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Integer Rings and Finite Fields in Cryptography

Several cryptographic algorithms are based on similar mathematical
structures built upon finite sets of integers:

Rings Zn or groups Z∗n for a composite n
Fields GF(p) or their multiplicative groups for a prime p

The arithmetic of such structures are often called modular arithmetic

The arithmetic operations of interest in cryptography are addition,
multiplication and inversion mod n or mod p

The modulus n or p is either composite or prime

The fact that modulus is prime or composite makes little difference in
addition and multiplication algorithms
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Integer Addition

The computation of two k-bit numbers a and b

The bits are represented using Ai and Bi

Ak−1 Ak−2 · · · A1 A0

+ Bk−1 Bk−2 · · · B1 B0

Ck Sk−1 Sk−2 · · · S1 S0

Carry propagate adder

Carry completion sensing adder

Carry look-ahead adder

Carry save adder
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Carry Propagate Adder: CPA

The full adder box: FA

FA

Ai Bi

CiCi+1

Si

Si = Ai ⊕ Bi ⊕ Ci

Ci+1 = Ai · Bi + Ai · Ci + Bi · Ci

⊕ → XOR

· → AND

+ → OR

Topology:
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Properties of CPA

Total (worst case) delay = k × FA delay

The circuit needs consider the worst case scenarios

011111111111111111111
+ 000000000000000000001

100000000000000000000

Total area = k × FA area

Scales up easily for k

Subtraction is easy: Use 2’s complement arithmetic

Sign detection is easy: MSB gives the sign
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Carry Completion Sensing Adder

While the worst case carry propagation length is k , there will be many
cases in which carry propagation length will be a lot less

The carry completion sensing adder waits only as long as the longest
carry, which is less than k

The carry completion sensing adder is an asynchronous adder which
detects the completion of the carry propagation process

An example of carry propagation processes

0  0  1  1  1 0  1  1  0  1  10  1  1 0  1
0  10  0  0  1  0  11  1  00  1  0  0  1+

1524

Analysis shows that average carry length is bounded by log2(k)
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Carry Completion Sensing Adder

Carry completion signal is a bit pair (C ,N) which is produced from
the current input bit pair (A,B)

The carry completion signals are then applied to a wide AND gate
which computes the product of all carry completion signals C + N

(A,B) = (0, 0) ⇒ (C ,N)← (0, 1)
(A,B) = (1, 1) ⇒ (C ,N)← (1, 0)
(A,B) = (0, 1) ⇒ (C ,N)← previous (C ,N)
(A,B) = (1, 0) ⇒ (C ,N)← previous (C ,N)

When C + N is determined, it will be 1 and it remains at 1

Undetermined C + N values are kept at logic 0
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Carry Completion Sensing Adder

A 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1

B 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1

C 1 1 0 1 0 1

N 0 0 1 0 1 0

C + N 1 1 1 1 1 1

C 1 1 1 1 0 0 1 1 0 1

N 0 0 0 0 1 1 0 0 1 0

C + N 1 1 1 1 1 1 1 1 1 1

C 1 1 1 1 1 0 0 1 1 1 0 1

N 0 0 0 0 0 1 1 0 0 0 1 0

C + N 1 1 1 1 1 1 1 1 1 1 1 1

C 1 1 1 1 1 1 0 0 1 1 1 1 0 1

N 0 0 0 0 0 0 1 1 0 0 0 0 1 0

C + N 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1

N 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0

C + N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Carry Look-Ahead Adder

Compute Ci s in advance using more logic

Then, use Ci s to compute Si s in parallel

Let Gi = AiBi and Pi = Ai + Bi

Ci+1 is a function of C0 and G0,G1, . . . ,Gi and P0,P1, . . . ,Pi

C1 = A0B0 + C0(A0 + B0)

= G0 + C0P0

C2 = G1 + C1P1 = G1 + G0P1 + C0P0P1

C3 = G2 + C2P2 = G2 + G1P2 + G0P1P2 + C0P0P1P2

C4 = G3 + C3P3 = G3 + G2P3 + G1P2P3 + G0P1P2P3 + C0P0P1P2P3
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Properties of CLA

The total delay is O(log k)

The total area is essentially O(k) using parallel prefix circuits
(See: Ladner & Fischer, Brent & Kung)

A complete CLA is not cost-effective for large k (> 256)

By grouping G and P functions, larger CLAs can be designed

Even with grouping, design of a 1024-bit adder may not be feasible or
cost-effective
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Carry Save Adder

Input: 3 k-bit numbers a, b, and c

a = (Ak−1Ak−2 · · ·A1A0)

b = (Bk−1Bk−2 · · ·B1B0)

c = (Ck−1Ck−2 · · ·C1C0)

Output: 2 k-bit numbers c ′ and s such that c ′ + s = a + b + c

s = (SkSk−1 · · · S1S0)

c ′ = (C ′kC
′
k−1 · · ·C ′2C ′1)

The individual bits of s and c ′ are computed as

Si = Ai ⊕ Bi ⊕ Ci

C ′i+1 = Ai · Bi + Ai · Ci + Bi · Ci
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Carry Save Adder

Topology:
C0

FA

A0 B0

S0C’1

C1

FA

A1 B1

S1C’2

C2

FA

A2 B2

S2C’3

C3

FA

A3 B3

S3C’4

An example: 40 + 25 + 20→ 48 + 37

’

A = 40 101000
B = 25 011001
C = 20 010100

S = 37 100101
C ′ = 48 011000
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Properties of Carry Save Adder

The total delay is O(1) (a single FA delay)

The total area is k × FA area

Scales up easily for large k

Subtraction is easy: Use 2’s complement arithmetic

Sign detection is “complicated”
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Sign Detection Problem for Carry Save Adders

Numbers are represented in Carry and Sum pairs x = (c ′, s)

The actual value of the number is x = c ′ + s

Unless the addition is performed in full length, the correct sign may
never be determined

Example: a = −18, b = 19, and c = 6 are given
We compute their sum using the CSA

a = −18 101110
b = 19 010011
c = 6 000110
s = −5 111011
c ′ = 12 000110

1 (1 MSB)
11 (2 MSB)
000 (3 MSB)
0001 (4 MSB)
00011 (5 MSB)
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A Sign Estimation Algorithm for CSA

We add the most significant t bits of c ′ and s to estimate the sign of
x = c ′ + s, represented as esignt(c

′, s)

c ′ = 011110

s = 001010

esign1(c ′, s) = 0

esign2(c ′, s) = 01

esign3(c ′, s) = 100

esign4(c ′, s) = 1001

esign5(c ′, s) = 10100

It is shown: if esignt(c
′, s) is used for mod n reduction, then:

C ′ + S < n + 2k−t

where n is the modulus and k is its length in bits
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Addition and Subtraction mod n

The computation of s = a + b mod n

Add and Reduce:
Given a, b < n
Compute s ′ = a + b
Compute s ′′ = s ′ − n
If s ′′ ≥ 0

then s = s ′′

else s = s ′

Requires fast sign detection: Is s ′′ ≥ 0 ?
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Incomplete (Lazy) Reduction

Given a, b < 2k (a, b can be ≥ n)

Compute s ′ = a + b
If there is a carry out of the k-bit register

then s = s ′ + m
else s = s ′

Correction factor: m = 2k − n (precomputed)
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Incomplete Reduction

Carry out of the k-bit register implies

(s ′) = a + b ≥ 2k

Thus, if the carry is discarded, we essentially compute

s ′ = a + b − 2k

The result is then corrected by adding m to s ′

s = s ′ + m

= a + b − 2k + m

= a + b − n

A temporary value may be larger than n, but it is always less than 2k

Whenever it exceeds 2k , we discard the carry, and perform a correction
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Incomplete Reduction Example

n = 39, thus m = 64− 39 = 25 = (011001)

a = 23 = (010111)
b = 26 = (011010)
s ′ = a + b = 0(110001) no carry out
s = s ′ = (110001)

a = 40 = (101000)
b = 30 = (011110)
s ′ = s + b = 1(000110) carry out
m = (011001)
s = s ′ + m = (011111) correction
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Final Correction Phase

After all additions are completed, a final result that is out of range
can be corrected by adding m:

s = (110001)
m = (011001)
s = s + m = 1(001010)
s = (001010)
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Modular Multiplication

Given a, b < n, compute p = a · b mod n

Methods:

Multiply and reduce:
Multiply: p′ = a · b (2k-bit number)
Reduce: p = p′ mod n (k-bit number)

Interleave multiply and reduce steps

The Montgomery multiplication
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Interleaving Multiply and Reduce

The product p′ = a · b can be written as

p′ = a ·
k−1∑
i=0

Bi2
i = a · (B0 + B121 + B222 + · · ·+ Bk−12k−1)

We can apply Horner’s rule to this formulation of p′

The initial value p′ = 0 and the loop starts with Bk−1 and moves
down with Bk−2,Bk−3, . . .

p′ ← 2 · p′ + a · Bk−1

= a · Bk−1

p′ ← 2 · p′ + a · Bk−2

= 2 · a · Bk−1 + a · Bk−2
...

p′ ← 2 · p′ + a · Bi
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Interleaving Multiply and Reduce

This formulation yields the shift-add multiplication algorithm

1: p′ ← 0
2: for i = k − 1 downto 0
2a: p′ ← 2 · p′ + a · Bi

3: return p′

We can also reduce the partial product mod n at each step:

1: p ← 0
2: for i = k − 1 downto 0
2a: p ← 2 · p + a · Bi

2b: p ← p mod n
3: return p
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Interleaving Multiply and Reduce

Assuming that a, b, p < n, we have

p ← 2 · p + a · Bj

≤ 2(n − 1) + (n − 1) = 3n − 3

Thus, at most two subtractions are needed to reduce p to the range
0 ≤ p < n

We can use

p′ ← p − n ; if p′ ≥ 0 then p ← p′

p′ ← p − n ; if p′ ≥ 0 then p ← p′

Addition and subtraction steps need to be performed faster
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Interleaving Multiply and Reduce

Carry propagate adder gives O(k) delay

Incomplete reduction can be used to avoid unnecessary subtractions:
2a. p ← 2p
2b. if carry-out then p ← p + m
2c. p ← p + a · Bj

2d. if carry-out then p ← p + m

Carry save adder gives O(1) delay; fast sign detection is needed to
decide if the partial product needs to be reduced modulo n
2a. (c , s)← 2c + 2s + a · Bi

2b. (c ′, s ′)← c + s − n
2c. if esignt(c

′, s ′) ≥ 0 then (c , s)← (c ′, s ′)

Function esignt(c
′, s ′) estimates the sign of c ′ + s ′
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Montgomery Multiplication

The Montgomery multiplication algorithm replaces division by n
operation with division by r = 2k

If n is a k-bit odd integer, i.e., 2k−1 < n < 2k , we assign r = 2k

We map the integers a ∈ [0, n − 1] to the integers ā ∈ [0, n − 1] using

ā = a · r (mod n)

For example, for n = 11 and r = 16 the mapping is

a : 0 1 2 3 4 5 6 7 8 9 10
ā : 0 5 10 4 9 3 8 2 7 1 6
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Definition of Montgomery Product

The Montgomery product of a, b ∈ [0, n − 1] is defined as

MonPro(a, b) = a · b · r−1 (mod n)

Here r−1 is the multiplicative inverse of r modulo n

The inverse of r = 2k exists if the modulus n is odd

Interestingly the Montgomery product of two integers actually
involves two multiplications, instead of one

Furthermore, we need r−1 (mod n), but it can be precomputed
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Properties of the Montgomery Product

Property 1: If c = a · b (mod n), then c̄ = MonPro(ā, b̄)

MonPro(ā, b̄) = ā · b̄ · r−1 (mod n)

= (a · r) · (b · r) · r−1 (mod n)

= a · b · r (mod n)

= c · r (mod n)

= c̄
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Properties of the Montgomery Product

Property 2: ā = MonPro(a, r2)

MonPro(a, r2) = a · r2 · r−1 (mod n)

= a · r (mod n)

= ā

Property 3: c = MonPro(c̄, 1)

MonPro(c̄ , 1) = c̄ · 1 · r−1 (mod n)

= (c · r) · 1 · r−1 (mod n)

= c
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Classical Montgomery Algorithm

Peter Montgomery introduced his original algorithm in 1985

The function MonPro(a, b) computes a · b · r−1 (mod n)

Interestingly the algorithm does not need r−1 (mod n)

However, it requires another quantity n′ which is related to it

function MonPro(a, b)
Input: a, b, n, n′

Output: u = a · b · r−1 mod n
1: t ← a · b
2: m← t · n′ (mod r)
3: u ← (t + m · n)/r
4: if u ≥ n then u ← u − n
5: return u
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Computation of n′

The quantity n′ appears in the computation of r−1 (mod n) using the
extended Euclidean algorithm

The EEA computes r−1 and n′ using

(s, t)← EEA(r , n) ⇒ s · r + t · n = 1

Here we have r−1 = s (mod n) and n′ is defined to be n′ = −t
While r−1 (mod n) is not needed, the Montgomery function requires
n′ which is also computed using the EEA

Furthermore, they are related as

r−1 · r + (−n′) · n = 1 ⇒ n′ =
−1 + r · r−1

n
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Properties of the Montgomery Algorithm

Steps 2 and 3 of the Montgomery algorithm seem complicated, as
they are modular multiplication and division operations

However, the modular reduction and division operations involve the
modulus and divisor as r which is a power of 2

Step 2: The Montgomery function performs modular multiplication
m← t · n′ (mod r), however, the modulus is r = 2k , which means
the reduction by r is accomplished by taking the least significant k
bits of the product

Example: Given 273 = (101010110111), we reduce it mod 16 = 24 by
taking its least significant 4 bits: (0111) = 7

Indeed 273 = 7 (mod 16)
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Properties of the Montgomery Algorithm

Step 3: The Montgomery function first performs u ← (t + m · n),
and then divides u by r = 2k , which implies a k-bit right shift
u ← (t + m · n)/2k , i.e., discarding the least significant k bits

Example: Given 208 = (11010000), we divide it by 16 = 24 by
discarding its least significant 4 bits and obtain (1101) = 13

Indeed 208/16 = 13

Thus, we conclude that the modular reduction by r in Step 2 and the
division by r in Step 3 are simple operations on a digital computer

They are easily accomplished:
Reduction by r = 2k : “taking least significant k bits”
Division by r = 2k : “discarding least significant k bits”
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Properties of the Montgomery Algorithm

To compute a · b · r−1 (mod n) for a k-bit odd n < r and r = 2k , the
MonPro function performs only multiplications in Steps 1, 2, and 3

Multiplication operations require O(k2) bit operations if the standard
algorithms are being utilized

The modular reduction by r operation in Step 2 and the division by r
operation in Step 3 require only O(k) bit operations

Similarly, the subtraction in Step 4 is also O(k)

The power of the Montgomery algorithm is that it requires no division
or reduction by n which is an arbitrary k-bit integer

However, it requires computation of n′ using the EEA

It also requires 3 integer multiplications (Steps 1, 2, and 3)
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Correctness of the Montgomery Algorithm

For proof, we use two facts

n′ = (−1 + r · r−1)/n implies 1 + n′ · n = r · r−1
m = t · n′ (mod r) implies m = t · n′ + N · r for some N

MonPro computes

u = (t + m · n)/r

= (t + [t · n′ + N · r ] · n)/r

= (t · [1 + n′ · n] + N · r · n)/r

= (t · r · r−1 + N · r · n)/r

= t · r−1 + N · n
= a · b · r−1 + N · n
= a · b · r−1 (mod n)
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Montgomery Exponentiation

MonPro function is not suitable for a single modular multiplication
c = a · b (mod n) since it has significant overhead

Compute n′ using the EEA

(s, t)← EEA(r , n) ⇒ n′ = −t

Convert a and b to bar notation

ā ← MonPro(a, r2)

b̄ ← MonPro(b, r2)

Perform the Montgomery product: c̄ ← MonPro(ā, b̄)

Convert c̄ to unbar notation: c ← MonPro(c̄ , 1)
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Montgomery Exponentiation

However, MonPro function is very suitable for several modular
multiplications with the same modulus: Montgomery Exponentiation

function MonExp(m, d , n)
Input: m, d , n
Output: s = md mod n
1: m̄← MonPro(m, r2)
2: s̄ ← MonPro(1, r2)
3: for i = k − 1 downto 0
4a: s̄ ← MonPro(s̄, s̄)
4b: if di = 1 then s̄ ← MonPro(s̄, m̄)
5: s ← MonPro(s̄, 1)
3: return s
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Montgomery Exponentiation Example

Computation of MonExp(3, 50, 55) = 350 (mod 55)

Since n = 55, we can take r is the next power of 2 as r = 64

Using the EEA we compute

EEA(r , n) = EEA(64, 55)⇒ (r−1,−n′) = (49,−57)

Thus, we obtain r−1 = 49 and n′ = 57

We start with m = 3 and s = 1

m̄← MonPro(m, r2) = MonPro(3, 642) which gives m̄ = 27

s̄ ← MonPro(s, r2) = MonPro(1, 642) which gives s̄ = 9
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Montgomery Exponentiation Example

e = 50 = (110010)2

ei Step 5 Step 6

1 MonPro(9, 9) = 9 MonPro(9, 27) = 27
1 MonPro(27, 27) = 26 MonPro(26, 27) = 23
0 MonPro(23, 23) = 16
0 MonPro(16, 16) = 4
1 MonPro(4, 4) = 14 MonPro(14, 27) = 42
0 MonPro(42, 42) = 31

s = MonPro(31, 1) = 34
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The Montgomery Exponentiation Example

Computation of MonPro(27, 27):

t ← 27 · 27

= 729

m ← 729 · 57 (mod 64)

← 41553 (mod 64)

← (1010001001 010001)

= 17

u ← (729 + 17 · 55)/64

← 1664/64

← (11010 000000)

= 26
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The Montgomery Exponentiation Example

Computation of MonPro(31, 1):

t ← 31 · 1
= 31

m ← 31 · 57 (mod 64)

← 1767 (mod 64)

← (11011 100111)

= 39

u ← (31 + 39 · 55)/64

← 2176/64

← (100010 000000)

= 34
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Derivation of the CIOS Algorithm

CIOS stands for Coarsely Integrated Operand Scanning

CIOS performs the MonPro function

It is more efficient than the classical Montgomery algorithm

CIOS requires 1.5 integer multiplications instead of 3

Furthermore, the binary CIOS algorithm does not require the
computation of n′0 because it is always equal to 1

The word-level CIOS requires the computation of only the least
significant word (the least significant w bits) of n′0
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Derivation of the binary CIOS

Consider the Montgomery function which computes

MonPro(a, b) = a · b · r−1 (mod n)

Since r = 2k , we can write it as

u = a · b · 2−k (mod n)

=

(
k−1∑
i=0

Ai2
i

)
· b · 2−k (mod n)

=

(
k−1∑
i=0

Ai2
i−k

)
· b (mod n)

Thus, we obtain

u = (A02−k + A12−k+1 + · · ·+ Ak−12−1) · b (mod n)
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Derivation of the binary CIOS

We can apply Horner’s rule to this formulation of u

u = (A02−k + A12−k+1 + · · ·+ Ak−12−1) · b (mod n)

The initial value of the sum u = 0 and the innermost loop starts with
A0 and moves up with A1,A2, . . .

u ← (u + A0 · b) · 2−1 (mod n)

= A0 · b · 2−1 (mod n)

u ← (u + A1 · b) · 2−1 (mod n)

= A0 · b · 2−2 + A1 · b · 2−1 (mod n)

u ← (u + A2 · b) · 2−1 (mod n)

= A0 · b · 2−3 + A1 · b · 2−2 + A2 · b · 2−1 (mod n)
...

u ← (u + Ai · b) · 2−1 (mod n)
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Derivation of the binary CIOS

This formulation gives the following code for the binary CIOS:

1: u ← 0
2: for i = 0 to k − 1
3: u ← (u + Ai · b) · 2−1 (mod n)
4: return u

We can separate Step 3 into two steps

1: u ← 0
2: for i = 0 to k − 1
3a: u ← u + Ai · b
3b: u ← u · 2−1 (mod n)
4: return u
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Derivation of the binary CIOS

The computation of u · 2−1 (mod n) for a given u can be performed
without explicitly computing 2−1 (mod n)

If u in Step 3a is even, such that u = 2v , then Step 3b gives

u = 2v { Step 3a }
u ← (2v) · 2−1 (mod n)

= v

If u in Step 3a is odd, then we know u + n will be even since n is
always odd, therefore, Step 3 gives

u = odd { Step 3a }
u + n = 2v

u ← (2v) · 2−1 (mod n)

= v
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Derivation of the binary CIOS

Furthermore, v is easily computed for an even u as v ← u/2

Therefore, we revise Step 3b into two steps, the first step is the
if-then statement checking if the number is odd, while the second
step performs division by 2

1: u ← 0
2: for i = 0 to k − 1
3a: u ← u + Ai · b
3b: if u is odd then u ← u + n
3c: u ← u/2
4: return u

The resulting algorithm has several nice properties
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The Binary CIOS Algorithm

However, we should also add the subtraction step

Furthermore, checking if u is odd can be made more efficient

Given u, the LSB U0 = 1 implies that u is odd

1: u ← 0
2: for i = 0 to k − 1
3a: u ← u + Ai · b
3b: u ← u + U0 · n
3c: u ← u/2
4: if u > n then u ← u − n
5: return u
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An Example of the Binary CIOS Algorithm

Consider the computation of MonPro(27, 27) using the binary CIOS
algorithm for n = 55 and k = 6

We have a = 27 = (011011) and b = 27

i ai Step 3a (u) u0 Step 3b (u) Step 3c (u)
0 1 0 + 1 · 27 = 27 1 27 + 1 · 55 = 82 82/2 = 41
1 1 41 + 1 · 27 = 68 0 68 68/2 = 34
2 0 34 + 0 · 27 = 34 0 34 34/2 = 17
3 1 17 + 1 · 27 = 44 0 44 44/2 = 22
4 1 22 + 1 · 27 = 49 1 49 + 1 · 55 = 104 104/2 = 52
5 0 52 + 0 · 27 = 52 0 52 52/2 = 26

The subtraction (Step 4) is not needed since u < n

The result is found as MonPro(27, 27) = 26
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Properties of the Binary CIOS Algorithm

The binary CIOS algorithm performs 2 multiplications with k-bit
numbers in Steps 3a and 3b, requiring O(k2) operations

Step 3c is a simple bit-level shift operation, requiring at most O(k)

However, Step 3b does not perform a multiplication when u0 = 0

Assuming U0 will be 1 or 0 with uniform probability, we can deduce
that, in the average, half of the time Step 3b will be skipped

Thus, the binary CIOS algorithm requires 1.5 multiplications with
k-bit numbers in the average
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The Word-Level CIOS Algorithm

The word-level algorithm scans the words of a, n, and u

a = (As−1As−2 · · ·A1A0)

n = (Ns−1Ns−2 · · ·N1N0)

u = (Us−1Us−2 · · ·U1U0)

for sw = k where w is the word size in bits

The least significant w bits, in other words, the least significant words
(LSW) of a, n, u are A0,N0,U0

Now we consider the steps of the binary CIOS algorithm, and extend
them to word level

Step 3a is easily extended as u ← u + Ai · b
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The Word-Level CIOS Algorithm

Since Step 3c performs a w -bit right shift, Step 3b should update u
so that its LSW is zero

Let M be a 1-word integer such that the LSW of u + M · n is zero

u + M · n = 0 (mod 2w ) ⇒ M = −u · n−1 (mod 2w )

Since the modulus is 2w , we only need the LSW of u and n

M = U0 · (−N−10 ) (mod 2w )

Interestingly, the identity r · r−1 + (−n′) · n = 1 implies

(−n′) · n = 1 (mod 2w ) ⇒ − N−10 = N ′0 (mod 2w )

Therefore, −N−10 is actually equal to N ′0, the LSW of N ′
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The Word-Level CIOS Algorithm

1: u ← 0
2: for i = 0 to s − 1
3a: u ← u + Ai · b
3b: M ← U0 · (−N−10 ) (mod 2w )
3c: u ← u + M · n
3d: u ← u/2w

4: if u > n then u ← u − n
5: return u
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An Example of the Word-Level CIOS Algorithm

Consider the computation of MonPro(27, 27) using the word-level
CIOS algorithm for n = 55, k = 6, and w = 3

We have a = 27 = (011011)2 = (33)8 and b = 27

We also have n = 55 = (110111)2 = (67)8

Furthermore, N0 = 7 an N ′0 = −N−10 = −7−1 = 1 (mod 8)

i Ai Step 3a (u) U0 Step 3b (M) Step 3c (u) Step 3d (u)

0 (3)8 0 + 3 · 27 = 81 (1)8 1 · 1 = 1 81 + 1 · 55 = 136 136/8 = 17
1 (3)8 17 + 3 · 27 = 98 (2)8 1 · 2 = 2 98 + 2 · 55 = 208 208/8 = 26

The subtraction (Step 4) is not needed since u < n

The result is found as MonPro(27, 27) = 26
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Properties of the Word-Level CIOS Algorithm

The word-level CIOS performs 2 multiplications with s word numbers
in Steps 3a and 3c, requiring O(s2) operations

Step 3b requires a 1-word operation: O(1)

Step 3d is a simple word-level shift operation, requiring at most O(s)

The word-level CIOS algorithm is more efficient than the classical
Montgomery algorithm because:

It does not require the k-bit (s-word) number n′, instead, it only
requires computation of the w -bit (1-word) number N ′0
The classical Montgomery algorithm requires the k-bit number n′

It requires 2 multiplications with k-bit (s-word) numbers
The classical Montgomery algorithm requires 3 multiplications with
k-bit numbers
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Fast Computation of N ′0

There is an efficient algorithm for computing the one-word integer

N ′0 = −N−10 (mod 2w )

It is based on a specialized version of the extended Euclidean
algorithm for computing the inverse

The following algorithm computes x−1 (mod 2w ) for an odd x

function ModInverse(x , 2w )
1: y ← 1
2: for i = 2 to w
3: if 2i−1 < x · y (mod 2i ) then y ← y + 2i−1

4: return y
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http://koclab.org


Arithmetic in Integer Rings and Prime Fields Integer, Mod n, GF(p)

An Example Computation of n′0

As an example, we compute 23−1 (mod 26)

Here we have x = 23 and w = 6.

We start with y = 1

i 2i−1 2i y x · y (mod 2i ) y

2 2 4 1 23 · 1 = 3 (mod 4) 3 > 2 1 + 2 = 3

3 4 8 3 23 · 3 = 5 (mod 8) 5 > 4 3 + 4 = 7

4 8 16 7 23 · 7 = 1 (mod 16) 7 6> 8 7

5 16 32 7 23 · 7 = 1 (mod 32) 7 6> 14 7

6 32 64 7 23 · 7 = 33 (mod 64) 33 > 32 7 + 32 = 39

Thus, we find y = 39, implying 23−1 = 39 (mod 64)

This is true, since 23 · 39 = 897 = 1 (mod 64)
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Arithmetic with Special Primes

Until now we considered modular arithmetic with arbitrary composite
or prime numbers

However, elliptic cryptographic algorithms often use special primes

For example, the NIST elliptic curves over GF(p) use these primes

Curve Field prime p

P-192 2192 − 264 − 1

P-224 2224 − 296 + 1

P-256 2256 − 2224 + 2192 + 296 − 1

P-384 2384 − 2128 − 296 + 232 − 1

P-521 2521 − 1
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Arithmetic with Special Primes

Similarly, SECG elliptic curves over GF(p) use these primes

Curve Field prime p

secp192k1 2192 − 232 − 212 − 28 − 26 − 26 − 23 − 1

secp192r1 2192 − 264 − 1

secp224k1 2224 − 232 − 212 − 211 − 29 − 27 − 24 − 2− 1

secp224r1 2224 − 296 + 1

secp256k1 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1

secp256r1 2256 − 2224 + 2192 + 296 − 1

secp384r1 2384 − 2128 − 296 + 232 − 1

secp521r1 2521 − 1

Furthermore, Curve25519 also uses a special prime p = 2255 − 19
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Arithmetic with Special Primes

We can use the existing modular addition and multiplication
algorithms, including the classical Montgomery algorithm and the
binary and word-level versions of the CIOS algorithm for arithmetic
with these special primes

However, these algorithms are designed for arbitrary primes

They will not be as efficient as the algorithms that are designed and
optimized for particular primes

Several algorithms proposed for such special primes

These algorithms however work only for the type of primes or for the
primes for which they are designed
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Arithmetic with NIST Prime P-192

Consider the NIST prime P-192 which is p = 2192 − 264 − 1

Assume w = 64 and represent a word using Ai

Assume we are performing reduction modulo this prime

For example, we can take a number that is the twice the length of p
and reduce it mod p

Such number may appear in computations after a multiplication, and
thus, it will need to be reduced mod p
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Arithmetic with NIST Prime P-192

Since p is k bits, we can take a 2k-bit integer a and reduce it mod p

Every 2k-bit integer a can be represented using 6 words

a = A52320 + A42256 + A32192 + A22128 + A1264 + A0

We can also use the compact notation a = (A5A4A3A2A1A0)

After the reduction mod p = 2192 − 264 − 1, the result will be 3 words

b = a (mod p) implies b = (B2B1B0)
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Reduction with NIST Prime P-192

In order to obtain the reduced number b, we first compute

T = (A2A1A0)

S1 = (0 A3A3)

S2 = (A4A4 0)

S3 = (A5A5A5)

Then, we compute b = a (mod p) using modular addition

b = (B2B1B0) = T + S1 + S2 + S3 (mod p)

This is a special reduction algorithm that works only for this p
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Reduction with NIST Prime P-192

How can we prove that this reduction is correct?

For r = 264, we can express the prime as p = r3 − r − 1

Given a = A5r
5 + A4r

4 + A3r
3 + A2r

2 + A1r + A0, the reduction
operation can be expressed as a polynomial reduction

b = A5r
5 + A4r

4 + A3r
3 + A2r

2 + A1r + A0 (mod r3 − r − 1)

Using a computer algebra tool, we obtain b as

b = (A5 + A4 + A2)r2 + (A5 + A4 + A3 + A1)r + (A5 + A3 + A0)
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Reduction with NIST Prime P-192

By rearranging the terms, we can write

r2 A2 0 A4 A5

r A1 A3 A4 A5

1 A0 A3 0 A5

T S1 S2 S3

Therefore, we obtain

T = (A2A1A0)

S1 = (0 A3A3)

S2 = (A4A4 0)

S3 = (A5A5A5)

Finally:
b = T + S1 + S2 + S3 (mod p)
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Reduction with NIST Prime P-521

These specialized algorithms require fewer terms to be computed and
added if the binary expansion of the prime contains fewer 1s, i.e., the
power of 2 terms in its expression

Therefore, primes with few 1s or few power of 2 terms are preferred

The NIST P-521 is one such prime: p = 2521 − 1

Primes of this form are called the Mersenne primes

Reduction with such primes is significantly simpler
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Reduction with NIST Prime P-521

Assume A1 and A0 are 521-bit integers

Every integer less than p2 can be represented

a = A1 · 2521 + A0

The compact representation a = (A1A0)

Consider the reduction operation b = a (mod p)

The expression for b is simply given as

b = A1 + A0 (mod p)

A single modular addition suffices to obtain b = a (mod p)
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http://koclab.org


Arithmetic in Integer Rings and Prime Fields Integer, Mod n, GF(p)

Reduction with NIST Prime P-521

The expression for b is also easily proven by assigning r = 2521

Therefore, p = r − 1 and a = A1r + A0

Now we can compute b using polynomial reduction

b = A1r + A0 (mod r − 1)

= A1(r − 1) + A1 + A0 (mod r − 1)

= A1 + A0 (mod r − 1)

Therefore, b = A1 + A0 (mod p)

In other words, the reduction requires a single modular addition
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Reduction with Primes of the Form 2k − c

The prime for Curve25519 is given as p = 2255 − 19

Primes of the form p = 2k − c are commonly used in cryptography,
where c is a 1-word integer,

If we assign r = 2k , we get p = r − c

Consider the 2k-bit number a = A1r + A0

To compute b = a (mod p), we perform polynomial reduction

b = A1r + A0 (mod r − c)

= A1(r − c) + c A1 + A0 (mod r − c)

= c A1 + A0 (mod r − c)

The final reduced value is computed as b = c A1 + A0 (mod p)
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Generalized Mersenne Numbers

The reduction algorithm for prime p = 2192 − 264 − 1 is invented by
Jerome Solinas, who developed several specialized reduction
algorithms for the NIST primes

For example, consider p = 2224 − 296 + 1

Given the 32-bit numbers Ai , the mod p reduction of the 2k-bit
number a = (A13A12 · · ·A1A0) is accomplished as

T = (A6A5A4A3A2A1A0)

S1 = (A10A9A8A7 0 0 0)

S2 = (0 A13A12A11 0 0 0)

D1 = (A13A12A11A10A9A8A7)

D2 = (0 0 0 0 A13A12A11)

b = T + S1 + A2 − D1 − D2 (mod p)
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