
Arithmetic in Binary Fields GF(2k ), Polynomial Basis, Normal Basis

Arithmetic in Binary Fields

C0 multiplication circuit

A0 A1 A2

Cr

A3 B0 B1 B3B2
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Representing Elements of GF(2k)

A Galois field of 2k elements is denoted as GF(2k)

Such field are also called “binary fields” since the field elements can
be represented using k-bit binary vectors

For example, if a ∈ GF(2k), then Ai ∈ {0, 1}

a = (Ak−1Ak−2 · · ·A1A0)

The 0 and 1 bits above are the coefficients of the basis elements

There are two types of basis which are of interest in cryptography:
the polynomial basis and the normal basis
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Polynomial Basis Representation of GF(2k)

The polynomial basis is formed by taking the root α of a degree-k
irreducible polynomial over GF(2), and representing every element of
the field in a linear sum of the powers of α

A = (Ak−1Ak−2 · · ·A1A0)

= Ak−1α
k−1 + Ak−2α

k−2 + · · ·+ A1α + A0

=
k−1∑
i=0

Aiα
i

There are 2k different binary vectors of length k , and thus every
element of GF(2k) is uniquely represented

α ∈ GF(2k) is represented using (000 · · · 010)
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Normal Basis Representation of GF(2k)

The normal basis is formed by taking an element β of the field and
representing every other elements of the field in a linear sum of the
power of 2 powers of β

The 0 and 1 bits in the vector are the coefficients of the powers β, for
example, for bi ∈ {0, 1}

B = (Bk−1Bk−2 · · ·B1B0)

= Bk−1β
2k−1

+ Bk−2β
k−2

+ · · ·+ B1β
21 + B0β

20

=
k−1∑
i=0

Biβ
2i

There are 2k different binary vectors of length k , and therefore, every
element of GF(2k) is uniquely represented

β ∈ GF(2k) is represented using (000 · · · 001)
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Addition in GF(2k)

The addition of two field elements represented in polynomial basis
or normal basis is performed using exactly the same algorithm:
GF(2) addition of the individual bits in the binary vectors

However, both elements need to be in the same basis!

Given a and b represented in polynomial basis or normal basis as
vectors of length k , their sum c = a + b ∈ GF(2k) is found as

a = Ak−1 Ak−2 · · · A1 A0

b = Bk−1 Bk−2 · · · B1 B0

c = Ck−1 Ck−2 · · · C1 C0

Each vector element Ci is computed using Ci = Ai + Bi (mod 2)

GF(2) addition corresponds to the XOR operation in Boolean logic
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Addition in GF(2k)

Here we have Ci = Ai + Bi (mod 2) or Ci = Ai XOR Bi

XOR XOR XOR XOR XOR XOR

A5 A4 A3 A2 A1 A0B5 B4 B3 B2 B1 B0

C5 C4 C3 C2 C1 C0

GF(2k) addition involves no carry generation or propagation

Total delay = 1 XOR delay

Total area = k XOR area

Scales up easily for k

Subtraction is the same as addition
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Multiplication in GF(2k)

Multiplication of the elements of GF(2k) using polynomial basis and
normal basis is based on different algorithms

Multiplication of the elements of GF(2k) using polynomial basis is
performed by multiplication of polynomials mod p(α)

p(α) is an irreducible polynomial of degree k over GF(2)

On the other hand, multiplication of the elements of GF(2k) using
normal basis involves reduction of higher powers of the normal
element β to lower powers

Both bases may als be used simultaneously as they may offer
efficiency, for example, by performing an operation in one basis and
then converting to another
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Polynomial Basis Multiplication in GF(2k)

The polynomial basis multiplication in GF(2k) has two phases:

Polynomial Multiplication
Reduction with the degree-k irreducible polynomial p(α)

This is very similar to the multiply-and-reduce method of the
modular multiplication of integers

However, all additions are performed in GF(2k), because vectors
representing the field elements are not integers

The degree-k irreducible polynomial p(α) is of the form

αk + pk−1α
k + pk−2α

k−1 + ·+ p1α + 1

where pi ∈ {0, 1}
The first and last terms αk and 1 must exist
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http://koclab.org


Arithmetic in Binary Fields GF(2k ), Polynomial Basis, Normal Basis

Irreducible Polynomials Generating GF(2k)

To construct the Galois field GF(2k), we need an irreducible
polynomial p(α) of degree k over GF(2)

Irreducible polynomials of any degree exist, in fact, usually there are
more than one for a given k

We choose just one of them, and keep it for our implementation

For interoperability, the sender and receiver must choose the same
irreducible polynomial

All GF(2k) fields generated by different irreducible polynomials (of
degree k) are isomorphic to one another
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Irreducible Polynomials over GF(2)

k irreducible polynomials

1 α α + 1

2 α2 + α + 1

3 α3 + α + 1 α3 + α2 + 1

4 α4 + α + 1 α4 + α3 + 1 α4 + α3 + α2 + α + 1

5 α5 + α2 + 1 α5 + α3 + 1 α5 + α3 + α2 + α + 1

α5 + α4 + α3 + α + 1 α5 + α4 + α3 + α2 + 1 α5 + α4 + α2 + α + 1

6 α6 + α + 1 α6 + α3 + 1 α6 + α5 + 1

α6 + α4 + α2 + α + 1 α6 + α4 + α3 + α + 1 α6 + α5 + α2 + α + 1

α6 + α5 + α3 + α2 + 1 α6 + α5 + α4 + α2 + 1 α6 + α5 + α4 + α + 1

7 α7 + α + 1 α7 + α3 + 1 α7 + α4 + 1

α7 + α6 + 1 α7 + α3 + α2 + α + 1 α7 + α5 + α2 + α + 1

α7 + α5 + α3 + α + 1 α7 + α6 + α3 + α + 1 α7 + α4 + α4 + α + 1

α7 + α4 + α3 + α2 + 1 α7 + α6 + α4 + α2 + 1 α7 + α6 + α5 + α2 + 1

α7 + α5 + α4 + α3 + 1 α7 + α6 + α5 + α4 + 1
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Irreducible Polynomials over GF(2)

k irreducible polynomials

8 α8 + α4 + α3 + α + 1 α8 + α7 + α2 + α + 1 α8 + α5 + α3 + α + 1

α8 + α7 + α2 + α + 1 α8 + α6 + α5 + α + 1 α8 + α7 + α5 + α + 1

α8 + α7 + α6 + α + 1 α8 + α4 + α3 + α2 + 1 α8 + α5 + α3 + α2 + 1

α8 + α6 + α3 + α2 + 1 α8 + α7 + α3 + α2 + 1 α8 + α6 + α5 + α2 + 1

α8 + α5 + α4 + α3 + 1 α8 + α6 + α5 + α3 + 1 α8 + α7 + α5 + α3 + 1

α8 + α6 + α5 + α4 + 1 α8 + α7 + α5 + α4 + 1

257 α257 + α12 + 1 α257 + α41 + 1 α257 + α48 + 1

α257 + α51 + 1 α257 + α65 + 1 α257 + α192 + 1

α257 + α206 + 1 α257 + α209 + 1 α257 + α216 + 1

α257 + α245 + 1
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Sparse Irreducible Polynomials Generating GF(2k)

Since any irreducible polynomial of degree k can be used to construct
the field GF(2k), it is a good idea to select one that will offer
maximum arithmetic efficiency

Due to the complexity of the reduction phase of the polynomial basis
multiplication, a sparse or short irreducible polynomial is preferred

A sparse or short irreducible polynomial of degree k has as few terms
as possible

For example, α7 + α + 1 is irreducible over GF(2) and has just three
terms, and it is the shortest irreducible polynomial of degree 7
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Irreducible Trinomials and Pentanomials over GF(2)

The shortest irreducible polynomial for any k has at least 3 terms:

αk + αj + 1 for some j ∈ [1, k − 1]

Such polynomials are called trinomials

The next shortest irreducible polynomial for any k has 5 terms:

αk + αj1 + αj2 + αj3 + 1 for some unequal j1, j2, j3 ∈ [1, k − 1]

Such polynomials are called pentanomials

Binomials and quadrinomials are reducible over GF(2)
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Irreducible Polynomials Generating GF(2k)

Question 1: Does there exist an irreducible trinomial for every k?

Answer: No

For example, there are no irreducible trinomials for k = 8, 13, 16, 19
and many others, however, there are irreducible pentanomials for
these k values

Question 2: Does there exist an irreducible trinomial or irreducible
pentanomial for every k?

Answer: This is an open question.

However, the research indicates that up to k = 10, 000 there is either
an irreducible trinomial or an irreducible pentanomial for every k
http://www.hpl.hp.com/techreports/98/HPL-98-135.pdf
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Polynomial Basis Multiplication in GF(27)

Given a, b ∈ GF(2k) expressed in polynomial basis, the field
multiplication is performed in two phases

Polynomial multiplication of a(α) and b(α)
c ′(α) = a(α) · b(α)
Polynomial reduction using the irreducible polynomial p(α)
c(α) = c ′(α) mod p(α)

Consider GF(27) and the irreducible trinomial

p(α) = α7 + α + 1 = (10000011)

Let a, b ∈ GF(27) such that

a = (0100110) = α5 + α2 + α

b = (1001001) = α6 + α3 + 1
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Polynomial Basis Multiplication in GF(27)

Since the elements of GF(27) are polynomials up to the degree 6, the
polynomial multiplication produces a polynomial of degree up to 12

c ′(α) = a(α) · b(α) = (α5 + α2 + α)(α6 + α3 + 1)

= α11 + α7 + α4 + α2 + α

= (0100010010110)

There are various algorithms for the polynomial multiplication

All additions are in GF(2)

The add-shift algorithm produces c ′ as

0 1 0 0 1 1 0
1 0 0 1 0 0 1
0 1 0 0 1 1 0

0 1 0 0 1 1 0
0 1 0 0 1 1 0

0 1 0 0 0 1 0 0 1 0 1 1 0
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Polynomial Basis Multiplication in GF(27)

The irreducible polynomial p(α) = α7 + α + 1 = (10000011)

We perform polynomial reduction by first left adjusting the binary
vector for p(α) with the product vector c ′(α)

We then perform XOR and shift-right operations, until all top
(beyond α6) terms of the product c ′(α) are zero

c ′ = 0 1 0 0 0 1 0 0 1 0 1 1 0
p = 1 0 0 0 0 0 1 1
c = 0 0 0 0 1 0 1 0 0 1 1 0
p = 1 0 0 0 0 0 1 1
c = 0 0 1 0 0 1 0 1

Therefore, we find c = (0100101) = α5 + α2 + 1
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Irreducible All-One Polynomials

Alternatively irreducible polynomials with more 1s may also be useful
for efficiency purposes

A particular set of irreducible polynomials over GF(2) is called all-one
polynomials (AOPs) which are of the form

(11 · · · 11) = αk + αk−1 + ·+ α + 1

A degree k AOP is irreducible if and only if p = k + 1 is prime and 2
is a primitive mod p

For k ≤ 100, the AOP is irreducible for the following k values
{2, 4, 10, 12, 18, 28, 36, 52, 58, 60, 66, 82, 100}
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Irreducible All-One Polynomials

For example, for k = 4 we have p = 5 prime and 2 is primitive mod 5,
therefore the AOP α4 + α3 + α2 + α + 1 is irreducible, which also
happens to be a pentanomial

Similarly, for k = 10 we have p = 11 prime and 2 is primitive mod 11,
therefore the AOP

α10 + α9 + α8 + α7 + α6 + α5 + α4 + α3 + α2 + α + 1

is irreducible

Reduction with an AOP requires XOR of the all-one p(α) vector with
the product vector, and this can be implemented by noting that

Ci XOR Pi = Ci XOR 1 = C̄i

Here C̄i is the Boolean complement of Ci

http://koclab.org Çetin Kaya Koç Spring 2018 19 / 39
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Reduction with an AOP

Consider the field GF(24) and its irreducible AOP
p(α) = α4 + α3 + α2 + α + 1 = (11111)

Let a = (1011) and b = (1001) be in GF(24), in other words,
a = α3 + α + 1 and b = α3 + 1

The polynomial multiplication phase produces c = a · b

c = (α3 + α + 1)(α3 + 1) = α6 + α4 + α + 1 = (01010011)

The reduction phase produces

c = 0 1 0 1 0 0 1 1
p = 1 1 1 1 1
c = 0 1 0 1 1 1 1
p = 1 1 1 1 1
c = 0 1 0 0 0 1
p = 1 1 1 1 1
c = 0 1 1 1 0

Therefore, we find c = (1110) = α3 + α2 + α
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Normal Basis Squaring in GF(2k)

The normal basis squaring in GF(2k) is simply a left rotation of the
bits of the field element for any k

This property of the normal basis for GF(2k) makes it very attractive
for coding and cryptography applications

Consider the element a ∈ GF(2k) expressed in normal basis as

a =
k−1∑
i=0

Aiβ
2i = A0β + A1β

2 + · · ·+ Ak−2β
2k−2

+ Ak−1β
2k−1

As a vector, we can write it as a = (Ak−1Ak−2 · · ·A1A0)
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Normal Basis Squaring in GF(2k)

We then calculate the expression for a2 using the sum formulas

All cross terms in the expression for a2 disappear, leaving only

a2 =
k−1∑
i=0

Aiβ
2i+1

= A0β
2 + A1β

4 + · · ·+ Ak−2β
2k−1

+ Ak−1β
2k

Since β2
k

= β, we rearrange the above sum as

Ak−1β + A0β
2 + A1β

4 + · · ·+ Ak−2β
2k−1

This gives the vector representation as a2 = (Ak−2 · · ·A1A0Ak−1)

Therefore, the squaring of a is obtained by left rotating its vector
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Normal Basis Multiplication in GF(2k)

Given two elements a, b ∈ GF(2k) expressed in normal basis, the
normal basis multiplication algorithm will produce the product
c = a · b in the the normal basis

Since the power of 2 powers of the normal element β are in the
expressions for a and b, the expression for c will have non-power of 2
powers of β

For example, the product of Aiβ
2i and Bjβ

2j will be AiBjβ
2i+2j

In order to obtain an expression for c containing only the power of 2
powers of β, we need to “reduce” β2

i+2j terms to β2
n

The irreducible polynomial p(α) is implicitly involved in this
reduction, since the conversion tables from the 2i + 2j powers to the
2n powers are obtained using p(α)
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Normal Basis Multiplication in GF(24)

Consider the field GF(24) and the irreducible trinomial
p(α) = α4 + α + 1

There exists a normal element β for k = 3, in fact, there always exists
a normal element for any k

The polynomial representation of β is found as β = α3

We need the polynomial representation of β in order to create the
conversion table from the powers 2i + 2j to the powers 2n using the
irreducible polynomial p(α)
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All Powers of β in Normal Basis

Using β = α3 and p(α) = α4 + α + 1, we can find the polynomial
representations of all power of 2 powers of β

β = α3

β2 = α3 + α2

β4 = α3 + α2 + α + 1

β8 = α3 + α

Now we need to find normal expressions for all powers of β

These computations can be performed using computer algebra, and
need to be done only once during the algorithm development

Once they are obtained, a Boolean circuit is built that uses AND and
XOR gates and rewiring to compute the bits ci of the product
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All Powers of β in Normal Basis

In order to obtain the normal expressions for other powers of β, we
can use the ones we already know

For example, to compute β3 we use

β3 = β · β2 = α3 · (α3 + α2) = α6 + α5 = α3 + α (mod p(α))

This gives β3 = β8

Proceeding, we find the normal representation of all powers of β

Furthermore, we have β0 = β15 and β16 = β
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All Powers of β in Normal Basis

βi Normal Expansion βi Normal Expansion

β0 β8 + β4 + β2 + β β8 β8

β1 β β9 β4

β2 β2 β10 β8 + β4 + β2 + β

β3 β8 β11 β

β4 β4 β12 β2

β5 β8 + β4 + β2 + β β13 β8

β6 β β14 β4

β7 β2 β15 β8 + β4 + β2 + β
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An Example Normal Basis Multiplication in GF(24)

Consider two elements of a, b ∈ GF(24) given in normal basis as

a = (1011) = β8 + β2 + β

b = (1001) = β8 + β

Their product is obtained as

c = (β8 + β2 + β) · (β8 + β)

= β16 + β10 + β3 + β2

Using the representations of β16 = β, β10 = β8 + β4 + β2 + β, and
β3 = β8 from the conversion table, we obtain

c = β16 + β10 + β3 + β2

= β + (β8 + β4 + β2 + β) + β8 + β2

= β4
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Normal Basis Multiplication in GF(24)

The multiplication of two arbitrary elements of in normal basis

a = A0β + A1β
2 + A2β

4 + A3β
8

b = B0β + B1β
2 + B2β

4 + B3β
8

The product c would be

c = A0B0β
2 + A0B1β

3 + A0B2β
5 + A0B3β

9

A1B0β
3 + A1B1β

4 + A1B2β
6 + A1B3β

10

A2B0β
5 + A2B1β

6 + A2B2β
8 + A2B3β

12

A3B0β
9 + A3B1β

10 + A3B2β
12 + A3B3β

16
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Normal Basis Multiplication in GF(24)

Using the representations of all powers of β in normal basis, we obtain

c = A0B0β
2 + A0B1β

8 + A0B2(β8 + β4 + β2 + β) + A0B3β
4

A1B0β
8 + A1B1β

4 + A1B2β + A1B3(β8 + β4 + β2 + β)

A2B0(β8 + β4 + β2 + β) + A2B1β + A2B2β
8 + A2B3β

2

A3B0β
4 + A3B1(β8 + β4 + β2 + β) + A3B2β

2 + A3B3β

By grouping the powers of β, we obtain

c = (A0B2 + A1B2 + A1B3 + A2B0 + A2B1 + A3B1 + A3B3)β +

= (A0B0 + A0B2 + A1B3 + A2B0 + A2B3 + A3B1 + A3B2)β2 +

= (A0B2 + A0B3 + A1B1 + A1B3 + A2B0 + A3B0 + A3B1)β4 +

= (A0B1 + A0B2 + A1B0 + A1B3 + A2B0 + A2B2 + A3B1)β8

= C0β + C1β
2 + C2β

4 + C3β
8
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Normal Basis Multiplication in GF(24)

This expression gives the bits of the product c in terms of the bits of
a and b, expressed in the normal basis

C0 = A0B2 + A1B2 + A1B3 + A2B0 + A2B1 + A3B1 + A3B3

C1 = A0B0 + A0B2 + A1B3 + A2B0 + A2B3 + A3B1 + A3B2

C2 = A0B2 + A0B3 + A1B1 + A1B3 + A2B0 + A3B0 + A3B1

C3 = A0B1 + A0B2 + A1B0 + A1B3 + A2B0 + A2B2 + A3B1

The above formulas imply we need 16 2-input AND gates to obtain
the terms AiBj for i , j = 0, 1, 2, 3

We then need 24 XOR gates to compute the product bits
C0,C1,C2,C3, in other words, 6 XOR gates for each Ci

The normal basis multiplication operation is more complicated than
the squaring, which was just a left rotation of the bits
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Normal Basis Multiplication in GF(24)

Interestingly there is more structure in the normal basis multiplication
than this formulation makes it obvious

First we design a circuit consisting of AND and XOR gates for
computing the first bit of the product C0

C0 = A0B2 + A1B2 + A1B3 + A2B0 + A2B1 + A3B1 + A3B3

AND

AND

AND

AND

AND

AND

AND

AND

AND

XO
R

C0

XO
R

XO
R

XO
R

A0B2 A1B2 A1B3 A2B0 A2B1

AND

AND

AND

AND

AND

AND

AND

A3B1 A3B3

XO
R

XO
R

A0 B0 A0 B1 A0 B2 A0 B3 A1 B0 A1 B1 A1 B2 A1 B3 A2 B0 A2 B1 A2 B2 A2 B3 A2 B0 A2 B1 A2 B2 A2 B3
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Normal Basis Multiplication in GF(24)

Consider the normal basis expressions for C0 and C1 given as

C0 = A0B2 + A1B2 + A1B3 + A2B0 + A2B1 + A3B1 + A3B3

C1 = A0B0 + A0B2 + A1B3 + A2B0 + A2B3 + A3B1 + A3B2

Now we rearrange the terms in C1 so that the term AiBj in C0 is
aligned with the term Ai+1 (mod 4)Bj+1 (mod 4) in C1

For example, the below the term A0B2 in C0, we place the term A1B3

Similarly, the below the term A3B3 in C0, we place the term A0B0

C0 = A0B2 + A1B2 + A1B3 + A2B0 + A2B1 + A3B1 + A3B3

C1 = A1B3 + A2B3 + A2B0 + A3B1 + A3B2 + A0B2 + A0B0

Miraculously this alignment works for C0 and C1

All terms in C1 are placed below their corresponding terms in C0
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Normal Basis Multiplication in GF(24)

It also works for C1 and C2

C1 = A1B3 + A2B3 + A2B0 + A3B1 + A3B2 + A0B2 + A0B0

C2 = A2B0 + A3B0 + A3B1 + A0B2 + A0B3 + A1B3 + A1B1

It also works for C2 and C3

C2 = A2B0 + A3B0 + A3B1 + A0B2 + A0B3 + A1B3 + A1B1

C3 = A3B1 + A0B1 + A0B2 + A1B3 + A1B0 + A2B0 + A2B2

In fact this is a property of the normal basis
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Normal Basis Multiplication in GF(24)

The rearranged set of equations for the product terms are

C0 = A0B2 + A1B2 + A1B3 + A2B0 + A2B1 + A3B1 + A3B3

C1 = A1B3 + A2B3 + A2B0 + A3B1 + A3B2 + A0B2 + A0B0

C2 = A2B0 + A3B0 + A3B1 + A0B2 + A0B3 + A1B3 + A1B1

C3 = A3B1 + A0B1 + A0B2 + A1B3 + A1B0 + A2B0 + A2B2

The implication of this rearrangement is that the circuit for
computing C0 can be used for computing Cr for r = 1, 2, 3

The rearrangement and realignment algorithm is determined by the
property that, for r = 1, 2, 3

AiBj in C0 is aligned with Ai+r mod 4 Bj+r mod 4 in Cr
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Normal Basis Multiplication in GF(24)

Suppose the input bits are arranged as (A0A1A2A3 B0B1B2B3) and
applied to the C0 multiplication circuit in order to compute C0

If we now apply the input bits as (A3A0A1A2 B3B0B1B2), we will be
computing C1 using the same circuit

This represents a right rotation of the input bits applied to the circuit

By right shifting and applying the input vectors 4 times, all product
bits in increasing index are computed using the same C0 circuit

C0 multiplication circuit

A0 A1 A2

Cr

A3 B0 B1 B3B2
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http://koclab.org


Arithmetic in Binary Fields GF(2k ), Polynomial Basis, Normal Basis

Optimal Normal Basis Multiplication

There is another remarkable property of the normal bases

For a given k value there may be a basis for which the multiplication
requires minimum number of XOR gates

The number of XOR gates for computing the first product term C0

for GF(24) was 6, which is one less than the number of terms in the
normal representation of C0

Since we are using the same circuit (whether sequentially or in
parallel), the number of XOR gates for computing any product bit is
the same
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Optimal Normal Basis Multiplication in GF(24)

Theorem

The minimum number of terms in the normal representation of the
product C0 for GF(2k) is given as 2k − 1, and the bases with this property
are called optimal normal bases.

The normal basis β = α3 for GF(24) had 2 · 4− 1 = 7 terms in the
expression for C0 is an optimal normal basis

The fundamental construction method of optimal normal bases was
given by Mullin, Onyszchuk, Vanstone and Wilson in 1988

They proved the existence of 2 types optimal normal bases

The uniqueness of these bases was proven by Gao and Lenstra in 1991
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Optimal Normal Bases for GF(2k)

While there is a normal basis for GF(2k) for every k , an optimal
normal basis exists for only some values of k

For example, for k ∈ [2, 2000] there are a total of 430 values of k for
which an optimal normal basis Type 1 or Type 2 exists

k 2 3 4 5 6 9 10 11 12 14 18 23

Type 1, 2 2 1 2 2 2 1 2 1 2 1, 2 2

k 251 254 261 268 270 273 278 281 292 293 299 303

Type 2 2 2 1 2 2 2 2 1 2 2 2

k 508 509 515 519 522 530 531 540 543 545 546 554

Type 1 2 2 2 1 2 2 1 2 2 1 2
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