2^{64} 1$
- Assume w = 64 and represent a word using A_i
- Assume we are performing reduction modulo this prime
- For example, we can take a number that is the twice the length of *p* and reduce it mod *p*
- Such number may appear in computations after a multiplication, and thus, it will need to be reduced mod *p*

Arithmetic with NIST Prime P-192

• Since p is k bits, we can take a 2k-bit integer a and reduce it mod p 0

• Every
$$2k$$
-bit integer a can be represented using 6 words

$$a = A_5 2^{320} + A_4 2^{256} + A_3 2^{192} + A_2 2^{128} + A_1 2^{64} + A_0$$

- We can also use the compact notation $a = (A_5 A_4 A_3 A_2 A_1 A_0)$
- After the reduction mod $p = 2^{192} 2^{64} 1$, the result will be 3 words
- $b = a \pmod{p}$ implies $b = (B_2 B_1 B_0)$

• In order to obtain the reduced number b, we first compute

$$T = (A_2A_1A_0) S_1 = (0 A_3A_3) S_2 = (A_4A_4 0) S_3 = (A_5A_5A_5)$$

• Then, we compute $b = a \pmod{p}$ using modular addition

$$b = (B_2B_1B_0) = T + S_1 + S_2 + S_3 \pmod{p}$$

• This is a special reduction algorithm that works only for this p

- How can we prove that this reduction is correct?
- For $r = 2^{64}$, we can express the prime as $p = r^3 r 1$
- Given $a = A_5r^5 + A_4r^4 + A_3r^3 + A_2r^2 + A_1r + A_0$, the reduction operation can be expressed as a polynomial reduction

$$b = A_5r^5 + A_4r^4 + A_3r^3 + A_2r^2 + A_1r + A_0 \pmod{r^3 - r - 1}$$

• Using a computer algebra tool, we obtain b as

$$b = (A_5 + A_4 + A_2)r^2 + (A_5 + A_4 + A_3 + A_1)r + (A_5 + A_3 + A_0)$$

• By rearranging the terms, we can write

• Therefore, we obtain

$$T = (A_2A_1A_0) S_1 = (0 A_3A_3) S_2 = (A_4A_4 0) S_3 = (A_5A_5A_5)$$

• Finally:

$$b = T + S_1 + S_2 + S_3 \pmod{p}$$

http://koclab.org

- These specialized algorithms require fewer terms to be computed and added if the binary expansion of the prime contains fewer 1s, i.e., the power of 2 terms in its expression
- Therefore, primes with few 1s or few power of 2 terms are preferred
- The NIST P-521 is one such prime: $p = 2^{521} 1$
- Primes of this form are called the Mersenne primes
- Reduction with such primes is significantly simpler

- Assume A_1 and A_0 are 521-bit integers
- Every integer less than p^2 can be represented

$$a = A_1 \cdot 2^{521} + A_0$$

- The compact representation $a = (A_1 A_0)$
- Consider the reduction operation $b = a \pmod{p}$
- The expression for b is simply given as

$$b = A_1 + A_0 \pmod{p}$$

• A single modular addition suffices to obtain $b = a \pmod{p}$

- The expression for b is also easily proven by assigning $r = 2^{521}$
- Therefore, p = r 1 and $a = A_1r + A_0$
- Now we can compute b using polynomial reduction

$$b = A_1 r + A_0 \pmod{r-1}$$

= $A_1(r-1) + A_1 + A_0 \pmod{r-1}$
= $A_1 + A_0 \pmod{r-1}$

• Therefore, $b = A_1 + A_0 \pmod{p}$

• In other words, the reduction requires a single modular addition

Reduction with Primes of the Form $2^k - c$

- The prime for Curve25519 is given as $p = 2^{255} 19$
- Primes of the form $p = 2^k c$ are commonly used in cryptography, where c is a 1-word integer,

• If we assign
$$r = 2^k$$
, we get $p = r - c$

- Consider the 2k-bit number $a = A_1r + A_0$
- To compute $b = a \pmod{p}$, we perform polynomial reduction

$$b = A_1 r + A_0 \pmod{r - c}$$

= $A_1(r - c) + c A_1 + A_0 \pmod{r - c}$
= $c A_1 + A_0 \pmod{r - c}$

• The final reduced value is computed as $b = c A_1 + A_0 \pmod{p}$

Generalized Mersenne Numbers

- The reduction algorithm for prime $p = 2^{192} 2^{64} 1$ is invented by Jerome Solinas, who developed several specialized reduction algorithms for the NIST primes
- For example, consider $p = 2^{224} 2^{96} + 1$
- Given the 32-bit numbers A_i , the mod p reduction of the 2k-bit number $a = (A_{13}A_{12} \cdots A_1A_0)$ is accomplished as

$$T = (A_{6}A_{5}A_{4}A_{3}A_{2}A_{1}A_{0})$$

$$S_{1} = (A_{10}A_{9}A_{8}A_{7} \ 0 \ 0 \ 0)$$

$$S_{2} = (0 \ A_{13}A_{12}A_{11} \ 0 \ 0 \ 0)$$

$$D_{1} = (A_{13}A_{12}A_{11}A_{10}A_{9}A_{8}A_{7})$$

$$D_{2} = (0 \ 0 \ 0 \ 0 \ A_{13}A_{12}A_{11})$$

$$b = T + S_{1} + A_{2} - D_{1} - D_{2} \pmod{p}$$